ebook img

Тectonics of Strike-Slip Restraining and Releasing Bends PDF

478 Pages·21.472 MB·English-Russian
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Тectonics of Strike-Slip Restraining and Releasing Bends

Tectonics of Strike-Slip Restraining and Releasing Bends The Geological Society of London Books Editorial Committee ChiefEditor BOB PANKHURST (UK) SocietyBooksEditors JOHN GREGORY (UK) JIM GRIFFITHS (UK) JOHN HOWE (UK) PHIL LEAT (UK) NICK ROBINS (UK) JONATHAN TURNER (UK) SocietyBooksAdvisors MIKE BROWN (USA) ERICBUFFETAUT(FRANCE) JONATHANCRAIG(ITALY) RETO GIERE´ (GERMANY) TOM MCCANN (GERMANY) DOUG STEAD (CANADA) RANDELL STEPHENSON (NETHERLANDS) Geological Society books refereeing procedures TheSocietymakeseveryefforttoensurethatthescientificandproductionqualityofitsbooksmatchesthat ofitsjournals.Since1997,allbookproposalshavebeenrefereedbyspecialistreviewersaswellasbythe Society’sBooksEditorialCommittee. Ifthe refereesidentify weaknesses inthe proposal,these mustbe addressedbeforetheproposalisaccepted. Once the book is accepted, the Society Book Editors ensure that the volume editors follow strict guidelineson refereeingand qualitycontrol.Weinsistthatindividualpaperscanonlybeacceptedafter satisfactoryreviewbytwoindependentreferees.Thequestionsonthereviewformsaresimilartothosefor JournaloftheGeologicalSociety.Thereferees’formsandcommentsmustbeavailabletotheSociety’s BookEditorsonrequest. Althoughmanyofthebooksresultfrommeetings,theeditorsareexpectedtocommissionpapersthat werenotpresentedatthemeetingtoensurethatthebookprovidesabalancedcoverageofthesubject.Being acceptedforpresentationatthemeetingdoesnotguaranteeinclusioninthebook. MoreinformationaboutsubmittingaproposalandproducingabookfortheSocietycanbefoundonits website:www.geolsoc.org.uk. Itisrecommendedthatreferencetoallorpartofthisbookshouldbemadeinoneofthefollowingways: CUNNINGHAM,W.D.&MANN,P.(eds)2007.TectonicsofStrike-SlipRestrainingandReleasingBends. GeologicalSociety,London,SpecialPublications,290. WALDRON,J.W.F,ROSELLI,C.&JOHNSTON,S.K.2007.TranspressionalstructuresonaLatePalaeozoic intracontinental transform fault, Canadian Appalachians. In: CUNNINGHAM, W. D. & MANN, P. (eds) Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society, London, Special Publications,290,367–385. GEOLOGICAL SOCIETY SPECIAL PUBLICATION NO.290 Tectonics of Strike-Slip Restraining and Releasing Bends EDITED BY W. D. CUNNINGHAM University of Leicester, UK and P. MANN University of Texas at Austin, USA 2007 Published by The Geological Society London THE GEOLOGICAL SOCIETY TheGeologicalSocietyofLondon(GSL)wasfoundedin1807.Itistheoldestnationalgeologicalsocietyintheworld andthelargestinEurope.ItwasincorporatedunderRoyalCharterin1825andisRegisteredCharity210161. TheSocietyistheUKnationallearnedandprofessionalsocietyforgeologywithaworldwideFellowship(FGS)of over9000.TheSocietyhasthepowertoconferCharteredstatusonsuitablyqualifiedFellows,andabout2000ofthe Fellowship carry the title (CGeol). Chartered Geologists may also obtain the equivalent European title, European Geologist(EurGeol).OnefifthoftheSociety’sfellowshipresidesoutsidetheUK.TofindoutmoreabouttheSociety, logontowww.geolsoc.org.uk. TheGeologicalSocietyPublishingHouse(Bath,UK)producestheSociety’sinternationaljournalsandbooks,and actsasEuropeandistributorforselectedpublicationsoftheAmericanAssociationofPetroleumGeologists(AAPG), theIndonesianPetroleumAssociation(IPA),theGeologicalSocietyofAmerica(GSA),theSocietyforSedimentary Geology (SEPM) and the Geologists’ Association (GA). Joint marketing agreements ensure that GSL Fellows may purchasethesesocieties’publicationsatadiscount.TheSociety’sonlinebookshop(accessiblefromwww.geolsoc.org.uk) offerssecurebookpurchasingwithyourcreditordebitcard. TofindoutaboutjoiningtheSocietyandbenefitingfromsubstantialdiscountsonpublicationsofGSLandother societiesworldwide,consultwww.geolsoc.org.uk,orcontacttheFellowshipDepartmentat:TheGeologicalSociety, Burlington House, Piccadilly, London W1J 0BG: Tel. þ44 (0)20 7434 9944; Fax þ44 (0)20 7439 8975; E-mail: [email protected]. ForinformationabouttheSociety’smeetings,consultEventsonwww.geolsoc.org.uk.Tofindoutmoreaboutthe Society’sCorporateAffiliatesScheme,[email protected]. PublishedbyTheGeologicalSocietyfrom: TheGeologicalSocietyPublishingHouse,Unit7,BrassmillEnterpriseCentre,BrassmillLane,BathBA13JN,UK (Orders: Tel.þ44(0)1225445046,Faxþ44(0)1225442836) Onlinebookshop:www.geolsoc.org.uk/bookshop Thepublishersmakenorepresentation,expressorimplied,withregardtotheaccuracyoftheinformationcontainedin thisbookandcannotacceptanylegalresponsibilityforanyerrorsoromissionsthatmaybemade. # The Geological Society of London 2007. All rights reserved. No reproduction, copy or transmission of this publicationmaybemadewithoutwrittenpermission.Noparagraphofthispublicationmaybereproduced,copiedor transmittedsavewiththeprovisionsoftheCopyrightLicensingAgency,90TottenhamCourtRoad,LondonW1P9HE. UsersregisteredwiththeCopyrightClearanceCenter,27CongressStreet,Salem,MA01970,USA:theitem-feecode forthispublicationis0305-8719/07/$15.00. BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN978-1-86239-238-0 TypesetbyTechsetCompositionLtd,Salisbury,UK PrintedbyMPGBooksLtd,Bodmin,UK Distributors NorthAmerica Fortradeandinstitutionalorders: TheGeologicalSociety,c/oAIDC,82WinterSportLane,Williston,VT05495,USA Orders: Telþ1800-972-9892 Faxþ1802-864-7626 [email protected] Forindividualandcorporateorders: AAPGBookstore,POBox979,Tulsa,OK74101-0979,USA Orders: Telþ1918-584-2555 Faxþ1918-560-2652 [email protected] Websitehttp://bookstore.aapg.org India AffiliatedEast-WestPressPrivateLtd,MarketingDivision,G-1/16AnsariRoad,DaryaGanj,NewDelhi110002,India Orders: Telþ91112327-9113/2326-4180 Faxþ91112326-0538 E-mailaffi[email protected] Contents CUNNINGHAM,W.D.&MANN,P.Tectonicsofstrike-sliprestrainingandreleasingbends 1 MANN,P.Globalcatalogue,classificationandtectonicoriginsofrestraining-andreleasingbends 13 onactiveandancientstrike-slipfaultsystems Bends,sedimentarybasinsandearthquakehazards LEGG,M.R.,GOLDFINGER,C.,KAMERLING,M.J.,CHAYTOR,J.D.&EINSTEIN,D.E. 143 Morphology,structureandevolutionofCaliforniaContinentalBorderlandrestrainingbends WAKABAYASHI,J.Stepoversthatmigratewithrespecttoaffecteddeposits:fieldcharacteristics 169 andspeculationonsomedetailsoftheirevolution GRAYMER,R.W.,LANGENHEIM,V.E.,SIMPSON,R.W.,JACHENS,R.C.&PONCE,D.A. 189 Relativelysimplethrough-goingfaultplanesatlarge-earthquakedepthmaybeconcealedbythe surfacecomplexityofstrike-slipfaults BOHOYO,F.,GALINDO-ZALDI´VAR,J.,JABALOY,A.,MALDONADO,A.,RODRI´GUEZ- 203 FERNA´NDEZ,J.,SCHREIDER,A.&SURIN˜ACH,E.Extensionaldeformationanddevelopmentof deepbasinsassociatedwiththesinistraltranscurrentfaultzoneoftheScotia–Antarcticplate boundary Restrainingbends,transpressionaldeformationandbasementcontrolsondevelopment CUNNINGHAM,W.D.Structuralandtopographiccharacteristicsofrestrainingbendmountain 219 rangesoftheAltai,GobiAltaiandeasternmostTienShan MANN,P.,DEMETS,C.&WIGGINS-GRANDISON,M.TowardabetterunderstandingoftheLate 239 Neogenestrike-sliprestrainingbendinJamaica:geodetic,geological,andseismicconstraints SEYREK,A.,DEMI˙R,T.,PRINGLE,M.S.,YURTMEN,S.,WESTAWAY,R.W.C.,BECK,A.& 255 ROWBOTHAM,G.KinematicsoftheAmanosFault,southernTurkey,fromAr/Ardatingofoffset Pleistocenebasaltflows:transpressionbetweentheAfricanandArabianplates GOMEZ,F.,NEMER,T.,TABET,C.,KHAWLIE,M.,MEGHRAOUI,M.&BARAZANGI,M.Strain 285 partitioningofactivetranspressionwithintheLebaneserestrainingbendoftheDeadSeaFault (LebanonandSWSyria) SMITH,M.,CHANTRAPRASERT,S.,MORLEY,C.K.&CARTWRIGHT,I.Structuralgeometry 305 andtimingofdeformationintheChainatduplex,Thailand MORLEY,C.K.,SMITH,M.,CARTER,A.,CHARUSIRI,P.&CHANTRAPRASERT,S.Evolution 325 ofdeformationstylesatamajorrestrainingbend,constraintsfromcoolinghistories,MaePing faultzone,westernThailand ZAMPIERI,D.&MASSIRONI,M.Evolutionofapoly-deformedrelayzonebetweenfault 351 segmentsintheeasternSouthernAlps,Italy WALDRON,J.W.F.,ROSELLI,C.&JOHNSTON,S.K.TranspressionalstructuresonaLate 367 Palaeozoicintracontinentaltransformfault,CanadianAppalachians Releasingbends,transtensionaldeformationandfluidflow MOUSLOPOULOU,V.,LITTLE,T.A.,NICOL,A.&WALSH,J.J.Terminationsoflargestrike-slip 387 faults:analternativemodelfromNewZealand FODOR,L.I.Segmentlinkageandthestateofstressintranstensionaltransferzones:field 417 examplesfromthePannonianBasin vi CONTENTS DEPAOLA,N.,HOLDSWORTH,R.E.,COLLETTINI,C.,MCCAFFREY,K.J.W.&BARCHI,M.R. 433 Thestructuralevolutionofdilationalstepoversinregionaltranstensionalzones BERGER,B.R.The3Dfaultandveinarchitectureofstrike-slipreleasing-andrestrainingbends: 447 evidencefromvolcanic-centre-relatedmineraldeposits Index 473 Tectonics of strike-slip restraining and releasing bends W. D. CUNNINGHAM1 &P. MANN2 1Department of Geology, University of Leicester, Leicester LEI 7RH, UK (e-mail: [email protected]) 2Institute of Geophysics, Jackson Schoolof Geosciences, 10100 Burnet Road, R2200,Austin, Texas 78758, USA (e-mail: [email protected]) One of the remarkable tectonic features of the accommodateextensionarereferredtoasreleasing Earth’s crust is the widespread presence of long, bends (Fig. 1; Crowell 1974; Christie-Blick approximately straight and geomorphically promi- & Biddle 1985). Double bends have bounding nentstrike-slipfaultswhichareakinematicconse- strike-slipfaultswhichenterandlinkacrossthem, quenceoflarge-scalemotionofplatesonasphere whereas single bends are essentially strike-slip (Wilson1965).Strike-slipfaultsformincontinental fault-termination zones. Restraining and releasing andoceanictransformplateboundaries;inintraplate bends are widespreadon the Earth’ssurface, from settingsasacontinentalinteriorresponsetoaplate the scale ofmajor mountain ranges andrift basins collision;andcanoccurastransferzonesconnecting to sub-outcrop-scale examples (Swanson 2005; normal faults in rift systems and thrust faults in Mann this volume). Releasing bends have also fold–thrustbelts(Woodcock1986; Sylvester1988; been documented along oceanic transforms con- Yeatsetal.1997;Marshaketal.2003).Strike-slip necting spreading ridges (Garfunkel 1986; faultsalsoarecommoninobliquelyconvergentsub- Pockalny 1997), and extra-terrestrial restraining ductionsettingswhereinterplatestrainispartitioned bends have been interpreted to occur on Europa intoarc-parallelstrike-slipzoneswithinthefore-arc, andVenus(Koenig&Aydin1998;Saridetal.2002). arc or back-arc region (Beck 1983; Jarrard 1986; Strike-slip restraining and releasing bends are Sieh&Natawidjaja2000). sitesoflocalizedtranspressionalandtranstensional When strike-slip faults initiate in natural and deformation, respectively.Thus,bendsare charac- experimental settings, they commonly consist of terized by oblique deformation that is ultimately en e´chelon fault and fold segments (Cloos 1928; controlled by larger-scale relative plate motions Riedel 1929; Tchalenko 1970; Wilcox et al. either acting on relatively straight, long interplate 