Automatic Action Advisor for Storage System Performance Management Li Yin Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-160 http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-160.html November 28, 2006 Copyright © 2006, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. AutomaticActionAdvisorforStorageSystemPerformanceManagement by LiYin B.E.(TsinghuaUniversity) 1998 M.Phil. (HongKongUniversityofScienceandTechnology) 2001 Adissertation submittedinpartialsatisfaction oftherequirements forthedegreeof DoctorofPhilosophy in ComputerScience inthe GRADUATEDIVISION ofthe UNIVERSITYOFCALIFORNIA,BERKELEY Committeeincharge: ProfessorRandyH.Katz,Chair ProfessorEricBrewer ProfessorStevenN.Evans Fall2006 ThedissertationofLiYinisapproved. Chair Date Date Date UniversityofCalifornia,Berkeley Fall2006 AutomaticActionAdvisorforStorage SystemPerformance Management Copyright c 2006 (cid:13) by LiYin Abstract AutomaticActionAdvisorforStorage SystemPerformance Management by LiYin DoctorofPhilosophyinComputerScience UniversityofCalifornia,Berkeley ProfessorRandyH.Katz,Chair Withgrowingstorage demands andsystemrequirements, storagesystemshavebecomemorecom- plicated to manage. Management cost now dominates the Total Cost of Ownership. Toreduce the costandadapttosystemchangesmoreef(cid:2)ciently,storagesystemsmustbemanagedmoreautomat- ically. Inthisthesis, weaimtodevelop aframework toautomatically andresponsively generate an integrated multi-action plan,consisting ofwhatactions toinvoke, whentoinvoke themand howto invoke them,thatcanmaximizethesystemutility. Totackle theproblem ofautomatic multi-action plangeneration, weface fourchallenges: how toreactrapidly,howtoinvokeactionsproactively, howtocomparealternative plansfairlyandhan- dle unexpected system changes. To solve these challenges, we use system models and constraint optimization to (cid:2)nd the optimal action quickly, perform time-series forecasting and risk manage- ment to invoke actions proactively, use the system utility and optimization window to guide the comparison ofactions,andapplyadefensive strategytohandleunexpected systemchanges. Within thegeneral SMART framework,wedevelopthree speci(cid:2)ctools. (1) CHAMELEON isan automatic throttling tool that identi(cid:2)es the set of workloads to throttle and the degree of throttling using systemmodels andconstraint optimization techniques. (2) SMARTMIG isaproactive migra- tiondecision toolthatgenerates theoptimalmigration planinthree phases: optimization, planning and risk management. Its decision takes into account the future workload demands and the bene(cid:2)t 1 and risk ofmigration options. (3) SMART’s core design piece, Action Advisor. It integrates multi- pleactionoptionsandgeneratesanactionplantohandleexpectedandunexpected systemchanges. For predictable system changes, the Action Advisor (cid:2)nds the action plan using a recursive greedy algorithm. Forunexpectedchanges,itappliesadefensivestrategybasedontheski-rentalalgorithm tochoose actions. Weimplement SMART inboth areal-world distributed (cid:2)le system,GPFS,and a simulator. OurevaluationresultsshowthatSMARTcanimprovethesystemutilitysigni(cid:2)cantly. For 90% of the scenarios tested, SMART eliminates 94% of the utility loss. For the remaining 10%, it reducestheutilitylossby70%. ProfessorRandyH.Katz Dissertation CommitteeChair 2 Tomyparents,mybrotherandWeidong. i Contents Contents ii ListofFigures vi ListofTables ix Acknowledgments x 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ProblemStatementandChallenges . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Contributions andStructureofTheThesis . . . . . . . . . . . . . . . . . . . . . . 9 2 RelatedWork 13 2.1 StorageSystemPerformance Modeling . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Simulation-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Analytical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.3 Black-box Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.4 OtherWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 AutomaticStorageSystemManagement . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Policy-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Feedback-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3 Scheduling-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.4 Model-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.5 OtherWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ii 3 Model-BasedAutomaticActionAdvisor 28 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 FrameworkforModel-BasedActionAdvisor: SMART . . . . . . . . . . . . . . . 33 3.3.1 InputModules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2 UtilityEvaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.3 SingleActionTools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.4 ActionAdvisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 Experimental Exploration ofBlack-BoxBasedComponentModels . . . . . . . . . 38 3.4.1 GoalofPerformanceModeling . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.2 Procedure ofBlack-BoxBasedModeling . . . . . . . . . . . . . . . . . . 40 3.4.3 Analyzing thePerformanceModels . . . . . . . . . . . . . . . . . . . . . 41 3.4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 CHAMELEON: AnAutomaticThrottlingDecisionToolforStorageSystem 54 4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 SystemModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3.1 WorkloadModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.2 ActionModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4 Reasoning Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4.2 Formalization inCHAMELEON . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4.3 WorkloadUnthrottling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4.4 Con(cid:2)denceonDecisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.5 Designer-De(cid:2)ned Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.6 InformedFeedback Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.7.1 TestbedCon(cid:2)guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.7.2 Evaluation Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.7.3 UsingSyntheticWorkloads . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.7.4 Replaying Real-WorldTraces . . . . . . . . . . . . . . . . . . . . . . . . 74 4.7.5 DecisionOverheadoftheReasoning Engine . . . . . . . . . . . . . . . . 81 iii
Description: