ebook img

A wavelet tour of signal processing the Sparse way PDF

808 Pages·2008·16.24 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A wavelet tour of signal processing the Sparse way

AcademicPressisanimprintofElsevier 30CorporateDrive,Suite400 Burlington,MA01803 (cid:2) Thisbookisprintedonacid-freepaper. (cid:2) Copyright©2009byElsevierInc.Allrightsreserved. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrade-marksor registeredtrademarks.InallinstancesinwhichAcademicPressisawareofaclaim,theproduct namesappearininitialcapitalorallcapitalletters.Readers,however,shouldcontacttheappropriate companiesformorecompleteinformationregardingtrademarksandregistration. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyform orbyanymeans,electronic,mechanical,photocopying,scanning,orotherwise,withoutpriorwritten permissionofthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRightsDepartmentin Oxford,UK:phone:(+44)1865843830,fax:(+44)1865853333,e-mail:[email protected]. Youmayalsocompleteyourrequeston-lineviatheElsevierhomepage(http://elsevier.com),by selecting“Support&Contact”then“CopyrightandPermission”andthen“ObtainingPermissions.” LibraryofCongressCataloging-in-PublicationData Applicationsubmitted ISBN13:978-0-12-374370-1 ForinformationonallAcademicPresspublications, visitourWebsiteatwww.books.elsevier.com PrintedintheUnitedStates 08 09 10 11 12 10 9 8 7 6 5 4 3 2 1 À la mémoire de mon père, Alexandre. Pour ma mère, Francine. Preface to the Sparse Edition I cannot help but find striking resemblances between scientific communities and schools of fish. We interact in conferences and through articles, and we move togetherwhileaglobaltrajectoryemergesfromindividualcontributions.Someof usliketobeatthecenteroftheschool,othersprefertowanderaround,andafew swiminmultipledirectionsinfront.Toavoiddyingbystarvationinaprogressively narrower and specialized domain,a scientific community needs also to move on. Computational harmonic analysis is still very much alive because it went beyond wavelets.Writing such a book is about decoding the trajectory of the school and gatheringthepearlsthathavebeenuncoveredontheway.Waveletsarenolonger thecentraltopic,despitethepreviousedition’soriginaltitle.Itisjustanimportant tool,as the Fourier transform is. Sparse representation and processing are now at thecore. Inthe1980s,manyresearcherswerefocusedonbuildingtime-frequencydecom- positions,tryingtoavoidtheuncertaintybarrier,andhopingtodiscovertheultimate representation.Alongthewaycametheconstructionofwaveletorthogonalbases, whichopenednewperspectivesthroughcollaborationswithphysicistsandmath- ematicians. Designing orthogonal bases with Xlets became a popular sport with compression and noise-reduction applications. Connections with approximations and sparsity also became more apparent.The search for sparsity has taken over, leadingtonewgroundswhereorthonormalbasesarereplacedbyredundantdictio- nariesofwaveforms. During these last seven years, I also encountered the industrial world. With a lot of naiveness,some bandlets,and more mathematics,I cofounded a start-up with Christophe Bernard,Jérome Kalifa,and Erwan Le Pennec. It took us some time to learn that in three months good engineering should produce robust algo- rithms that operate in real time, as opposed to the three years we were used to having for writing new ideas with promising perspectives. Yet, we survived becausemathematicsisamajorsourceofindustrialinnovationsforsignalprocess- ing.Semiconductortechnologyoffersamazingcomputationalpowerandflexibility. However,adhocalgorithmsoftendonotscaleeasilyandmathematicsaccelerates thetrial-and-errordevelopmentprocess.Sparsitydecreasescomputations,memory, and data communications.Although it brings beauty,mathematical understanding is not a luxury. It is required by increasingly sophisticated information-processing devices. New Additions Putting sparsity at the center of the book implied rewriting many parts and adding sections. Chapters 12 and 13 are new. They introduce sparse represen- tations in redundant dictionaries, and inverse problems, super-resolution, and xv xvi Preface to the Sparse Edition compressive sensing. Here is a small catalog of new elements in this third edition: ■ Radontransformandtomography ■ Liftingforwaveletsonsurfaces,boundeddomains,andfastcomputations ■ JPEG-2000imagecompression ■ Blockthresholdingfordenoising ■ Geometricrepresentationswithadaptivetriangulations,curvelets,and bandlets ■ Sparseapproximationsinredundantdictionarieswithpursuitalgorithms ■ Noisereductionwithmodelselectioninredundantdictionaries ■ Exactrecoveryofsparseapproximationsupportsindictionaries ■ Multichannelsignalrepresentationsandprocessing ■ Dictionarylearning ■ Inverseproblemsandsuper-resolution ■ Compressivesensing ■ Sourceseparation Teaching This book is intended as a graduate-level textbook. Its evolution is also the result of teaching courses in electrical engineering and applied mathematics. A new website provides software for reproducible experimentations,exercise solutions, together with teaching material such as slides with figures and MATLAB software fornumericalclassesofhttp://wavelet-tour.com. More exercises have been added at the end of each chapter,ordered by level ofdifficulty.Level1exercisesaredirectapplicationsofthecourse.Level2exercises requiresmorethinking.Level3includessometechnicalderivationexercises.Level4 are projects at the interface of research that are possible topics for a final course project or independent study. More exercises and projects can be found in the website. Sparse Course Programs The Fourier transform and analog-to-digital conversion through linear sampling approximations provide a common ground for all courses (Chapters 2 and 3). It introduces basic signal representations and reviews important mathematical and algorithmic tools needed afterward. Many trajectories are then possible to explore and teach sparse signal processing.The following list notes several top- ics that can orient a course’s structure with elements that can be covered along theway. Preface to the Sparse Edition xvii Sparse representations with bases and applications: ■ Principlesoflinearandnonlinearapproximationsinbases(Chapter9) ■ Lipschitzregularityandwaveletcoefficientsdecay(Chapter6) ■ Waveletbases(Chapter7) ■ Propertiesoflinearandnonlinearwaveletbasisapproximations(Chapter9) ■ Imagewaveletcompression(Chapter10) ■ Linearandnonlineardiagonaldenoising(Chapter11) Sparse time-frequency representations: ■ Time-frequency wavelet and windowed Fourier ridges for audio processing (Chapter4) ■ Localcosinebases(Chapter8) ■ Linearandnonlinearapproximationsinbases(Chapter9) ■ Audiocompression(Chapter10) ■ Audiodenoisingandblockthresholding(Chapter11) ■ Compression and denoising in redundant time-frequency dictionaries with bestbasesorpursuitalgorithms(Chapter12) Sparse signal estimation: ■ Bayesversusminimaxandlinearversusnonlinearestimations(Chapter11) ■ Waveletbases(Chapter7) ■ Linearandnonlinearapproximationsinbases(Chapter9) ■ Thresholdingestimation(Chapter11) ■ Minimaxoptimality(Chapter11) ■ Modelselectionfordenoisinginredundantdictionaries(Chapter12) ■ Compressivesensing(Chapter13) Sparse compression and information theory: ■ Waveletorthonormalbases(Chapter7) ■ Linearandnonlinearapproximationsinbases(Chapter9) ■ Compressionandsparsetransformcodesinbases(Chapter10) ■ Compressioninredundantdictionaries(Chapter12) ■ Compressivesensing(Chapter13) ■ Sourceseparation(Chapter13) Dictionary representations and inverse problems: ■ FramesandRieszbases(Chapter5) ■ Linearandnonlinearapproximationsinbases(Chapter9) ■ Idealredundantdictionaryapproximations(Chapter12) ■ Pursuitalgorithmsanddictionaryincoherence(Chapter12) ■ Linearandthresholdinginverseestimators(Chapter13) ■ Super-resolutionandsourceseparation(Chapter13) ■ Compressivesensing(Chapter13) xviii Preface to the Sparse Edition Geometric sparse processing: ■ Time-frequencyspectrallinesandridges(Chapter4) ■ FramesandRieszbases(Chapter5) ■ Multiscaleedgerepresentationswithwaveletmaxima(Chapter6) ■ Sparseapproximationsupportsinbases(Chapter9) ■ Approximationswithgeometricregularity,curvelets,andbandlets(Chapters9 and12) ■ Sparsesignalcompressionandgeometricbitbudget(Chapters10and12) ■ Exactrecoveryofsparseapproximationsupports(Chapter12) ■ Super-resolution(Chapter13) ACKNOWLEDGMENTS Some things do not change with new editions,in particular the traces left by the ones who were,and remain,for me important references.As always,I am deeply gratefultoRuzenaBajcsyandYvesMeyer. Ispentthelastfewyearswiththreebrilliantandkindcolleagues—Christophe Bernard,JéromeKalifa,andErwanLePennec—inapressurecookercalleda“start- up.”Pressuremeansstress,despiteverygoodmoments.Theresultingsaucewasa blendofwhatallofuscouldprovide,whichbroughtnewflavorstoourpersonalities. IamthankfultothemfortheonesIgot,someofwhichIamstilldiscovering. This new edition is the result of a collaboration with Gabriel Peyré,who made thesechangesnotonlypossible,butalsoveryinterestingtodo.Ithankhimforhis remarkableworkandhelp. Ste´phaneMallat Preface to the Sparse Edition xix ACKNOWLEDGMENTS Some things do not change with new editions,in particular the traces left by the ones who were,and remain,for me important references.As always,I am deeply gratefultoRuzenaBajcsyandYvesMeyer. Ispentthelastfewyearswiththreebrilliantandkindcolleagues—Christophe Bernard,JéromeKalifa,andErwanLePennec—inapressurecookercalleda“start- up.”Pressuremeansstress,despiteverygoodmoments.Theresultingsaucewasa blendofwhatallofuscouldprovide,whichbroughtnewflavorstoourpersonalities. IamthankfultothemfortheonesIgot,someofwhichIamstilldiscovering. This new edition is the result of a collaboration with Gabriel Peyré,who made thesechangesnotonlypossible,butalsoveryinterestingtodo.Ithankhimforhis remarkableworkandhelp. Ste´phaneMallat Notations (cid:2)f,g(cid:3) Innerproduct(A.6) (cid:4)f(cid:4) EuclideanorHilbertspacenorm (cid:4)f(cid:4) L1 orl1 norm 1 (cid:4)f(cid:4)(cid:2) L(cid:2) norm f[n](cid:3)O(g[n]) Orderof:thereexistsK suchthatf[n](cid:4)Kg[n] f[n](cid:3)o(g[n]) Smallorderof:limn→(cid:5)(cid:2) gf[[nn]](cid:3)0 f[n]∼g[n] Equivalentto: f[n](cid:3)O(g[n])andg[n](cid:3)O(f[n]) A(cid:6)(cid:5)(cid:2) Aisfinite A(cid:7)B AismuchbiggerthanB z∗ Complexconjugateofz∈C (cid:10)x(cid:11) Largestintegern(cid:4)x (cid:12)x(cid:13) Smallestintegern(cid:7)x (x)(cid:5) max(x,0) nmodN RemainderoftheintegerdivisionofnmoduloN Sets N Positiveintegersincluding0 Z Integers R Realnumbers R(cid:5) Positiverealnumbers C Complexnumbers |(cid:8)| Numberofelementsinaset(cid:8) Signals f(t) Continuoustimesignal f[n] Discretesignal (cid:2)(t) Diracdistribution(A.30) (cid:2)[n] DiscreteDirac(3.32) 1[a,b] Indicatorofafunctionthatis1in[a,b]and0outside Spaces C Uniformlycontinuousfunctions(7.207) 0 Cp ptimescontinuouslydifferentiablefunctions (cid:2) C Infinitelydifferentiablefunctions Ws(R) Sobolevs timesdifferent(cid:2)iablefunctions(9.8) L2(R) Finiteenergyfunctio(cid:2)ns |f(t)|2 dt(cid:6)(cid:5)(cid:2) Lp(R) Functionssuchthat |f(t)|p dt(cid:6)(cid:5)(cid:2) (cid:3) (cid:2)2(Z) Finiteenergydiscretesignals (cid:5)(cid:2) |f[n]|2(cid:6)(cid:5)(cid:2) (cid:3) n(cid:3)(cid:9)(cid:2) (cid:2)p(Z) Discretesignalssuchthat (cid:5)(cid:2) |f[n]|p(cid:6)(cid:5)(cid:2) n(cid:3)(cid:9)(cid:2) CN ComplexsignalsofsizeN U⊕V Directsumoftwovectorspaces xix xx Notations U⊗V Tensorproductoftwovectorspaces(A.19) NullU NullspaceofanoperatorU ImU ImagespaceofanoperatorU Operators Id Identity f(cid:10)(t) Derivative df(t) dt f(p)(t) Derivative dpf(t) oforderp dtp (cid:11)(cid:16)f(x,y) Gradientvector(6.51) f(cid:2)g(t) Continuoustimeconvolution(2.2) f(cid:2)g[n] Discreteconvolution(3.33) f (cid:17)(cid:2) g[n] Circularconvolution(3.73) Transforms fˆ((cid:3)) Fouriertransform(2.6),(3.39) fˆ[k] DiscreteFouriertransform(3.49) Sf(u,s) Short-timewindowedFouriertransform(4.11) P f(u,(cid:4)) Spectrogram(4.12) S Wf(u,s) Wavelettransform(4.31) P f(u,(cid:4)) Scalogram(4.55) W P f(u,(cid:4)) Wigner-Villedistribution(4.120) V Probability X Randomvariable E{X} Expectedvalue H(X) Entropy(10.4) H (X) Differentialentropy(10.20) d Cov(X ,X ) Covariance(A.22) 1 2 F[n] Randomvector R [k] Autocovarianceofastationaryprocess(A.26) F

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.