Allocation of Computational Resources in the Nervous System Adissertation submittedforthedegreeof DoctorofPhilosophy by SantiagoJaramillo Supervisor: BarakA.Pearlmutter DepartmentofElectronicEngineering NationalUniversityofIreland,Maynooth October2006 Contents Summary v Acknowledgements vi 1 Introduction 1 1.1 Resourcesandallocation . . . . . . . . . . . . . . . . . . . . . 2 1.2 Motivation: theneuralcode . . . . . . . . . . . . . . . . . . . 3 1.3 Historicalcontext . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Remainingquestions . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Themodelingapproach . . . . . . . . . . . . . . . . . . . . . 7 1.6 Dissertationoutline . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Behavioralmeasurementsoforientingsystems 10 2.1 Covertattentionimprovesperformance . . . . . . . . . . . . 10 2.2 Dividedattention . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Whyhavecovertorientingifwecanmoveourbodies? . . . 13 2.4 Saliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Measurementsofovertorienting . . . . . . . . . . . . . . . . 14 2.6 Modelingorientingphenomena . . . . . . . . . . . . . . . . . 15 3 Resourceallocationinmulti-layerperceptronnetworks 21 3.1 Optimalcodingundernon-uniformrelevance . . . . . . . . 21 3.2 Feedforwardnetworkwithmodulatoryinput . . . . . . . . . 23 3.3 Spatially-drivenallocation . . . . . . . . . . . . . . . . . . . . 24 3.3.1 Simulationparameters . . . . . . . . . . . . . . . . . . 24 3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.3 Discussionandlimitations. . . . . . . . . . . . . . . . 26 3.4 Non-spatiallydrivenallocation(feature-based) . . . . . . . . 28 3.4.1 Simulationparameters . . . . . . . . . . . . . . . . . . 28 3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 30 i CONTENTS 3.5 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . 31 4 Attentionalmodulationofneuronalactivity 32 4.1 BOLD/fMRIandPETmeasurements . . . . . . . . . . . . . . 32 4.2 Modulationofbrainrhythmsandsynchrony . . . . . . . . . 33 4.3 Modulationofevokedpotentialsandevokedfields . . . . . 35 4.4 Firingratemodulation . . . . . . . . . . . . . . . . . . . . . . 36 4.4.1 Primaryvisualcortex: V1 . . . . . . . . . . . . . . . . 37 4.4.2 V2andtheventralstream: V4andIT . . . . . . . . . 38 4.4.3 Thedorsalstream: MTandMST . . . . . . . . . . . . 40 4.4.4 Otherareasselectivetovisualstimuli . . . . . . . . . 40 4.4.5 Non-visualmodalities . . . . . . . . . . . . . . . . . . 41 4.5 Microstimulationstudies . . . . . . . . . . . . . . . . . . . . . 41 4.6 Computationalmodels . . . . . . . . . . . . . . . . . . . . . . 42 5 Activitymodulationemergesfromoptimalcodingprinciples 45 5.1 Attentionaldependenceofpreferredstimuli . . . . . . . . . 46 5.2 Attention-dependentmodulationofactivity . . . . . . . . . . 47 5.3 Magnitudeofmodulationdependsonthesystem’scapacity 51 5.4 Modulationoforientationtuningcurves . . . . . . . . . . . . 52 5.5 Discussionandlimitationsofthemodel . . . . . . . . . . . . 54 5.6 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . 56 6 Neuralmechanismsforresourceallocation 58 6.1 Howdoattentionalsignalsentersensoryprocessingcircuits? 59 6.1.1 Changesinsynapticstrengths . . . . . . . . . . . . . 59 6.1.2 Dendriticcomputation . . . . . . . . . . . . . . . . . . 60 6.1.3 Modulatoryandsensorysignalsareindistinguishable 60 6.2 Theoriginofattentionalcontrolsignals . . . . . . . . . . . . 61 6.3 Attentionandreceptivefieldformation . . . . . . . . . . . . 63 6.3.1 Receptivefieldformation . . . . . . . . . . . . . . . . 63 6.3.2 Sparsityconstraintsandredundancyreduction . . . 64 6.3.3 Non-uniformrelevanceproduceslocalizedRFs . . . 66 7 Allocationofresourcesduringactiveperception 67 7.1 Perceptionisanactiveprocess. . . . . . . . . . . . . . . . . . 67 7.2 Optimalstrategiesforsimultaneoustracking . . . . . . . . . 69 7.3 Analysisofatwo-channelsystem . . . . . . . . . . . . . . . . 69 7.3.1 Fixedallocation . . . . . . . . . . . . . . . . . . . . . . 72 7.3.2 Dynamicallocation . . . . . . . . . . . . . . . . . . . . 73 7.3.3 Comparingfixedvs.dynamicstrategies . . . . . . . . 75 7.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . 78 ii CONTENTS 8 Psychophysicsofactiveperception 79 8.1 Experimentalmethodology . . . . . . . . . . . . . . . . . . . 80 8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8.2.1 Changingstrategiesaccordingtotargetdynamics . . 82 8.2.2 Changingstrategiesaccordingtonoiselevel . . . . . 83 8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 8.4 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . 85 9 Conclusions 86 9.1 Contributionsandimplications . . . . . . . . . . . . . . . . . 87 9.