ebook img

ARTIFACT DETECTION AND REMOVAL IN FMRI TIMESERIES DATA PDF

60 Pages·2013·32.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ARTIFACT DETECTION AND REMOVAL IN FMRI TIMESERIES DATA

ARTIFACT  DETECTION  AND  REMOVAL   IN  FMRI  TIMESERIES  DATA The  insidious  consequences  of  head  mo=on   Deen  &  Pelphrey  (2012)  Nature Func=onal  connec=vity  and  brain  matura=on   Fair  et  al.  (2009)  PLoS  Computa/onal  Biology;    Dosenbach  et  al.  (2010)  Science Decoding  brain  age  from  connec=vity   “The  paGern  of  fcMVPA  feature   weights  indicated  that  func=onal   matura=on  is  driven  both  by  the   segrega=on  of  nearby  func=onal   areas,  through  the  weakening  of   short-­‐range  funcBonal  connecBons,   and  the  integra=on  of  distant   regions  into  func=onal  networks,  by   strengthening  of  long-­‐range   funcBonal  connecBons”     Dosenbach  et  al.  (2010)  Science Decoding  brain  age  from  connec=vity   Model  accounts  for  55%  of  variance  in  age!   “The  paGern  of  fcMVPA  feature   weights  indicated  that  func=onal   matura=on  is  driven  both  by  the   segrega=on  of  nearby  func=onal   areas,  through  the  weakening  of   short-­‐range  funcBonal  connecBons,   and  the  integra=on  of  distant   regions  into  func=onal  networks,  by   strengthening  of  long-­‐range   funcBonal  connecBons”     Dosenbach  et  al.  (2010)  Science Could  this  phenomenon  be  (at  least  par=ally)   driven  by  an  ar=fact?   This  matura=on  paGern  largely  disappears  once  head  mo=on  is   ¨  taken  into  account.   Some  quotes  from  lead  inves=gator  Steve  Petersen:   ¨  “It  really,  really,  really  sucks.  My  favorite  result  of  the  last  five   ¨  years  is  an  arBfact”   “Let  me  tell  you,  denial  was  big.  We  had  every  explanaBon  in   ¨  the  world  other  than  that  it  was  an  arBfact.  But  it’s  an  arBfact.”   “The  insidious  part  of  this  is,  it’s  Bny  liTle  movements  that  most   ¨  people,  including  us  previously,  completely  ignore.”   hGp://sfari.org/news-­‐and-­‐opinion/news/2012/movement-­‐during-­‐brain-­‐scans-­‐may-­‐lead-­‐to-­‐spurious-­‐paGerns The  Problem:    Mo=on  effects  are  not   equally  distributed  throughout  the  brain   Displacement  is   maximal  at  voxels   that  are  far  from  the   pivot  around  which   rotaBon  occurs   Not  surprisingly,   moBon  regressors   explain  the  most   signal  variance  in   these  high  moBon   regions. Long-­‐range  func=onal  connec=vity  is   diminished  in  wiggly  subjects   Van  Dijk,  Sabuncu,  &  Buckner  (2012)  NeuroImage And  short-­‐range  func=onal  connec=vity   can  be  augmented  in  wiggly  subjects   Van  Dijk,  Sabuncu,  &  Buckner  (2012)  NeuroImage What  if  we  take  100’s  of  subjects  and  arbitrarily  divide   them  into  groups  based  on  their  mean  mo=on?   ² Default  Mode  Network  connec=vity  (PCC  seed)  is  reduced  in  subject  groups  with  more   mo=on,  even  when  differences  are  miniscule  (0.044mm  vs.  0.048mm  mean  mo=on)   Van  Dijk,  Sabuncu,  &  Buckner  (2012)  NeuroImage

Description:
AND REMOVAL. IN FMRI TIMESERIES DATA . One opdon: Russ Poldrack's fmriqa Python scripts. □ Based on Power Dependencies: □ statsmodels (hrp:// statsmodels.sourceforge.net) subsequent stadsdcal analyses. 2) Methods for
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.