1973). With increased strike-slip displacement, boundaries (Garfunkel 1981; Mann et al. 1983; and independent of fault scale (Tchalenko 1970), Bilham & Williams 1985; Bilham & King 1989) faultsegmentslink,andthelinkedareasalongthe or acting across more complex zones of intraplate ‘principal displacement zone’ may define alternat- deformation where faults tend to be shorter, less ingareasoflocalizedconvergenceanddivergence continuous and more arcuate (Cunningham this along the length of the strike-slip fault system volume). Within the bend, oblique deformation (Fig. 1; Crowell 1974; Christie-Blick & Biddle may be accommodated by oblique-slip faulting or 1985;Gamond1987).Typically,divergentandcon- partitioned into variable components of strike-slip vergent bends are defined as offset areas where and dip-slip fault displacements (Jones & Tanner bounding strike-slip faults are continuously linked 1995; Dewey et al. 1998; Cowgill et al. 2004b; and continuously curved across the offset, Gomez et al. this volume). As seen in deeply whereas more rhomboidally shaped stepovers are eroded outcrop exposures or from subsurface geo- definedaszonesofsliptransferbetweenoverstep- physical surveys, double restraining bends and ping,butdistinctlyseparateandsubparallelstrike- releasing bends commonly define positive and slip faults (Wilcox et al. 1973; Crowell 1974; negative flower structures respectively, and strike- Aydin&Nur1982,1985).However,faultstepovers slip bends or ‘duplexes’ in plan view (Fig. 1; may evolve into continuous fault bends as the Lowell 1972; Sylvester & Smith 1976; Christie- bounding faults and connected splays propagate Blick&Biddle1985;Harding1985;Woodcock& and link across the stepover (e.g. Zhang et al. Fisher 1986; Dooley et al. 1999), although con- 1989; McClay & Bonora 2001). Thus, the two siderable structural variation and complexity terms ‘stepover’ and ‘fault bend’ are often occurs (Barka & Gulen 1989; May et al. 1993; usedinterchangeably. Wood et al. 1994; Waldron 2004; Barnes et al. Bends that accommodate local contraction are 2005; Decker et al. 2005; Parsons et al. 2005). referred to as restraining bends, and those that Single bends commonly have horsetail splay fault From:CUNNINGHAM,W.D.&MANN,P.(eds)TectonicsofStrike-SlipRestrainingandReleasingBends. GeologicalSociety,London,SpecialPublications,290,1–12. DOI:10.1144/SP290.1 0305-8719/07/$15.00#TheGeologicalSocietyofLondon2007. 2 W.D.CUNNINGHAM&P.MANN Contractional horsetail splay Transtensional Extensional relay ramp strike-slip duplex Oblique deformation Pull-apart boreoltg –e ntranspressional Pfslotorwusciettirvuere Relebaesinndg PairPeadir beedn bde bnydpass RfsCaetruosiklnttretar-aisncliitpnio gdn ubapellnedx GNenatrlreo wre spturashin iunSpgh rabidrepgn edr estraining bend Ehoxrtesentsaioilnal Double restraining bend Single restraining bend splay Transtensional rift sDteilaptoiovnearl En echelon folds Nfloewgeartive Contractional stepover structure Fig.1. Tectonicfeaturesassociatedwithstrike-sliprestrainingandreleasingbends. geometries in plan view, with strike-slip displace- lowest topographic depressions, such as the Dead ments terminally accommodated by oblique-slip Sea(tenBrinketal.1999),DeathValley(Christie- and dip-slip faulting (McClay & Bonora 1997). Blick&Biddle1985)andsubmarinebasinsunder- Adjacent restraining and releasing bends called lyingtheGulfofAqaba(Elat;Ben-Avraham1985), ‘paired bends’ by Mann (this volume) are com- theCaymantrough(Leroyetal.1996,AAPG)and monlydescribedfromstrike-slipsystemsinalltec- theGulfofCalifornia(Persaudetal.2003). tonic settings and may reflect a volumetric Restrainingandreleasingbendsalongbothcon- balancing between crustal thickening and uplift at tinental and oceanic strike-slip faults may act as restraining bends, and crustal thinning and basin barriers to earthquake propagation (King & formation at releasing bends (Woodcock & Nabelek 1985; Sibson 1985; Barka & Kadinsky- Fischer1986). Cade 1988) or conversely, they may provide Restrainingbendsaresitesoftopographicuplift, nucleation sites for major earthquakes (e.g. Shaw crustal shortening and exhumation of crystalline 2006). There are also documented cases of large basement (Segall & Pollard 1980; Mann & fault bend earthquakes (M.7) having complex Gordon 1996; McClay & Bonora 2001), whereas rupturemechanismswithmultiplefaultsbeingacti- releasing bends are sites of subsidence, crustal vatedwithinthebend,aswellasmajorfaultsrup- extension, significant basin sedimentation, high turing through the bend (Bayarsayhan et al. 1996; fluid flow, and possible volcanism (Aydin & Nur Harris et al. 2002). Because the length of fault 1982;Mannetal.1983;Hempton&Dunne1984; segmentruptureisproportionaltoearthquakemag- Dooley & McClay 1997). Restraining bends and nitude (Scholz 1982), identification of fault bends releasingbendsarecommonlyelongate,lazy-S-or between parallel strike-slip fault segments that Z-shaped features in plan view, and they may mayactasseismicpropagationbarriersisimportant form the dominant topographic and structural in assessing the potential severity of future earth- feature within a deforming region. With increased quakesinareasofactivestrike-slipfaulting.Docu- strike-slip offset, S- and Z-shaped pull-apart menting three-dimensional fault connectivity and basinsmayevolveintomorerhomboidallyshaped kinematics within an individual fault bend is features(Mannetal.1983). important for assessing whether the bend may act Restraining bends produce elongate, individual as a future earthquake propagation barrier massifs with anomalously high topographic (Graymeretal.thisvolume). elevations such as the Denali Range in Alaska In addition to earthquake hazards, tectonically (Fitzgerald et al. 1993), the Lebanon and Anti- active fault bends have other societal relevance. Lebanon ranges of the Middle East (Gomez et al. Restrainingbendsmay: thisvolume),ortheCordilleraSeptentrionalonthe islandofHispaniola(Mannetal.1984,2002).Releas- 1. exhume crystalline basement rocks that ing bends produce pull-apart basins and fault- contain important mineral deposits (e.g. bounded troughs that comprise some of Earth’s Pinheiro&Holdsworth1997); TECTONICSOFSTRIKE-SLIPBENDS 3 2. hosthydrocarbonsintheirinteriorsandflank- Bonora 2001). Because fault bends typically form ing basins (Christie-Blick & Biddle 1985; in mechanically heterogeneous crust, pre-existing Escalona & Mann 2003; Decker et al. faults and basement fabrics may be reactivated 2005);and insteadofnewfaultsgenerated.Theorientationsof 3. form major topographic uplifts that provide a reactivatedolderstructuresareunlikelytobeideal locally significant rain catchment area and foreitherpurestrike-sliporpuredip-slipmotions, potential groundwater resources (Gobi Altai thus oblique-slip displacements on reactivated and Altai restraining bends, Cunningham faults are typically important within fault bends, etal.1996;Cunningham2005,thisvolume). andworkersshouldthereforebeawareoffieldcri- teria that indicate fault reactivation (Holdsworth The societal significance of releasing bends etal.1997). includesthefollowing: 1. pull-apart basins form depressions containing Strain magnitude and distribution significant sedimentary accumulations that mayhosthydrocarbons,metalliferousdeposits, Strike-slip displacements along master faults that evaporites and other industrial minerals (e.g. enterafaultbendwillbepartiallyorwhollyaccom- theViennaBasin,Hamilton& Johnson1999; modatedbydeformationwithinthebend(Segall& Hinschetal.2005); Pollard1980).Thus,largedisplacementstrike-slip 2. releasingbendsmaybezonesofhighheatflow faultsarecapableofproducingthelargestrestrain- and crustal dilation that can be exploited as ingandreleasingbends.However,smallrestraining sources of geothermal energy, such as the and releasing bends may also exist along major Coso geothermal area of California (Lees strike-slip faults, especially when early formed 2002) and the Cerro Prieto geothermal area bendsarebypassedasthesystemevolves(Bennett ofMexico(Glowackaetal.1999);and et al. 2004; Mann et al. this volume), or when 3. releasing bends may create large valleys that faultbendsnucleatelateinthehistoryofastrike-slip provide fertile agricultural land and flat-lying faultsystem(Sieh&Natawidjaja2000),orwhenthe urbanized areas, such as the Imperial Valley releasing stepover and basin depocentre has pro- of southern California, the Silicon Valley of gressively migrated along the master strike-slip northern California, the Vienna Basin of system,insteadofmaintainingafixedpositionrela- Austria, and the Dead Sea–Sea of Galilee tive to the adjacent sliding blocks (Wakabayashi ValleyintheMiddleEast. etal.2004;thisvolume;Lazaretal.2006).Depend- ingontheanglebetweenthemasterstrike-slipfault andthefar-fielddisplacementdirection,thedegree Origin and evolutionof strike-slip fault ofstrainpartitioningofobliquedeformationwithin bends thebendintoseparatethrust,normalandstrike-slip displacements will control bend evolution. Kin- Factors that influence and control the origin and ematic partitioning of non-coaxial strike-slip and progressivedevelopmentofrestrainingandreleas- coaxialstrainsiscommonwhenthefar-fielddispla- ing bends are complex and numerous, but can be cementdirectionisstronglyoblique(,208)tothe groupedintoseveralmajorresearchthemes. deformation zone boundary (Dewey et al. 1998). In addition, three-dimensional strain in strike-slip Fault geometry andreactivation settings typically involves vertical-axis rotations (e.g.Jackson&Molnar1990).Thus,theprogressive Theshape,topographyandinternalarchitectureofa evolutionofafaultbendmayinvolvelocalvertical fault bend is fundamentally controlled by several axis rotations within the bend, and vertical axis factors, including the orientation of the plate rotations in the larger region that the bend occurs motion vector relative to the master strike-slip within (Luyendyk et al. 1980; Westaway 1995; fault; the original width of the stepover; and Cowgill et al. 2004b). This may be indicated by whether the bend is a strike-slip fault termination; changesinstriketrends,andcanbeprovenpalaeo- a double bend along a single continuously linked magnetically (Luyendyk et al. 1985). Progressive strike-slipfault;orastepoverwhereparallelstrike- vertical-axis rotations within a fault bend will slip fault segments are offset and may or may not result in changing fault kinematics as the faults overlap.Forexample,widestepoversmaycontain rotate relative to the external stress field. fewer faults that bridge the gap between master Vertical-axisrotationsmaythusleadtofaultaban- strike-slip faults, whereas narrow stepovers may donmentandpropagationofnewfaults.Inaddition, have greater linkage between major faults within strain hardening processes may operate locally the bend (Dooley & McClay 1997; McClay & within the bend and may influence whether old

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.