Sever Angel Popescu Marilena Jianu Advanced Mathematics for Engineers and Physicists Advanced Mathematics for Engineers and Physicists Sever Angel Popescu • Marilena Jianu Advanced Mathematics for Engineers and Physicists SeverAngelPopescu MarilenaJianu DepartmentofMathematicsandComputer DepartmentofMathematicsandComputer Science Science TechnicalUniversityofCivilEngineering TechnicalUniversityofCivilEngineering ofBucharest ofBucharest Bucharest,Romania Bucharest,Romania ISBN978-3-031-21501-8 ISBN978-3-031-21502-5 (eBook) https://doi.org/10.1007/978-3-031-21502-5 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This book is designed to be an introductory course to some important chapters of Advanced Mathematics for Engineering and Physics students: Differential Equations,FourierSeries,LaplaceandFourierTransforms,CalculusofVariations, and Probability Theory. It requires a complete course in Mathematical Analysis and in Linear Algebra. We mostly tried to use the engineering intuition instead of insisting on mathematical tricks. Even if the book was first of all intended for engineeringstudents, it may be successfully used by other students and scientists as an introduction to Applied Mathematics. The main feature of the material presented here is its clarity, motivation, and the genuine desire of the authors to makeextremelytransparentthe“mysterious”mathematicaltoolswhichareusedto describeandorganizethegreatvarietyofimpressionsofoursearchingMindinthe infinitehiddencornersofNature.Wehavealwayshadinmindthecommonstudent who really tries to understand the process of mathematical modeling of various physical phenomena, because we are fully convinced that mathematics education doesnotmeanlearning(lotsof)formulasbyheart,buttheconsciousunderstanding of the meaning of these formulas. We believe that this course is also useful for mathematicsstudentsbecause the presentationis elementary,but rigorousenough tosatisfythetasteofamathematician. In the first three chapters, we offer a detailed study of ordinary differential equations.InChap.3, we beginby presentingthegeneralframework,focusingon first-orderordinarydifferentialequations.Weshowbyseveralexampleshowdiffer- entialequationscandescribe (model)physicalphenomenain mathematicalterms. Themostcommontypesoffirst-orderdifferentialequationsarepresented,together withthetechniquesforobtainingtheirsolutions(eitherinimplicitorexplicitform). The last section is dedicated to the theorem of existence and uniqueness of the solution of the Cauchy problem for first-order differentialequations. Chapter 2 is devotedtohigher-orderdifferentialequations,mainlylineardifferentialequations. Weintroducethevectorspaceofthesolutionsofahomogeneouslineardifferential equationandtheaffinespaceofthesolutionsforthenon-homogeneouscase.Linear equations with constant coefficients are placed in the foreground, because in this case we have a closed-form solution for homogeneousequations as well as for a v vi Preface wideclassofnon-homogeneousequations.WealsopresenttheEuler-typeequations whichhavevariablecoefficientsbutcan betransformedintolinear equationswith constantcoefficients.ThesystemsofdifferentialequationsarepresentedinChap.3. We state andprovethe existenceanduniquenesstheoremforthe Cauchyproblem in this case. Particular attention is paid to linear systems of differentialequations and to the relation between a linear system of n equations and an n-th order linearequation.Autonomoussystemsarealsostudied,andsincefirst-orderpartial differentialequationsarecloselyrelatedtoautonomoussystems,wehavechosento presenttheminthischapter. In Chap.4 (Fourier series), we discuss the expansion of periodic functions in infinite series of sines and cosines and introduce the general orthogonal systems of functions. Fourier series will be used in Chap.7 to solve partial differential equations such as the wave equation, the heat equation, or the Laplace equation. Fourier series are used to represent periodic functions (or functions defined on a finite interval, which can be extended by periodicity to the entire axis). The Fouriertransformgeneralizesthisideatotheintegralrepresentationofnonperiodic functionsdefinedonthewholesetofrealnumbers.WepresenttheFouriertransform and some of its applications in Chap.5. The discrete Fourier transform, which can be used when a function is given only in terms of values at a finite number of points, is also introduced. Another important mathematical tool is the Laplace transform,presentedinChap.6.AsinthecaseoftheFouriertransform,theLaplace transform simplifies the solution of linear differential equations by transforming themintoalgebraicequations.Itisalsoappliedforthesolutionofpartialdifferential equations—in Chap.7, we use the Laplace transformfor the solution of the finite vibrating string equation. By using the Heaviside step function or the Dirac delta function,theLaplacetransformcanbeappliedinproblemswherethefreetermhas some discontinuities or represents short impulses. Chapter 7 is an introduction to the field of the “Equations of Mathematical Physics,” the most important partial differential equations used in Physics and Engineering. We begin by classifying theseequationsandintroducethecharacteristicsmethodtofindthecanonicalform of a quasilinear second-order partial differential equation. Then we present the solutionoftheone-dimensionalandtwo-dimensionalwaveequation,theheatflow equation,and the Dirichlet problemfor Laplace’s equation.Althoughthis chapter is mainly devoted to second-order PDE, we have decided to include here also a fourth-orderpartialdifferentialequation—thesimplysupportedbeamequation. Chapter 8 containsthe basic theoryofCalculus ofVariationsappliedto funda- mentaltypesofvariationalproblemswithapplicationsinphysicsandengineering. We begin by stating several classical problems (such as the brachistochrone problem,theminimalsurfaceofrevolution,Hamilton’sprincipleoftheleastaction, andDido’sproblem).Thenweintroducethegeneralframeofcalculusofvariation, focusing on necessary conditions of extremum of a functional. We deduce the basicdifferentialequationsofcalculusofvariationsandapplythemtosolvesome classicalvariationalproblems. InChap.9,wemakeanelementaryintroductiontoprobabilitytheory.Wepresent Laplace’s and Kolmogorov’sdefinitions of probabilityand show how they can be Preface vii applied to solve practical problems. We introduce the conditional probability and the Bayes formula, providing also numerous applications. We define the discrete randomvariablesandthecontinuousrandomvariables,emphasizingthemostused distributionsofdiscretetype(Bernoulli,binomial,Poisson),andofcontinuoustype (normal, gamma, chi-squared, student). We also present the most important limit theorems:the weak law and the strong law of large numbersand the central limit theorem,highlightingtheroleplayedbythenormaldistribution.Eachchapterhasa finalsectionwithexercises.Thecompletesolutionsoftheseproblemsarepresented stepbystepinChap.10. Considering the great diversity of topics covered in this book, we have tried to make it as self-contained and unitary as possible. This is why we have added a supplementary chapter—Chap.11—which contains the basic theory in some areas of Linear Algebra, Calculus, and Complex Analysis, necessary for a deep understandingof the materialpresentedin the book.Thus, the first section of this chaptercontainselementaryresultsonmetric,normed,Banach,andHilbertspaces, while the secondsectionprovidesa briefintroductionto complexanalysis, with a specialfocusonthecalculusofresidues(usedinthecalculationoftheFourierand Laplacetransforms). Itisnotpossibletoexpressourgratitudetoallthosewhocontributedindirectly to the writing of this book. A special role in the formationof the first author as a mathematicianwasplayedbyhisformerProfessorofAlgebraandNumberTheory, hisPhDsupervisor,andhisspiritualmaster,Dr.doc.NicolaePopescu. WewouldliketoexpressoursinceregratefulnesstoProfessorDr.OctavOlteanu, Professor Dr. Gavriil Pa˘ltineanu, Professor Dr. Ghiocel Groza, and the reviewers fortheir considerableattentionandpatiencein readingthe manuscriptand forthe valuablesuggestionsandcommentsthatgreatlyimprovedtheinitialversionofthis book. Our familieswere so patientduringthe complicatedandlengthyconceptionof thiswriting.Wethankthemallfortheirlovingsupport. We shallbeverygratefultoallthereaderswhowillletusknowaboutpossible mistakes or some of their particular opinions related to the topics of this book, becauseimprovementisthemostimportanthumanactivity. Bucharest,Romania SeverAngelPopescu September2022 MarilenaJianu Contents 1 First-OrderDifferentialEquations ...................................... 1 1.1 IntroductiontoOrdinaryDifferentialEquations.................... 1 1.2 SeparableEquations.................................................. 7 1.3 HomogeneousEquations............................................. 13 1.4 First-OrderLinearDifferentialEquations........................... 16 1.5 BernoulliEquations.................................................. 20 1.6 RiccatiEquations..................................................... 22 1.7 ExactDifferentialEquations......................................... 24 1.8 LagrangeEquationsandClairautEquations........................ 29 1.9 ExistenceandUniquenessofSolutionoftheCauchyProblem.... 34 1.10 Exercises.............................................................. 42 2 Higher-OrderDifferentialEquations .................................... 45 2.1 Introduction........................................................... 45 2.2 HomogeneousLinearDifferentialEquationsofOrdern........... 57 2.3 Non-HomogeneousLinearDifferentialEquationsof Ordern................................................................ 64 2.4 HomogeneousLinearEquationswithConstantCoefficients ...... 68 2.5 NonhomogeneousLinearEquationswithConstant Coefficients........................................................... 82 2.6 EulerEquations....................................................... 93 2.7 Exercises.............................................................. 97 3 SystemsofDifferentialEquations ........................................ 101 3.1 Introduction........................................................... 101 3.2 First-OrderSystemsandDifferentialEquationsofOrdern........ 109 3.3 LinearSystemsofDifferentialEquations........................... 114 3.4 LinearSystemswithConstantCoefficients......................... 125 3.4.1 TheHomogeneousCase(theAlgebraicMethod)......... 125 3.4.2 TheNon-HomogeneousCase(theMethodof UndeterminedCoefficients)................................ 138 ix x Contents 3.4.3 MatrixExponentialandLinearSystemswith ConstantCoefficients....................................... 148 3.4.4 EliminationMethodforLinearSystemswith ConstantCoefficients....................................... 164 3.5 AutonomousSystemsofDifferentialEquations.................... 170 3.6 First-OrderPartialDifferentialEquations........................... 178 3.6.1 LinearHomogeneousFirst-OrderPDE.................... 179 3.6.2 QuasilinearFirst-OrderPartialDifferentialEquations.... 183 3.7 Exercises.............................................................. 186 4 FourierSeries............................................................... 191 4.1 Introduction:Periodic,PiecewiseSmoothFunctions............... 191 4.1.1 PeriodicFunctions.......................................... 192 4.1.2 PiecewiseContinuousandPiecewiseSmooth Functions.................................................... 195 4.2 FourierSeriesExpansions ........................................... 198 4.2.1 SeriesofFunctions ......................................... 199 4.2.2 ABasicTrigonometricSystem ............................ 201 4.2.3 FourierCoefficients......................................... 203 4.3 OrthogonalSystemsofFunctions................................... 205 4.3.1 InnerProduct................................................ 205 4.3.2 BestApproximationintheMean:Bessel’sInequality.... 208 4.4 TheConvergenceofFourierSeries.................................. 212 4.5 DifferentiationandIntegrationoftheFourierSeries............... 225 4.6 TheConvergenceintheMean:CompleteSystems................. 227 4.7 ExamplesofFourierExpansions.................................... 235 4.8 TheComplexformoftheFourierSeries............................ 241 4.9 Exercises.............................................................. 246 5 FourierTransform.......................................................... 249 5.1 ImproperIntegrals.................................................... 249 5.2 TheFourierIntegralFormula........................................ 258 5.3 TheFourierTransform............................................... 265 5.4 SolvingLinearDifferentialEquations .............................. 284 5.5 MomentsTheorems.................................................. 288 5.6 SamplingTheorem................................................... 297 5.7 DiscreteFourierTransform.......................................... 298 5.8 Exercises.............................................................. 302 6 LaplaceTransform ......................................................... 305 6.1 Introduction........................................................... 305 6.2 PropertiesoftheLaplaceTransform ................................ 312 6.3 InverseLaplaceTransform........................................... 332 6.4 SolvingLinearDifferentialEquations .............................. 344 6.5 TheDiracDeltaFunction............................................ 352 6.6 Exercises.............................................................. 358 Contents xi 7 Second-OrderPartialDifferentialEquations ........................... 359 7.1 Classification:CanonicalForm...................................... 359 7.2 TheWaveEquation................................................... 378 7.2.1 InfiniteVibratingString:D’AlembertFormula........... 381 7.2.2 FiniteVibratingString:FourierMethod................... 385 7.2.3 LaplaceTransformMethodfortheVibratingString...... 398 7.2.4 Vibrations of a Rectangular Membrane: Two-DimensionalWaveEquation ......................... 400 7.3 VibrationsofaSimplySupportedBeam:FourierMethod......... 404 7.4 TheHeatEquation ................................................... 409 7.4.1 ModelingtheHeatFlowfromaBodyinSpace........... 409 7.4.2 HeatFlowinaFiniteRod:FourierMethod............... 411 7.4.3 HeatFlowinanInfiniteRod............................... 415 7.4.4 HeatFlowinaRectangularPlate.......................... 417 7.5 TheLaplace’sEquation.............................................. 422 7.5.1 DirichletProblemforaRectangle......................... 423 7.5.2 DirichletProblemforaDisk............................... 425 7.6 Exercises.............................................................. 432 8 IntroductiontotheCalculusofVariations............................... 435 8.1 ClassicalVariationalProblems ...................................... 435 8.2 GeneralFrameofC(cid:2)alculusofVariations............................ 443 8.3 TheCaseF[y]= bF(x,y,y(cid:2))dx................................. 448 (cid:2)a 8.4 TheCaseF[y]= bF(x,y,y(cid:2),...,y(n))dx....................... 456 a (cid:2) 8.5 TheCaseF[y1,..(cid:2).(cid:2),yn(cid:3)]= abF(x,y1(cid:4),...,yn,y1(cid:2),...,yn(cid:2))dx ... 460 8.6 TheCaseF[z]= F x,y,z, ∂z, ∂z dxdy...................... 467 ∂x ∂y D 8.7 IsoperimetricProblemsandGeodesicProblems.................... 472 8.7.1 IsoperimetricProblems..................................... 472 8.7.2 GeodesicProblems......................................... 477 8.8 Exercises.............................................................. 482 9 ElementsofProbabilityTheory........................................... 485 9.1 SampleSpace:EventSpace.......................................... 485 9.2 ProbabilitySpace..................................................... 492 9.3 ConditionalProbability:BayesFormula............................ 506 9.4 DiscreteRandomVariables.......................................... 511 9.4.1 RandomVariables .......................................... 511 9.4.2 ExpectedValue;Moments ................................. 518 9.4.3 Variance..................................................... 529 9.4.4 DiscreteUniformDistribution............................. 535 9.4.5 BernoulliDistribution...................................... 536 9.4.6 BinomialDistribution ...................................... 536 9.4.7 PoissonDistribution........................................ 540 9.4.8 GeometricDistribution..................................... 543