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9.3 Finalremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 APPENDIX 92 A.1 Exampleofpatternsusedinsimulations . . . . . . . . . . . . 92 A.2 Backpropagationofmodifiederror . . . . . . . . . . . . . . . 93 A.3 Additionalstudies . . . . . . . . . . . . . . . . . . . . . . . . 94 A.3.1 BrightnessIllusionsasOptimalPercepts . . . . . . . 94 A.3.2 BlindSourceSeparationofMEGdata . . . . . . . . . 94 A.3.3 Time-frequencyanalysisofMEGdata . . . . . . . . . 95 iii List of Figures 2.1 Covertattentionimprovesperformance . . . . . . . . . . . . 12 2.2 Traditionalmodelofvisualattention . . . . . . . . . . . . . . 16 3.1 Inputsduringoptimizationoftheconnectionstrengths . . . 25 3.2 ResourceallocationinMLPs . . . . . . . . . . . . . . . . . . . 26 3.3 Feature-basedallocation . . . . . . . . . . . . . . . . . . . . . 29 4.1 Retinotopyofvisualattention . . . . . . . . . . . . . . . . . . 34 5.1 Preferredstimulidependedonattentionalstate . . . . . . . . 46 5.2 Activityofmodelunitswasmodulatedbyattention . . . . . 47 5.3 ActivitymodulationmatchedmeasurementsfromareaMST 48 5.4 Allmodelunitsshowedsimilaractivitymodulation . . . . . 49 5.5 ActivitymodulationmatchedmeasurementsfromareaV4 . 51 5.6 Attentionalmodulationdependedonthesystem’scapacity . 53 5.7 Attentionalmodulationoftuningcurves. . . . . . . . . . . . 53 6.1 Neuralmechanismsforresourceallocation . . . . . . . . . . 59 6.2 Allocationmechanismsinafeedforwardnetwork . . . . . . 62 6.3 Non-uniformrelevanceproducedlocalizedpreferredstimuli 65 7.1 TwochannelMarkovmodel . . . . . . . . . . . . . . . . . . . 69 7.2 Averageerrorsforfixedallocationstrategies . . . . . . . . . 72 7.3 Optimalfixedallocation . . . . . . . . . . . . . . . . . . . . . 73 7.4 Averageerrorsfordynamicallocationstrategies . . . . . . . 74 7.5 Exampleofdynamicallocation . . . . . . . . . . . . . . . . . 75 7.6 Comparingfixedvs.dynamicallocation . . . . . . . . . . . . 76 8.1 Eye-trackingsystemanddisplay . . . . . . . . . . . . . . . . 80 8.2 Eye-movementsduringsimultaneoustracking . . . . . . . . 82 8.3 Averagescores . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8.4 Strategiesfordifferentdynamics . . . . . . . . . . . . . . . . 84 8.5 Strategiesfordifferentnoiselevels . . . . . . . . . . . . . . . 85 iv Summary The nervous systemintegratespast information togetherwith predictions about the future in order to produce rewarding actions for the organism. This dissertationfocuses on the resources underlying thesecomputations, andthetask-dependentallocation oftheseresources. Wepresentevidence that principles from optimal coding and optimal estimation account for overt and covert orienting phenomena, as observed from both behavioral experimentsandneuronalrecordings. First,wereviewbehavioralmeasurementsrelatedtoselectiveattention and discussmodelsthat account for thesedata. Weshowthatreallocation ofresourcesemergesasanaturalpropertyofsystemsthatencodetheirin- putsefficientlyundernon-uniformconstraints. Wecontinuebydiscussing theattentionalmodulationofneuronalactivity,andshowthat: (1)Modula- tionofcodingstrategiesdoesnotrequirespecialmechanisms: itispossible to obtain dramatic modulation even when signals informing the system aboutfidelityrequirementsenterthesysteminafashionindistinguishable from sensory signals. (2) Optimal coding under non-uniform fidelity re- quirementsis sufficient toaccount for thefiring rate modulationobserved duringselectiveattentionexperiments. (3)Theresponseofasingleneuron cannotbewellcharacterizedbymeasurementsofattentionalmodulationof only a single sensorystimulus. (4) The magnitude of the activity modula- tiondependsonthecapacityoftheneuralcircuit. Alaterchapterdiscusses the neural mechanisms for resource allocation, and the relation between attentionalmechanismsandreceptivefieldformation. The remainder of the dissertation focuses on overt orienting phenom- ena and active perception. We present a theoretical analysis of the alloca- tion of resources during state estimation of multiple targets with different uncertainties,togetherwitheye-trackingexperimentsthatconfirmourpre- dictions. We finish by discussing the implications oftheseresults to our current understandingoforientingphenomenaandtheneuralcode. v Acknowledgements Firstandforemost,IwouldliketothankmysupervisorBarakPearlmutter for his guidance and supportthroughouttheseyears. I also wish tothank the faculty, administrators, and fellow students at the Hamilton Institute, NUIMaynooth,forsignificanthelpduringtheexecutionofthisresearch. Special thanks are extended to Rodolfo Llina´s and the people at the CenterforNeuromagnetism,NewYorkUniversitySchoolofMedicine. Be- ing part of the neuroscience community at NYU,and learning from many