Design and Control of Self-organizing Systems Carlos Gershenson New England Complex Systems Institute and Vrije Universiteit Brussel Mexico City Boston Vic¸osa Madrid Cuernavaca Beijing CopIt ArXives 2007 CopIt ArXives MexicoCity Boston Vic¸osa Madrid Cuernavaca Beijing Copyright 2007 by Carlos Gershenson Published2007byCopItArXives Allpropertyrightsofthispublicationsbelongtotheauthorwho, however,grantshisauthorizationtothereadertocopy,printand distributehisworkfreely,inpartorinfull,withthesoleconditionsthat (i)theauthornameandoriginaltitlebecitedatalltimes,(iii)thetextis notmodifiedormixedand(iii)thefinaluseofthecontentsofthis publicationmustbenoncommercialFailuretomeettheseconditionswill beaviolationofthelaw. ElectronicallyproducedusingFreeSoftware andinaccomplishmentwithan OpenAccessspiritforacademicpublications A BSTRACT Complex systems are usually difficult to design and control. There are several particular methods for coping with complexity, but there is no general approach to build complex systems. In this book I pro- poseamethodologytoaidengineersinthedesignandcontrolofcom- plex systems. This is based on the description of systems as self- organizing. Startingfromtheagentmetaphor,themethodologypro- poses a conceptual framework and a series of steps to follow to find propermechanismsthatwillpromoteelementstofindsolutionsbyac- tivelyinteractingamongthemselves. Themainpremiseofthemethod- ologyclaimsthatreducingthe“friction”of interactionsbetweenel- ementsofasystemwillresultinahigher“satisfaction”ofthesystem, i.e. betterperformance. A general introduction to complex thinking is given, since designing self-organizing systems requires a non-classical thought, while prac- tical notions of complexity and self-organization are put forward. To illustratethemethodology,Ipresentthreecasestudies. Self-organizing traffic light controllers are proposed and studied with multi-agent simulations, outperforming traditional methods. Methods for im- proving communication within self-organizing bureaucracies are ad- vanced, introducing a simple computational model to illustrate the benefits of self-organization. In the last case study, requirements for self-organizing artifacts in an ambient intelligence scenario are dis- cussed. Philosophical implications of the conceptual framework are alsoputforward. iii iv Abstract C ONTENTS Abstract iii Contents v ListofFigures viii ListofTables x Acknowledgements xi 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 HowtoReadthisBook . . . . . . . . . . . . . . . . . . 5 1.3.2 HowtheBookWasWritten . . . . . . . . . . . . . . . 6 2 Complexity 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 ClassicalThinking . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Indeterminacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 NonlinearityandChaos . . . . . . . . . . . . . . . . . . . . . 17 2.6 AdaptingtoComplexity . . . . . . . . . . . . . . . . . . . . . 19 2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Self-organization 23 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 TheRepresentation-DependentDynamicsofEntropy . . . . 24 3.3 TheRoleoftheObserver . . . . . . . . . . . . . . . . . . . . . 29 3.4 OntologicalIssues . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5 Self-organization: APracticalNotion . . . . . . . . . . . . . . 32 v vi CONTENTS 3.5.1 Artificialself-organizingsystems . . . . . . . . . . . . 33 3.5.2 Levelsofabstraction . . . . . . . . . . . . . . . . . . . 34 3.5.3 Copingwiththeunknown . . . . . . . . . . . . . . . . 34 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 AGeneralMethodology 37 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 TheConceptualFramework . . . . . . . . . . . . . . . . . . . 38 4.3 TheMethodology . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.1 Representation . . . . . . . . . . . . . . . . . . . . . . 44 4.3.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.4 Application . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.6 NotesontheMethodology . . . . . . . . . . . . . . . 55 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 Self-organizingTrafficLights 63 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.2 ApplyingtheMethodologyI . . . . . . . . . . . . . . . . . . 65 5.3 Experiments: FirstResults . . . . . . . . . . . . . . . . . . . . 71 5.4 ApplyingtheMethodologyII . . . . . . . . . . . . . . . . . . 78 5.5 Experiments: SecondResults . . . . . . . . . . . . . . . . . . 79 5.6 ApplyingtheMethodologyIII . . . . . . . . . . . . . . . . . . 84 5.7 Experiments: ThirdResults . . . . . . . . . . . . . . . . . . . 86 5.8 ApplyingtheMethodologyIV . . . . . . . . . . . . . . . . . . 87 5.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.9.1 Adaptationoroptimization? . . . . . . . . . . . . . . 89 5.9.2 Practicalities . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9.3 Environmentalbenefits . . . . . . . . . . . . . . . . . 91 5.9.4 Unattendedissues . . . . . . . . . . . . . . . . . . . . 92 5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6 Self-organizingBureaucracies 97 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2 DesigningSelf-organizingBureaucracies . . . . . . . . . . . . 100 6.3 TheRoleofCommunication . . . . . . . . . . . . . . . . . . . 102 6.3.1 DecisionDelays . . . . . . . . . . . . . . . . . . . . . . 106 6.4 TheRoleofSensors . . . . . . . . . . . . . . . . . . . . . . . . 106 6.5 TheRoleofHierarchies . . . . . . . . . . . . . . . . . . . . . . 108 CONTENTS vii 6.6 TheRoleofContext . . . . . . . . . . . . . . . . . . . . . . . . 111 6.7 AToyModel: RandomAgentNetworks . . . . . . . . . . . . 112 6.7.1 Usingself-organizationtoimproveperformance . . . 114 6.7.2 SimulationResults . . . . . . . . . . . . . . . . . . . . 115 6.7.3 RANDiscussion . . . . . . . . . . . . . . . . . . . . . 117 6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7 Self-organizingArtifacts 127 7.1 AScenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.2 Requirementsforself-organizingartifacts . . . . . . . . . . . 129 7.3 Achievingself-organization . . . . . . . . . . . . . . . . . . . 131 7.4 Learningtocommunicate . . . . . . . . . . . . . . . . . . . . 132 7.5 Learningtocooperate . . . . . . . . . . . . . . . . . . . . . . . 133 7.6 Learningtocoordinate . . . . . . . . . . . . . . . . . . . . . . 135 7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8 Conclusions 139 8.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.1.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . 141 8.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 8.3 PhilosophicalImplications . . . . . . . . . . . . . . . . . . . . 144 8.3.1 ObjectivityorSubjectivity? Contextuality! . . . . . . 144 8.3.2 TheBenefitsofSelf-organization . . . . . . . . . . . . 145 Bibliography 147 Glossary 169 Index 173 L F IST OF IGURES 1.1 Bookmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Isitaduck,arabbit,orboth? . . . . . . . . . . . . . . . . . . 15 2.2 Thesamesphereseenfromdifferentangles . . . . . . . . . . 16 3.1 Entropyincreasesanddecreasesforthesamesystem . . . . 27 4.1 DiagramrelatingdifferentstagesofMethodology. . . . . . . 44 4.2 DetaileddiagramofMethodology. . . . . . . . . . . . . . . . 58 5.1 Screenshotofapartofthetrafficgrid . . . . . . . . . . . . . . 67 5.2 Resultsforstandardmethods . . . . . . . . . . . . . . . . . . 73 5.3 Resultsforself-organizingmethods . . . . . . . . . . . . . . 74 5.4 Fullsynchronization . . . . . . . . . . . . . . . . . . . . . . . 77 5.5 Secondresultsforstandardmethods . . . . . . . . . . . . . . 80 5.6 Secondresultsforself-organizingmethods . . . . . . . . . . 81 5.7 Comparisonofinitialandaveragenumberofcars . . . . . . 82 5.8 SimulationoftheWetstraatandintersectingstreets . . . . . 85 5.9 Wetstraatresults . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.10 Potentialimplementationofsotl-platoon. . . . . . . . . . . . . 96 6.1 Asynchronouscommunication . . . . . . . . . . . . . . . . . 104 6.2 Responsedelay . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3 Hierarchyrepresentedasanetwork . . . . . . . . . . . . . . 110 6.4 DynamicsofarandomagentnetworkofN = 25,K = 5 . . . 113 6.5 RANself-organizationmechanism . . . . . . . . . . . . . . . 114 6.6 ResultsforN = 15,K = 1. . . . . . . . . . . . . . . . . . . . . 116 6.7 ResultsforN = 15,K = 2. . . . . . . . . . . . . . . . . . . . . 118 6.8 ResultsforN = 15,K = 5. . . . . . . . . . . . . . . . . . . . . 119 6.9 ResultsforN = 15,K = 15. . . . . . . . . . . . . . . . . . . . 120 6.10 ResultsforN = 100,K = 1. . . . . . . . . . . . . . . . . . . . 121 6.11 ResultsforN = 100,K = 2. . . . . . . . . . . . . . . . . . . . 122 6.12 ResultsforN = 100,K = 5. . . . . . . . . . . . . . . . . . . . 123 viii LISTOFFIGURES ix 6.13 ResultsforN = 100,K = 100. . . . . . . . . . . . . . . . . . . 124 L T IST OF ABLES 5.1 ParametersofNetLogosimulations. . . . . . . . . . . . . . . 72 5.2 Vehiclecountperhour,Wetstraat . . . . . . . . . . . . . . . . 85 5.3 EmissionsbyidlingenginesonWetstraat . . . . . . . . . . . 92 x
Description: