EDITOR-IN-CHIEF Peter W. Hawkes CEMES-CNRS Toulouse, France Coverphotocredit: VictorS.Gurov,ArmanO.Saulebekov,AndreyA.Trubitsyn Analytical,Approximate-AnalyticalandNumericalMethodsintheDesignofEnergyAnalyzers AdvancesinImagingandElectronPhysics(2015)192,pp.1–14 AcademicPressisanimprintofElsevier 225WymanStreet,Waltham,MA02451,USA 525BStreet,Suite1800,SanDiego,CA92101-4495,USA TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 125LondonWall,London,EC2Y5AS,UK Firstedition2015 ©2015ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyand thesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein. ISBN:978-0-12-802252-8 ISSN:1076-5670 ForinformationonallAcademicPresspublications visitourwebsiteathttp://store.elsevier.com/ FOREWORD Themainapplicationofanenergyanalyzerofchargedparticles,thedesign ofwhichconstitutesthecontentofthisbook,iselectronspectroscopy.The greatvarietyofthetasksandmethodsofelectronspectroscopyisthereason forthemultiplerequirementsthataregenerallyimposedonenergyanalyzer design.Nevertheless,twoprincipalparameterscanbedistinguishedtochar- acterizeanenergyanalyzerasanelectronspectrometrydevice:namely,the orderofangularfocusingandtheenergydispersion.Thefirstoftheseparam- eters determines the sensitivity of the energy analyzer, while the second determines its energy resolution. The nature of these parameters is self- contradictory,whichmanifestsitselfinthefactthattheattemptsofimprov- ingoneofthemcommonlyleadtodeteriorationoftheother.Thus,thekey tosolvingtheproblemofoptimaldesignofenergyanalyzersliesintheways toreducetheextentofthisconflict.Inparticular,apartialresolutionofthis physicalcontradictionmaybeachievedbyusingtheelectrostaticfieldswith low spherical aberration, or, alternatively, by creating the conditions for high-order angular and spatial focusing. Inthisbook,wediscussthreedifferentapproachestotheanalysisofthe focusinganddispersiveelectrostaticfieldsthatareusedinenergyanalyzers. These comprise the analytical methods, which allow researchers to find a solution in terms of elementary mathematical functions in some cases; the approximate-analytical methods, when a solution is sought in the form of infiniteseries;and,finally,thenumericalmethodsthatemployallthepower of the modern methods of computational mathematics and provide a solu- tionintheformofafunctiondefinedonameshwitharestrictednumberof nodes.Inthiscontext,theauthorswouldliketostatetheirconfidencethat successinthedesignofnewtypesofenergyanalyzersundoubtedlyrequiresa reasonable combination of all three of the approaches. Theoriginalstudiesoutlinedinthisbooksummarizetheresultsofmore than 20 years of workof each of theauthors in thefield of energyanalysis, friendly discussions on all areas of electron optics, and independent exami- nation of the devices designed. The book can be useful for students of chargedparticleoptics,scientistsandengineersinvolvedinthedevelopment of the new advanced energy analyzers, and users of electron spectroscopy devices who want to keep abreast of current trends in this area. vii viii Foreword All the chapters are the result of collective work; however, we should distinguishabasiccontributionofeachoftheauthorsinwritingtherelevant chapters.Chapter1hasageneralintroductorycharacter.Chapter2,which presents analytical methods for the design of certain types of energy ana- lyzers,hasbeenbasicallywrittenbyProfessor V.S.Gurov.Themain con- tribution to Chapter 3, dedicated to the approximate-analytical methods, was made by Professor A. O. Saulebekov. Finally, the content of Chapter 4, which outlines the numerical methods as applied to designing the energy analyzers, is primarily the work of Professor A. A. Trubitsyn. Inconclusion,theauthorsexpresstheirsincererespectforanddeepgrat- itudetotheircolleaguesandteacherswho,giventheleveloftheirexcellent work and general contribution to science, can be rightly regarded as the “aces” of electron and ion optics–namely, V. V. Zashkvara, S. Ya. Yavor, E. P. Sheretov, K. Sh. Chokin, B. U. Ashimbayeva, and V. A. Gorelik. Without their kind attention and fruitful contacts with the authors in the past and present, this monograph would not have been produced. Special thanksareextendedtoDr.M.A.Monastyrskiy,whotranslatedthistextinto Englishandmadeanumberofexceedinglyusefulprofessionalcommentson the form and content of virtually all its sections. We also highly appreciate the financial support of the Russian Science Foundation (grant No. 15-19-00132) in the creation of this publication. VICTOR S. GUROV ARMAN O. SAULEBEKOV ANDREY A. TRUBITSYN PREFACE The theme of the present volume is the design of energy analysers for charged particles and in particular, the various approaches that have been developedforthetask:analyticalmethods,approximateanalyticalmethods for more realistic field models and numerical methods. Thebookopenswithasurveyofthetraditionaltypesofenergyanalyser and of more advanced models. This sets the scene for the three families of methodsemployedinthedesignoftheseinstruments.Chapter2coversthe analytical methods based on cylindrical and hyperbolic field models. This isfollowedbyachapteronmorerealisticfieldmodelsforwhichthemath- ematical analysis requires certain approximations. Several hexapole– cylindrical analysers are studied in this way. Useful though model fields are to establish the general behaviour of an analyser and its dependence on the various parameters present, an exact simulation requires numerical methods and these are the subject of Chapter4.Suchmethodsaredescribedinconsiderabledetailandthechapter ends with several examples of simulations of different types of analysers. Iamverygratefultotheauthorsforpreparingthisclearandfullaccount ofthesubject.TheoriginalRussiantexthasbeentranslatedbyDrMikhail Monastyrskiy,whosenameisalreadyfamiliartoreadersoftheseAdvancesand who has published many papers on this and related subjects. I am sure that readerswilljoinmeinthankinghimforundertakingthischallengingtask. PETER W. HAWKES ix FUTURE CONTRIBUTIONS S.Ando Gradientoperatorsandedgeandcornerdetection J.Angulo Mathematicalmorphologyforcomplexandquaternion-valuedimages D.Batchelor Softx-raymicroscopy E.BayroCorrochano Quaternionwavelettransforms C.Beeli Structureandmicroscopyofquasicrystals C.BobischandR.Mo€ller Ballisticelectronmicroscopy F.Bociort Saddle-pointmethodsinlensdesign K.Bredies Diffusiontensorimaging A.Broers Aretrospective N.ChandraandR.Ghosh Quantumentanglementinelectronoptics A.CornejoRodriguezandF.GranadosAgustin Ronchigramquantification L.D.DuffyandA.Dragt(Vol.193) Eigen-emittance J.Elorza Fuzzyoperators R.G.Forbes Liquidmetalionsources P.L.GaiandE.D.Boyes Aberration-correctedenvironmentalmicroscopy M.Haschke Micro-XRFexcitationinthescanningelectronmicroscope R.HerringandB.McMorran Electronvortexbeams M.S.Isaacson EarlySTEMdevelopment xi xii FutureContributions K.Ishizuka Contrasttransferandcrystalimages K.Jensen,D.ShifflerandJ.Luginsland Physicsoffieldemissioncoldcathodes M.Jourlin(vol.194) Logarithmicimageprocessing,theLIPmodel.Theoryandapplications U.Kaiser Thesub-A˚ngstro€mlow-voltageelectronmicroscopeproject(SALVE) C.T.Koch In-lineelectronholography O.L.Krivanek Aberration-correctedSTEM M.Kroupa TheTimepixdetectoranditsapplications B.Lencova´ Moderndevelopmentsinelectronopticalcalculations H.Lichte Developmentsinelectronholography M.Matsuya CalculationofaberrationcoefficientsusingLiealgebra J.A.Monsoriu Fractalzoneplates L.Muray Miniatureelectronopticsandapplications M.A.O’Keefe Electronimagesimulation V.Ortalan Ultrafastelectronmicroscopy D.Paganin,T.GureyevandK.Pavlov Intensity-linearmethodsininverseimaging N.PapamarkosandA.Kesidis TheinverseHoughtransform Q.RamasseandR.Brydson TheSuperSTEMlaboratory B.RiegerandA.J.Koster Imageformationincryo-electronmicroscopy P.RoccaandM.Donelli Imagingofdielectricobjects J.Rodenburg Lenslessimaging FutureContributions xiii J.Rouse,H.-n.LiuandE.Munro Theroleofdifferentialalgebrainelectronoptics J.Sa´nchez Fishervectorencodingfortheclassificationofnaturalimages P.Santi Lightsheetfluorescencemicroscopy R.Shimizu,T.IkutaandY.Takai Defocusimagemodulationprocessinginrealtime T.Soma Focus-deflectionsystemsandtheirapplications I.F.Spivak-Lavrov(Vol.193) Analyticalmethodsofcalculationandsimulationofnewschemesofstaticandtime-of-flight massspectrometers J.Valde´s RecentdevelopmentsconcerningtheSyste`meInternational(SI) CHAPTER ONE Energy Analysis of Charged Particle Flows Contents 1. BasicParameters 1 2. MainTypesofEnergyAnalyzers 2 3. AdvancedEnergyAnalyzers 8 Energyanalyzersservetodetectchargedparticleswithprescribedcharacter- isticenergies,or,inotherwords,toisolatechargedparticles,theenergiesof which fall in a narrow energy interval ΔE. 1. BASIC PARAMETERS The main consumer parameter of energy analyzers is energy resolu- tion. Two definitions of energy resolution are used in spectroscopy (see, for example, Seah & Briggs, 1992). The first definition is associated with the absolute energy resolution ΔE, representing the entire energy range within which the particles reach the collector. Such energy resolution is called the basic resolution. In practice, the resolution ΔE , which is FWHM defined as a full width at half maximum (FWHM) of the energy transmit- tance function, is often used. The second definition considers the relative energy resolution R¼ΔE/E , or R ¼ΔE /E , where E is the 0 FWHM FWHM 0 0 kinetic energy that corresponds to the average energy to which the energy analyzeristuned.Sometimestheenergyresolutionisdefinedasavalueequal to the inverse of R. Anotherimportantcharacteristicofadeviceintendedforenergyanalysis, whichinessencedeterminesthesecondconsumerparameterofaspectrom- eter(namely,thesignal-to-noiseratio),isitscapacityforregisteringthepar- ticlesemittedbydifferentpartsofanextendedsource.Thiscapacity,called AdvancesinImagingandElectronPhysics,Volume192 #2015ElsevierInc. 1 ISSN1076-5670 Allrightsreserved. http://dx.doi.org/10.1016/bs.aiep.2015.08.001 2 Analytical,Approximate-AnalyticalandNumericalMethods brightness (Kozlov, 1978), can be calculated as the integral of luminosity taken over the source surface. Theluminosityofacorpuscular-opticaldeviceisequivalenttothegeomet- ricalsolidangleΩofparticlecollection.Theso-calledrelativeangleGiscom- monlyintroduced(Kozlov,1978),whichisdefinedasaratiooftheangleΩto thefullsolidangle4π:G¼(Ω/4π)100%.Physically,theluminosityexpressesa ratioofthenumberofparticlesreachingthecollectortothetotalnumberof particles emitted during the same time by a monoenergetic isotropic point sourcelocatedattheanalyzerfocus,providedthatthelatterisproperlytuned. Mathematically,theluminositycanbeexpressedthroughtheplanartilting anglesα andα ofthegeneratricesoftheconesΩ¼2π(cosα -cosα ),α <α . 1 2 1 2 1 2 2. MAIN TYPES OF ENERGY ANALYZERS Twotypesofenergyanalyzers—retardinganddispersive—areusedin the spectroscopy of charged particles. One basic energy analyzer of the retarding type is a so-called quasi- sphericalcapacitorwithgrids(Figure1;alsoseeWoodruff&Delchar,1986). The operation principle of the quasi-spherical capacitor is as follows. Undertheactionofexcitingradiation(labeled1inthefigure;forexample, ofelectronsemittedbytheelectrongunEGwithenergyE )thesample max (2) under study, which is placed at the geometrical center of the capacitor, starts to emit the charged particles that travel along the radial trajectories (3). The grounded grid (4) creates a field-free drift space between the sample and the area of retarding. The grid (5) is supplied with a retarding voltage–V .Thecollector(6)iskeptatthepotentialof200–300Vrelative T EG A 6 5 1 +V const 3 4 –VT 2 Figure 1 Quasi-spherical capacitor scheme: 1—exciting radiation, 2—sample, 3— secondaryparticles,4—firstgrid,5—retardinggrid,6—collector,EG—electrongun.
Description: