ebook img

Computational Modeling of Intelligent Soft Matter: Shape Memory Polymers and Hydrogels PDF

383 Pages·2023·15.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Modeling of Intelligent Soft Matter: Shape Memory Polymers and Hydrogels

Computational Modeling of Intelligent Soft Matter Thispageintentionallyleftblank Computational Modeling of Intelligent Soft Matter Shape Memory Polymers and Hydrogels Mostafa Baghani School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran Majid Baniassadi School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran Yves Remond University of Strasbourg, ICube/CNRS, Alsace, France Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates Copyright©2023ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein. ISBN:978-0-443-19420-7 ForInformationonallElsevierpublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:MatthewDeans AcquisitionsEditor:DennisMcGonagle EditorialProjectManager:MasonMalloy ProductionProjectManager:SuryaNarayananJayachandran CoverDesigner:GregHarris TypesetbyMPSLimited,Chennai,India Dedication To our wives Roshanak, Maryam, Marie-Claude for their love, endless support, and encouragement. Thispageintentionallyleftblank Contents Abouttheauthors xiii Preface xv Acknowledgments xvii 1 Intelligentsoftmatters:needfornumericalmodelingin designandanalysis 1 1.1 Introduction 1 1.2 Applicationsofshapememorypolymers 2 1.2.1 Biomedicalapplications 2 1.2.2 Aerospaceapplication 3 1.2.3 Textileapplication 4 1.2.4 Automotiveapplication 4 1.2.5 Otherapplications 4 1.3 Smarthydrogelapplications 5 1.3.1 Tissueengineering 6 1.3.2 Drugdelivery 6 1.3.3 microfluidicvalves 7 1.3.4 Hydrogelsforwounddressing 7 1.3.5 Hydrogelandcancertherapy 8 1.3.6 Hydrogelsandwatertreatment 8 1.3.7 Hydrogelsandcontactlensproducts 8 1.3.8 Hydrogelsandagriculture 9 1.3.9 Hydrogelsandbiosensors 9 1.3.10 Hydrogelsandhygieneproducts 9 1.4 Numericalmodelingindesignandanalysisofintelligent softmatters 10 References 12 2 Adetailedreview onconstitutivemodelsforthermoresponsive shapememorypolymers 15 2.1 Introduction 15 2.2 Classificationoftemperature-dependentpolymers 18 2.2.1 Thermosetandthermoplasticpolymers 18 2.2.2 Theeffectoftemperatureonthermosetandthermoplastic polymers 19 2.3 Themolecularstructureofshapememorypolymersandtheir classification 20 viii Contents 2.3.1 Chemicalstructureofshapememorypolymers 20 2.3.2 Classificationofshapememorypolymers 21 2.4 Modelingthermoresponsiveshapememorypolymers 29 2.4.1 Modelingofconventionalthermallyactivated shapememorypolymers 30 2.4.2 Modelingoftwo-waythermallyactivatedshapememory polymer 54 2.4.3 Modelingofthermallyactivatedmultishapememory polymer 55 2.5 Statisticalanalysisofavailableshapememorypolymermodels 58 2.6 Summaryandconclusion 60 References 61 3 Experimentsonshapememorypolymers:methodsofproduction, shapememoryeffectparameters,andapplication 77 3.1 Introduction 77 3.2 Methodsofshapememorypolymerproduction 78 3.2.1 Meltmixing 78 3.2.2 Solutionmixing 78 3.2.3 Additivemanufacturing 79 3.2.4 Shapememorycharacterizationincombined torsion(cid:1)tensionloading 79 3.3 Investigationonstructuraldesignofshapememorypolymers 90 3.3.1 Structural(geometrical)design 90 3.3.2 Methodofsampleproduction 92 3.3.3 Characterizationofprintedmaterial 94 3.3.4 Thermomechanicalshapememorytests 94 3.4 Shapememorypolymerstentasanapplication 104 3.4.1 Materials 105 3.4.2 Stentfabrication 107 3.4.3 Stentradialcompression 116 3.5 Summaryandconclusion 122 References 124 4 Shapememorypolymers:constitutivemodeling,calibration, andsimulation 127 4.1 Introduction 127 4.2 Macroscopicphasetransitionapproach 128 4.2.1 Strainstorageandrecovery 130 4.2.2 Thermodynamicconsiderations 132 4.2.3 Extensionofthemodeltothetimedependentregime 133 4.2.4 Numericalsolutionoftheconstitutivemodel 135 4.2.5 Consistenttangentmatrix 137 4.2.6 Hughes(cid:1)Wingetalgorithm:largerotationeffects 138 Contents ix 4.2.7 Materialparametersidentification 139 4.2.8 Materialmodelpredictions 141 4.3 Shapememorypolymerconstitutivemodelthrough thermo-viscoelasticapproach 144 4.3.1 Strain-dependentpartofthestress 144 4.3.2 Time-dependentpartofthestress 144 4.3.3 Temperature-dependentmodificationofthestress 145 4.3.4 Solutionofshapememorypolymer’sresponseina shapememorypolymerpath 146 4.3.5 Atime-discretizationschemeforconstitutiveequations 148 4.3.6 Materialparametersidentification 149 4.3.7 Solutionsdevelopmentfortorsion(cid:1)extensionofSMP 150 4.4 Summaryandconclusion 156 References 156 5 Shapememorypolymercomposites: nanocompositesand corrugatedstructures 159 5.1 Introduction 159 5.2 Modelingandhomogenizationofshapememorypolymer nanocomposites 160 5.2.1 Constitutiveequationsforshapememorypolymer basedonphasetransition 161 5.2.2 3Dmodelingandnumerical considerations 163 5.2.3 Numericalresults 166 5.3 Numericalhomogenizationofcoiledcarbonnanotube-reinforced shapememorypolymernanocomposites 173 5.3.1 Constitutivemodelofshapememorypolymerbasedon thermo-viscoelasticity 174 5.3.2 Finiteelementmodel 178 5.3.3 Numericalresultsanddiscussion 182 5.4 Thermomechanicalbehaviorofshapememorypolymerbeams reinforcedbycorrugatedpolymericsections 187 5.4.1 Shapememorypolymerconstitutivemodelbasedonphase transitionconcept 189 5.4.2 Bendingofareinforcedshapememorypolymerbeam 192 5.4.3 Numericalresultsanddiscussion 196 References 205 6 Shapememorypolymermetamaterialsbasedontriply periodicminimalsurfacesandauxeticstructures 209 6.1 Shapememorypolymermetamaterialsbasedontriplyperiodic minimalsurfaces 209 6.1.1 Introduction 210 6.1.2 Materialsandmethods 212 6.1.3 Resultsanddiscussion 217

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.