outstandingresearchersatthisinstitution,werebothextraordinaryexperi- ences. The courses at the Santa Fe Institutefor Complex Systems, the Marine Biological Laboratory in Woodshole, and the Frankfurt Institute for Ad- vanceStudiesconstitutedasignificantelementofmyeducation. Iamgrate- ful to organizers, faculty and students who made possible these amazing courses. I also owe a great deal to all my friends who shared part of their lives with me during my years as a graduate student. Albuquerque, New York CityandMaynoothwouldnothavebeenthesamewithoutyouall. I would like to express my gratitude to all those who take part of the Open Source community. My work was considerably dependent on your contributions, and it would not have been as enjoyable without the tools thecommunitycontinuestoprovide. Finally, I wish to thank my family for their unconditional supportand understanding. vi Declaration I hereby certify that this material, which I now submit for assessment on the program study leading to the award of Doctor of Philosophy in Elec- tronic Engineering is entirely my own work and has not been taken from theworkofotherssaveandtotheextentthatsuchworkhasbeencitedand acknowledgedwithinthetextofmywork. Signed: IDNo.: 62134141 Date: vii 1 Chapter Introduction Summary This chapter presents an outline of the contents of this disser- tation, explains why orienting phenomena and resource allo- cation were selected as research topics, and describes the ap- proachfollowedtoinvestigatethem. Abriefhistoryofrelevant work is also included, highlighting landmarks that will be dis- cussedindetailinsubsequentchapters. Understanding how the signals in the nervous system subserve behavior is one of the main quests of 21st century science. The work presented in this dissertation investigates various hypothesesconcerning how the ner- vous systemencodesinformation about our perceptionsand actions. This explorationusesofacombinationoftheoretical,computationalandexper- imentalapproaches. Ourinterestis,forthemostpart,onquestionsrelated tothehumannervoussystem,butinourattempttoachieveabetterunder- standingofneuralprocessinganimalmodelshaveproventobeofextreme importanceandwillbeusedfrequentlyinourdiscussion. Webeginbyde- scribing the main concepts and terminology that will be used throughout thisdissertation. 1 Chapter1. Introduction 1.1 Resources and allocation The term computational resources refers here to the ability of the nervous system to transform signals. The concept resource is used to emphasize that there is a certain amount of computation that can be doneper unit of time,andacertainamountofinformationthatcanflowthroughthesystem, limited for example by the number of receptors and noise level. Energy, timeandthenumberofsensoryreceptors,connectionsandmusclesarethe physical quantities underlying these resources. Computational resources are to be foundat all stagesofprocessing,fromsensorytomotorsystems, including“intermediate”stepsinvolvedinperformingmentalcalculations orrecalling memories. Allocation referstotheprocessofdistributing these resources in order to represent, transform and transmit different signals involvedinperceptionandaction. Asanexampleofallocationofresources,letusfocusontheopticnerve of humans in the context of information transmission. Composed of ap- proximately1.2 million fiberspereye,itsinformation capacity can beesti- mated, assuming independenceand given statistics of the firing rates and noise characteristics, to be almost 10 Mbps (Koch et al., 2006). The signals going through these axons depend on the position of the eyes, implying that the nervous system is selecting the content that will be transmitted tothe nextstageofprocessing,or equivalently, allocating transmission re- sources to certain features of a visual stimulus. This process, when move- mentofthesensorstakesplace,iscalledovertallocation. Incontrast,covert allocation does not require physical movement (except perhaps for ions moving across membranes making the signal transmission possible), and occursforexamplewhentheretinaadaptstodifferentintensitylevelsand contrastssoastoemploybetterthedynamicrangeoftheretinalcells(Bac- cusandMeister,2002). Inthisdissertation,wewill focusmainly in alloca- tionphenomenarelatedtoorientingattention,bothcovertlyandovertly. Orienting phenomenacan be voluntary or automatic. It is voluntary, for example,whenwetrytofindafriendinacrowd,orwhenwefocusonone conversation in a noisy environment filtering out other sounds that reach ourears(usually knownasthecocktail party effect). Orientingis automatic, forinstance,whenourfocuschangesafterhearingsomeonesayourname. These two types of phenomena are usually referred to as endogenous (task 2
Description: