ebook img

Computer Graphics and Geometric Modeling. Mathematics PDF

971 Pages·2005·3.619 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computer Graphics and Geometric Modeling. Mathematics

Computer Graphics and Geometric Modeling Max K. Agoston Computer Graphics and Geometric Modeling Mathematics Max K. Agoston, MA, MS, PhD Cupertino, CA 95014, USA British Library Cataloguing in Publication Data Agoston, Max K. Computer graphics and geometric modeling mathematics 1. Computer graphics 2. Geometry – Data processing 3. Computer-aided design 4. Computer graphics – Mathematics I. Title 006.6 ISBN 1852338172 Library of Congress Cataloging-in-Publication Data Agoston, Max K. Computer graphics & geometric modeling / Max K. Agoston. p. cm. Includes bibliographical references and index. Contents: Mathematics. ISBN 1-85233-817-2 (alk. paper) 1. Computer graphics. 2. Geometry – Data processing. 3. Mathematical models. 4. CAD/CAM systems. I. Title. T385.A395 2004 006.6 – dc22 2004049155 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. ISBN 1-85233-817-2 Springer is part of Springer Science+Business Media springeronline.com © 2005 Springer-Verlag London Ltd. Printed in the United States of America The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. Typesetting: SNP Best-set Typesetter Ltd., Hong Kong 34/3830-543210 Printed on acid-free paper SPIN 10971444 Preface This book and [AgoM05] grew out of notes used to teach various types of computer graphics courses over a period of about 20 years. Having retired after a lifetime of teaching and research in mathematics and computer science, I finally had the time to finish these books. The goal of these books was to present a comprehensive overview of computer graphics as seen in the context of geometric modeling and the mathe- matics that is required to understand the material. The reason for two books is that there was too much material for one. The practical stuff and a description of the various algorithms and implementation issues that one runs into when writing a geo- metric modeling program ended up in [AgoM05], and the mathematical background for the underlying theory ended up here. I have always felt that understanding the mathematics behind computer graphics was just as important as the standard algo- rithms and implementation details that one gets to in such courses and included a fair amount of mathematics in my computer graphics courses. Given the genesis of this book, the primary intended audience is readers who are interested in computer graphics or geometric modeling. The large amount of mathe- matics that is covered is explained by the fact that I wanted to provide a complete reference for all the mathematics relevant to geometric modeling. Although computer scientists may find sections of the book very abstract, everything that was included satisfied at least one of two criteria: (1) It was important for some aspect of a geometric modeling program, or (2) It provided helpful background material for something that might be used in such a program. On the other hand, because the book contains only mathematics and is so broad in its coverage (it covers the basic definitions and main results from many fields in math- ematics), it can also serve as a reference book for mathematics in general. It could in fact be used as an introduction to various topics in mathematics, such as topology (general, combinatorial, algebraic, and differential) and algebraic geometry. Two goals were very important to me while writing this book. One was to thor- oughly explain the mathematics and avoid a cookbook approach. The other was to make the material as self-contained as possible and to define and explain pretty much every technical term or concept that is used. With regard to the first goal, I have tried vi Preface very hard to present the mathematics in such a way that the reader will see the moti- vation for it and understandit. The book is aimed at those individuals who seek such understanding. Just learning a few formulas is not good enough. I have always appre- ciated books that tried to provide motivation for the material they were covering and have been especially frustrated by computer graphics books that throw the reader some formulas without explaining them. Furthermore, the more mathematics that one knows, the less likely it is that one will end up reinventing something. The success or failure of this book should be judged on how much understanding of the mathe- matics the reader got, along with whether or not the major topics were covered adequately. To accomplish the goal of motivating all of the mathematics needed for geomet- ric modeling in one book, even if it is large, is not easy and is impossible to do from scratch. At some places in this book, because of space constraints, few details are pro- vided and I can only give references. Note that I always have the nonexpert in mind. The idea is that those readers who are not experts in a particular field should at least be shown a road map for that field. This road map should organize the material in a logical manner that is as easy to understand and as motivated as possible. It should lay out the important results and indicate what one would have to learn if one wanted to study the field in more detail. For a really in-depth study of most of the major topics that we cover, the reader will have to consult the references. Another of my goals was to state everything absolutelycorrectly and not to make statements that are only approximately correct. This is one reason why the book is so long. Occasionally, I had to digress a little or add material to the appendices in order to define some concepts or state some theorems because, even though they did not play a major role, they were nevertheless referred to either here or in [AgoM05]. In those cases involving more advanced material where there is no space to really get into the subject, I at least try to explain it as simply and intuitively as possible. One example of this is with respect to the Lebesque integral that is referred to in Chapter 21 of [AgoM05], which forced the inclusion of Section D.4. Actually, the Lebesgue integral is also the only example of where a concept was not defined. Not all theorems stated in this book are proved, but at least I try to point out any potential problems to the reader and give references to where the details can be found in those cases where proofs are omitted, if so desired. Proofs themselves are not given for their own sake. Rather, they should be thought of more as examples because they typically add insight to the subject matter. Although someone making a superficial pass over the mathematical topics covered in the book might get the impression that there is mathematics that has little relevance to geometric modeling, that is not the case. Every bit of mathematics in this book and its appendices is used or referred to somewhere here or in [AgoM05]. Sometimes defining a concept involved having to define something else first and so on. I was not trying to teach mathematics for its own interesting sake, but only in so far as it is relevant to geometric modeling, or at least potentially relevant. When I say “potentially,” I am thinking of such topics as algebraic and differential topology that currently appear in only minimal ways in mod- eling systems but obviously will some day play a more central role. It is assumed that the reader has had minimally three semesters of calculus and a course on linear algebra. An additional course on advanced calculus and modern algebra would be ideal. The role of Appendices B–F is to summarize what is assumed. They consist mainly of definitions and statements of results with essentially no expla- Preface vii nations. The reason for including them is, as stated earlier, to be self-contained. Readers may have learned the material at some point but forgotten the details, such as a definition or the precise statement of a theorem. A reader who does not under- stand some particular material in the appendices may not understand the discussion at those places in the book where it is used. The biggest of the appendices is Appen- dix B, which consists of material from modern algebra. This appendix is needed for Chapters 7, 8, and 10, although not that much of it is needed for Chapters 7 and 8. Only Chapter 10 on algebraic geometry needs a lot of that background. This is the one place where using this text in the context of a course would be a big advantage over reading the material on one’s own because an instructor who knows the mate- rial would actually be able to explain the important parts of it quite easily and quickly even to students who have not had a prior course on modern algebra. The actual applications of Chapter 10 to geometric modeling do not require that much knowl- edge if one skips over the background and proofs of the theorems that lead up to them. Hopefully, however, the reader with a minimal mathematics background will be reduced to simply learning “formulas” in only a few places in this book. The extensive material on topology, in particular algebraic and differential topol- ogy, has heretofore not been found in books directed toward geometric modeling. Although this subject is slowly entering the field, its coming has been slow. Probably the two main reasons for this are that computers are only now getting to be power- ful enough to be able to handle the complicated computations, and the material involves exceptionally advanced mathematics that even mathematics majors would normally not see until graduate school. It is not very surprising therefore that in cases like this most of the advancement here will probably come from mathematicians who either switch their research interest to computer science or who want to use com- puters to make advances in their field. Having said that though, I also strongly feel that there is much that can be explained to a nontopologist, and Chapters 6–8 are an attempt to do this. A similar comment applies to the algebraic geometry in Chapter 10. It is because of my emphasis on explaining things that I suggested earlier that mathematics students could also use this book to learn about this material, not just computer scientists. With regard to the bibliography, it is fairly small because the book is not addressed to mathematicians per se. This meant that many good but advanced references that I could have given, but whose intended audience is research mathematicians, are omitted. This lack of completeness is partially compensated by the fact that additional references can be found in the references that are given. The numbering of items in this book uses the following format: x.y.z refers to item number z in section y of chapter x. For example, Theorem 6.5.7 refers to the seventh item of type theorem, proposition, lemma, or example in section 5 of Chapter 6. Algo- rithm 10.11.1 refers to the first algorithm in Section 11 of Chapter 10. Tables are num- bered like algorithms. Figures are numbered by chapter, so that Figure 9.21 refers to the twenty-first figure in Chapter 9. Exercises at the end of chapters are numbered by section. Cupertino, California Max K. Agoston Contents Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 Linear Algebra Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Inner Product Spaces: Orthonormal Bases . . . . . . . . . . . . . . . . . . . . 7 1.5 Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.7 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.8 Principal Axes Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.9 Bilinear and Quadratic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.10 The Cross Product Reexamined . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 1.11 The Generalized Inverse Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 1.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2 Affine Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.2 Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.2.1 Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.2.2 Rotations in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.2.3 Reflections in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.2.4 Motions Preserve the Dot Product . . . . . . . . . . . . . . . . . . . . 76 2.2.5 Some Existence and Uniqueness Results . . . . . . . . . . . . . . . 79 2.2.6 Rigid Motions in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.2.7 Summary for Motions in the Plane . . . . . . . . . . . . . . . . . . . 85 2.2.8 Frames in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.3 Similarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 2.4 Affine Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 2.4.1 Parallel Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 2.5 Beyond the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2.5.1 Motions in 3-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 2.5.2 Frames Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 x Contents 3 Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.2 Central Projections and Perspectivities . . . . . . . . . . . . . . . . . . . . . . 127 3.3 Homogeneous Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 3.4 The Projective Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 3.4.1 Analytic Properties of the Projective Plane . . . . . . . . . . . . . . 143 3.4.2 Two-Dimensional Projective Transformations . . . . . . . . . . . . 152 3.4.3 Planar Maps and Homogeneous Coordinates . . . . . . . . . . . . 154 3.5 Beyond the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3.5.1 Homogeneous Coordinates and Maps in 3-Space . . . . . . . . . 161 3.6 Conic Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 3.6.1 Projective Properties of Conics . . . . . . . . . . . . . . . . . . . . . . . 180 3.7 Quadric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 3.8 Generalized Central Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 3.9 The Theorems of Pascal and Brianchon . . . . . . . . . . . . . . . . . . . . . . 199 3.10 The Stereographic Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 3.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 4 Advanced Calculus Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 4.2 The Topology of Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . 208 4.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 4.4 The Inverse and Implicit Function Theorem . . . . . . . . . . . . . . . . . . 232 4.5 Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 4.6 Morse Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 4.7 Zeros of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 4.8 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 4.9 Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 4.9.1 Differential Forms and Integration . . . . . . . . . . . . . . . . . . . . 273 4.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 5 Point Set Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 5.2 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 5.3 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 5.4 Constructing New Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . 298 5.5 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 5.6 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 5.7 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 5.8 Constructing Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . 313 5.9 The Topology of Pn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 5.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 6 Combinatorial Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 6.2 What Is Topology? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 6.3 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 6.4 Cutting and Pasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Contents xi 6.5 The Classification of Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 6.6 Bordered and Noncompact Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 353 6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 7 Algebraic Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 7.2 Homology Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 7.2.1 Homology Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 7.2.2 Induced Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 7.2.3 Applications of Homology Theory . . . . . . . . . . . . . . . . . . . . 384 7.2.4 Cell Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 7.2.5 Incidence Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 7.2.6 The Mod 2 Homology Groups . . . . . . . . . . . . . . . . . . . . . . . 405 7.3 Cohomology Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 7.4 Homotopy Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 7.4.1 The Fundamental Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 7.4.2 Covering Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 7.4.3 Higher Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 434 7.5 Pseudomanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 7.5.1 The Degree of a Map and Applications . . . . . . . . . . . . . . . . . 443 7.5.2 Manifolds and Poincaré Duality . . . . . . . . . . . . . . . . . . . . . . 446 7.6 Where to Next: What We Left Out . . . . . . . . . . . . . . . . . . . . . . . . . . 449 7.7 The CW Complex Pn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 7.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 8 Differential Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 8.2 Parameterizing Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 8.3 Manifolds in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 8.4 Tangent Vectors and Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 8.5 Oriented Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 8.6 Handle Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 8.7 Spherical Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 8.8 Abstract Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 8.9 Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 8.10 The Tangent and Normal Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 519 8.11 Transversality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 8.12 Differential Forms and Integration . . . . . . . . . . . . . . . . . . . . . . . . . 535 8.13 The Manifold Pn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 8.14 The Grassmann Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 8.15 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 9 Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 9.2 Curve Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 9.3 The Geometry of Plane Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 9.4 The Geometry of Space Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 9.5 Envelopes of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 xii Contents 9.6 Involutes and Evolutes of Curves . . . . . . . . . . . . . . . . . . . . . . . . . 583 9.7 Parallel Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 9.8 Metric Properties of Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 9.9 The Geometry of Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598 9.10 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620 9.11 Envelopes of Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638 9.12 Canal Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638 9.13 Involutes and Evolutes of Surfaces . . . . . . . . . . . . . . . . . . . . . . . 640 9.14 Parallel Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 9.15 Ruled Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 9.16 The Cartan Approach: Moving Frames . . . . . . . . . . . . . . . . . . . . . 649 9.17 Where to Next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659 9.18 Summary of Curve Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 9.19 Summary of Surface Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 667 9.20 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 10 Algebraic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 10.2 Plane Curves: There Is More than Meets the Eye . . . . . . . . . . . . . 677 10.3 More on Projective Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 10.4 Resultants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690 10.5 More Polynomial Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 695 10.6 Singularities and Tangents of Plane Curves . . . . . . . . . . . . . . . . . 702 10.7 Intersections of Plane Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710 10.8 Some Commutative Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715 10.9 Defining Parameterized Curves Implicitly . . . . . . . . . . . . . . . . . . 724 10.10 Gröbner Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728 10.11 Elimination Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 10.12 Places of a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747 10.13 Rational and Birational Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 10.14 Space Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 10.15 Parametrizing Implicit Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 10.16 The Dimension of a Variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790 10.17 The Grassmann Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796 10.18 N-dimensional Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797 10.19 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805 Appendix A: Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813 Appendix B: Basic Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817 B.1 Number Theoretic Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817 B.2 Set Theoretic Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818 B.3 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821 B.4 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823 B.5 Abelian Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 B.6 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 B.7 Polynomial Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840 B.8 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.