ebook img

A Vertex Operator Approach for Form Factors of Belavin's $(\mathbb{Z}/n\mathbb{Z})$-Symmetric Model and Its Application PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Vertex Operator Approach for Form Factors of Belavin's $(\mathbb{Z}/n\mathbb{Z})$-Symmetric Model and Its Application

Symmetry, Integrability and Geometry: Methods and Applications SIGMA 7(2011), 008, 16 pages A Vertex Operator Approach for Form Factors Z Z of Belavin’s ( /n )-Symmetric Model and Its Application⋆ Yas-Hiro QUANO Department of Clinical Engineering, Suzuka University of Medical Science, Kishioka-cho, Suzuka 510-0293, Japan E-mail: [email protected] 1 1 Received October 22, 2010, in final form January 07, 2011; Published online January 15, 2011 0 2 doi:10.3842/SIGMA.2011.008 n a Abstract. A vertex operator approach for form factors of Belavin’s (Z/nZ)-symmetric J 5 model is constructed on the basis of bosonization of vertex operators in the A(n1−)1 model and vertex-face transformation. As simple application for n = 2, we obtain expressions for 1 z x 2m-point form factors related to the σ and σ operators in the eight-vertex model. ] h Key words: vertex operator approach; form factors; Belavin’s (Z/nZ)-symmetric model; p integral formulae - h 2010 Mathematics Subject Classification: 37K10;81R12 t a m [ 1 Introduction 5 v 2 In [1] and [2] we derived the integral formulae for correlation functions and form factors, respec- 8 tively, of Belavin’s (Z/nZ)-symmetric model [3, 4] on the basis of vertex operator approach [5]. 3 Belavin’s(Z/nZ)-symmetricmodelisann-stategeneralizationofBaxter’seight-vertexmodel[6], 4 . which has (Z/2Z)-symmetries. As for the eight-vertex model, the integral formulae for correla- 0 1 tion functions and form factors were derived by Lashkevich and Pugai [7] and by Lashkevich [8], 0 respectively. 1 It was found in [7] that the correlation functions of the eight-vertex model can be obtained : v by using the free field realization of the vertex operators in the eight-vertex SOS model [9], with i X insertion of the nonlocal operator Λ, called ‘the tail operator’. The vertex operator approach for r higher spin generalization of the eight-vertex model was presented in [10]. The vertex operator a approach for higher rank generalization was presented in [1]. The expression of the spontaneous polarization of the (Z/nZ)-symmetric model [11] was also reproduced in [1], on the basis of vertex operatorapproach. Concerningformfactors, thebosonization schemefortheeight-vertex model was constructed in [8]. The higher rank generalization of [8] was presented in [2]. It was shown in [12, 13] that the elliptic algebra U (sl ) relevant to the (Z/nZ)-symmetric model q,p N provides the Drinfeld realization of the face type elliptic quantum group (sl ) tensored by q,λ N B a Heisenberg algebra. b The present paper is organized as follows. In Section 2 we review the basbic definitions of the (Z/nZ)-symmetric model [3], the corresponding dual face model A(1) model [14], and the n 1 vertex-face correspondence. In Section 3 we summarize the vertex operat−or algebras relevant to the (Z/nZ)-symmetric model and the A(1) model [1, 2]. In Section 4 we construct the free field n 1 representations of the tail operators, in t−erms of those of the basic operators for the type I [15] ⋆ThispaperisacontributiontotheProceedingsoftheInternationalWorkshop“RecentAdvancesinQuantum Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/RAQIS2010.html 2 Y.-H. Quano (1) and the type II [16] vertex operators in the A model. Note that in the present paper we n 1 use a different convention from the one used in [−1, 2]. In Section 5 we calculate 2m-point form factors of the σz-operator and σx-operator in the eight-vertex model, as simple application for n = 2. InSection 6wegive someconcludingremarks. Usefuloperator productexpansion(OPE) formulae and commutation relations for basic bosons are given in Appendix A. 2 Basic definitions The present section aims to formulate the problem, thereby fixing the notation. 2.1 Theta functions The Jacobi theta function with two pseudo-periods 1 and τ (Imτ > 0) are defined as follows: a ϑ (v;τ) := exp π√ 1(m+a) [(m+a)τ +2(v+b)] , b − (cid:20) (cid:21) m Z X∈ (cid:8) (cid:9) for a,b R. Let n Z>2 and r R>1, and also fix the parameter x such that 0 < x < 1. We ∈ ∈ ∈ will use the abbreviations, [v] := xvr2−vΘx2r(x2v), [v]′ := [v]r r 1, [v]1 := [v]r 1, | 7→ − | 7→ v := xvr2−vΘx2r( x2v), v ′ := v r r 1, v 1 := v r 1, { } − { } { }| 7→ − { } { }| 7→ where Θ (z) = (z;q) qz 1;q (q;q) = qm(m 1)/2( z)m, q − − ∞ ∞ ∞ m Z − (cid:0) (cid:1) X∈ (z;q ,...,q ) = 1 zqi1 qim . 1 m ∞ − 1 ··· m i1,..Y.,im>0(cid:0) (cid:1) Note that 1/2 v π√ 1 ǫr ǫr ϑ , − = exp [v], 1/2 r ǫr π − 4 (cid:20) − (cid:21)(cid:18) (cid:19) r (cid:16) (cid:17) 0 v π√ 1 ǫr ǫr ϑ , − = exp v , 1/2 r ǫr π − 4 { } (cid:20) (cid:21)(cid:18) (cid:19) r (cid:16) (cid:17) where x = e ǫ (ǫ > 0). − For later conveniences we also introduce the following symbols: r−1n−j gj(z−1) x2n+2r−j−1z xj+1z rj(v) = z r n g (z) , gj(z) = {x2n j+1z x}2{r+j 1z}, (2.1) j − − { }{ } r n−j gj∗(z−1) x2n+2r−j−1z ′ xj−1z ′ rj∗(v) = zr−1 n g (z) , gj∗(z) = {x2n j 1z x}2{r+j 1z} , (2.2) j∗ { − − }′{ − }′ j(n−j) ρj(z−1) (x2j+1z;x2,x2n) (x2n−2j+1z;x2,x2n) χj(v) = (−z)− n ρ (z) , ρj(z) = (xz;x2,x2n)∞(x2n+1z;x2,x2n) ∞, (2.3) j ∞ ∞ where z =x2v, 1 6 j 6 n and z = (z;x2r,x2n) , z = (z;x2r 2,x2n) . ′ − { } ∞ { } ∞ Form Factors of Belavin’s (Z/nZ)-Symmetric Model and Its Application 3 In particular we denote χ(v) = χ (v). These factors will appear in the commutation relations 1 among the type I and type II vertex operators. TheintegralkernelforthetypeIandthetypeIIvertexoperatorswillbegivenastheproducts of the following elliptic functions: [v+ 1 w] [v 1] f(v,w) = 2 − , h(v) = − , [v 1] [v+1] − 2 [v 1 +w] [v+1] f (v,w) = − 2 ′, h (v) = ′. ∗ [v+ 1] ∗ [v 1] 2 ′ − ′ 2.2 Belavin’s (Z/nZ)-symmetric model Let V = Cn and εµ 06µ6n 1 be the standard orthonormal basis with the inner product ε ,ε = δ . Bela{vin}’s (Z/n−Z)-symmetric model [3] is a vertex model on a two-dimensional µ ν µν h i square lattice such that the state variables take the values of (Z/nZ)-spin. The model is L (Z/nZ)-symmetric in a sense that the R-matrix satisfies the following conditions: (i) R(v)ik = 0, unless i+k = j +l, mod n, jl (ii) R(v)i+pk+p = R(v)ik, i,j,k,l,p Z/nZ. j+pl+p jl ∀ ∈ Thedefinitionof theR-matrix intheprincipalregimecan befoundin[2]. ThepresentR-matrix has three parameters v, ǫ and r, which lie in the following region: ǫ >0, r > 1, 0< v < 1. (1) 2.3 The A model n−1 The dual face model of the (Z/nZ)-symmetric model is called the A(1) model. This is a face n 1 model on a two-dimensional squarelattice , the dual lattice of , such−that the state variables ∗ L L take the values of the dual space of Cartan subalgebra h of A(1) : ∗ n 1 − n 1 − h = Cω , ∗ µ µ=0 M where µ 1 n 1 − 1 − ω := ε¯ , ε¯ = ε ε . µ ν µ µ µ − n ν=0 µ=0 X X The weight lattice P and the root lattice Q of A(1) are usually defined. For a h , we set n 1 ∈ ∗ − n 1 − a = a¯ a¯ , a¯ = a+ρ,ε = a+ρ,ε¯ , ρ = ω . µν µ ν µ µ µ µ − h i h i µ=1 X An ordered pair (a,b) h 2 is called admissible if b = a+ε¯ , for a certain µ(0 6 µ 6 n 1). ∗ µ ∈ − c d For (a,b,c,d) h 4, let W v be the Boltzmann weight of the A(1) model for the state ∈ ∗ b a n 1 (cid:20) (cid:12) (cid:21) − c d (cid:12) configuration round a fa(cid:12)ce. Here the four states a, b, c and d are ordered clockwise b a (cid:12) (cid:20) (cid:21) 4 Y.-H. Quano c d from the SE corner. In this model W v = 0 unless the four pairs (a,b),(a,d),(b,c) b a (cid:20) (cid:12) (cid:21) and (d,c) are admissible. Non-zero Boltzmann(cid:12)weights are parametrized in terms of the elliptic (cid:12) theta function of the spectral parameter v. Th(cid:12)e explicit expressions of W can be found in [2]. We consider the so-called Regime III in the model, i.e., 0 < v < 1. 2.4 Vertex-face correspondence Let t(v)a be the intertwining vectors in Cn, whose elements are expressed in terms of theta a ε¯µ functions−. As for the definitions see [2]. Then t(v)a ’s relate the R-matrix of the (Z/nZ)- a ε¯µ − (1) symmetric model in the principal regime and Boltzmann weights W of the A model in the n 1 regime III − c d R(v v )t(v )d t(v )c = t(v )c t(v )bW v v . (2.4) 1− 2 1 a⊗ 2 d 1 b⊗ 2 a b a 1− 2 b (cid:20) (cid:12) (cid:21) X (cid:12) (cid:12) (cid:12) Let us introduce the dual intertwining vectors satisfying n 1 n 1 − t∗µ(v)aa′tµ(v)aa′′ = δaa′′′, − tµ(v)aa ε¯νt∗µ′(v)aa−ε¯ν = δµµ′. (2.5) − µ=0 ν=0 X X From (2.4) and (2.5), we have c d t (v )b t (v )aR(v v ) = W v v t (v )a t (v )d. ∗ 1 c⊗ ∗ 2 b 1− 2 b a 1− 2 ∗ 1 d ⊗ ∗ 2 c d (cid:20) (cid:12) (cid:21) X (cid:12) (cid:12) (cid:12) For fixed r > 1, let c d c d S(v) = R(v) , W v = W v , − |r7→r−1 ′ b a − b a (cid:12) (cid:20) (cid:12) (cid:21) (cid:20) (cid:12) (cid:21) (cid:12)r r 1 (cid:12) (cid:12) (cid:12) 7→ − (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) and t (v)b is the dual intertwining vector of t(v)a. Here, (cid:12) ′∗ a ′ b t(v)a := f (v)t(v;ǫ,r 1)a, ′ b ′ − b with v2 (r+n 2)v (n 1)(3r+n 5) − − − x−n(r 1)− n(r 1) − 6n(r 1) f (v) = − − − ′ n (x2r 2;x2r 2) − − − ∞ (x2z 1;x2n,x2r 2) (x2r+2n 2z;x2n,x2r 2) −p − − − ∞ ∞, (2.6) × (z 1;x2n,x2r 2) (x2r+2n 4z;x2n,x2r 2) − − − − ∞ ∞ and z = x2v. Then we have c d t (v )b t (v )aS(v v )= W v v t (v )a t (v )d. ′∗ 1 c⊗ ′∗ 2 b 1− 2 ′ b a 1− 2 ′∗ 1 d ⊗ ′∗ 2 c d (cid:20) (cid:12) (cid:21) X (cid:12) (cid:12) (cid:12) Form Factors of Belavin’s (Z/nZ)-Symmetric Model and Its Application 5 3 Vertex operator algebra 3.1 Vertex operators for the (Z/nZ)-symmetric model Let (i) be the C-vector space spanned by the half-infinite pure tensor vectors of the forms H ε ε ε with µ Z/nZ, µ = i+1 j (mod n) for j 0. µ1 ⊗ µ2 ⊗ µ3 ⊗··· j ∈ j − ≫ The type I vertex operator Φµ(v) can be defined as a half-infinite transfer matrix. The opera- tor Φµ(v) is an intertwiner from (i) to (i+1), satisfying the following commutation relation: H H Φµ(v )Φν(v )= R(v v )µν Φν′(v )Φµ′(v ). 1 2 1− 2 µ′ν′ 2 1 µ′,ν′ X When we consider an operator related to ‘creation-annihilation’ process, we need another type of vertex operators, the type II vertex operators that satisfy the following commutation relations: Ψ (v )Ψ (v )= Ψ (v )Ψ (v )S(v v )µ′ν′, ∗ν 2 ∗µ 1 ∗µ′ 1 ∗ν′ 2 1 − 2 µν µ′,ν′ X Φµ(v )Ψ (v )= χ(v v )Ψ (v )Φµ(v ). 1 ∗ν 2 1− 2 ∗ν 2 1 Let ρ(i) = x2nHCTM : (i) (i), H → H where H is the CTM Hamiltonian defined as follows: CTM 1 ∞ H (µ ,µ ,µ ,...) = jH (µ ,µ ), CTM 1 2 3 v j j+1 n j=1 X µ ν 1 if 06 ν < µ 6 n 1, Hv(µ,ν) = n−1+−µ ν if 06 µ 6 ν 6 n−1. (3.1) (cid:26) − − − Then we have the homogeneity relations Φµ(v)ρ(i) = ρ(i+1)Φµ(v n), Ψ (v)ρ(i) = ρ(i+1)Ψ (v n). − ∗µ ∗µ − (1) 3.2 Vertex operators for the A model n−1 For k = a+ρ,l = ξ+ρand06 i 6 n 1,let (i) bethespaceofadmissiblepaths(a ,a ,a ,...) − Hl,k 0 1 2 such that a = a, a a ε¯ ,ε¯ ,...,ε¯ for j =0,1,2,3,..., 0 j j+1 0 1 n 1 − ∈ { − } a = ξ+ω for j 0. j i+1 j − ≫ The type I vertex operator Φ(v)a+ε¯µ can be defined as a half-infinite transfer matrix. The a operator Φ(v)a+ε¯µ is an intertwiner from (i) to (i+1) , satisfying the following commutation a Hl,k Hl,k+ε¯µ relation: c d Φ(v )cΦ(v )b = W v v Φ(v )cΦ(v )d. 1 b 2 a b a 1− 2 2 d 1 a d (cid:20) (cid:12) (cid:21) X (cid:12) (cid:12) The free field realization of Φ(v )b w(cid:12)as constructed in [15]. See Section 4.2. 2 a 6 Y.-H. Quano The type II vertex operators should satisfy the following commutation relations: ξ ξ Ψ (v )ξcΨ (v )ξd = Ψ (v )ξcΨ (v )ξbW c d v v , ∗ 2 ξd ∗ 1 ξa Xξb ∗ 1 ξb ∗ 2 ξa ′(cid:20) ξb ξa (cid:12)(cid:12) 1− 2(cid:21) Φ(v1)aa′Ψ∗(v2)ξξ′ = χ(v1−v2)Ψ∗(v2)ξξ′Φ(v1)aa′. (cid:12)(cid:12) Let ρ(l,ik) = Gax2nHl(,ik), Ga = [aµν], 06µ<ν6n 1 Y − (i) (1) where H is the CTM Hamiltonian of A model in regime III is given as follows: l,k n 1 − (i) 1 ∞ H (a ,a ,a ,...)= jH (a ,a ,a ), l,k 0 1 2 n f j−1 j j+1 j=1 X H (a+ε¯ +ε¯ ,a+ε¯ ,a) = H (ν,µ), f µ ν µ v and H (ν,µ) is the same one as (3.1). Then we have the homogeneity relations v (i) (i+1) ρ ρ Φ(v)a′ a+ρ,l = a′+ρ,lΦ(v n)a′, Ψ (v)ξ′ρ(i) = ρ(i+1) Ψ (v n)ξ′. a Ga Ga′ − a ∗ ξ k,ξ+ρ k,ξ′+ρ ∗ − ξ ξ′ The free field realization of Ψ (v) was constructed in [16]. See Section 4.3. ∗ ξ 3.3 Tail operators and commutation relations In [1] we introduced the intertwining operators between (i) and (i) (k = l+ω (mod Q)): H Hl,k i T(u)ξa0 = ∞ tµj( u)aj : (i) (i), − aj+1 H → Hl,k j=0 Y T(u) = ∞ t ( u)aj+1 : (i) (i), ξa0 ∗µj − aj Hl,k → H j=0 Y which satisfy ρ(i) = (x2(rx−22r;;xx22rr−)2)∞ (n−1)(n−2)/2 G1 T(u)aξρ(l,ik)T(u)aξ. (3.2) (cid:18) ∞ (cid:19) ′ξ k≡Xl+ωi (modQ) In order to obtain the form factors of the (Z/nZ)-symmetric model, we need the free field representations ofthetailoperatorwhichisoffdiagonalwithrespecttotheboundaryconditions: Λ(u)ξ′a′ =T(u)ξ′a′T(u) : (i) (i) , (3.3) ξa ξa Hl,k → Hl′k′ where k = a+ρ, l = ξ+ρ, k = a +ρ, and l = ξ +ρ. Let ′ ′ ′ ′ n 1 L a′0 a′1 u := − t ( u)a1tµ( u)a′0. (cid:20) a0 a1 (cid:12) (cid:21) µ=0 ∗µ − a0 − a′1 (cid:12) X (cid:12) (cid:12) Form Factors of Belavin’s (Z/nZ)-Symmetric Model and Its Application 7 Then we have Λ(u)ξ′a′0 = ∞ L a′j a′j+1 u . ξa0 j=0 (cid:20) aj aj+1 (cid:12) (cid:21) Y (cid:12) (cid:12) From the invertibility of the int(cid:12)ertwining vector and its dual vector, we have ξ′a ξ′ Λ(u ) = δ . (3.4) 0 ξa ξ Note that the tail operator (3.3) satisfies the following intertwining relations [1, 2]: Λ(u)ξ′cΦ(v)b = L c d u v Φ(v)cΛ(u)ξ′d, (3.5) ξb a b a − d ξa d (cid:20) (cid:12) (cid:21) X (cid:12) Ψ (v)ξcΛ(u)ξda′ = L ξc(cid:12)(cid:12) ξd u+∆u v Λ(u)ξca′Ψ (v)ξb, (3.6) ∗ ξd ξaa Xξb ′(cid:20) ξb ξa (cid:12)(cid:12) − (cid:21) ξba ∗ ξa (cid:12) where (cid:12) ξ ξ ξ ξ L c d u = L c d u . ′ ξ ξ ξ ξ (cid:20) b a (cid:12) (cid:21) (cid:20) b a (cid:12) (cid:21)(cid:12)r r 1 (cid:12) (cid:12) (cid:12) 7→ − We should find a r(cid:12)(cid:12)epresentation of Λ(cid:12)(cid:12)(u)ξ(cid:12)(cid:12)′a′ and fix the constant ∆u that solves (3.5) and (3.6). ξa 4 Free filed realization 4.1 Bosons In[17,18]thebosonsBj (1 6 j 6 n 1,m Z 0 )relevanttoellipticalgebrawereintroduced. m − ∈ \{ } For α,β h we denote the zero mode operators by P , Q . Concerning commutation relations ∗ α β ∈ among these operators see [17, 18, 2]. We will deal with the bosonic Fock spaces , (l,k h ) generated by Bj (m > 0) over the vacuum vectors l,k : Fl,k ∈ ∗ −m | i Fl,k = C[{Bj1,Bj2,...}16j6n]|l,ki, − − where l,k = exp √ 1(β Q +β Q ) 0,0 , 1 k 2 l | i − | i and (cid:0) (cid:1) 1 t2 β t 1= (t β )(t β ), β = , β < β . 0 1 2 0 1 2 − − − − r(r 1) − p 4.2 Type I vertex operators Let us define the basic operators for j = 1,...,n 1 − j j+1 U−αj(v) = zr−r1 : exp−β1 √−1Qαj +Pαj logz) + Bm−mBm (xjz)−m :, m=0 (cid:0) (cid:1) X6   j Uωj(v) = zr2−r1j(nn−j) :expβ1 √−1Qωj +Pωj logz) − m1 x(j−2k+1)mBmkz−m :, m=0 k=1 (cid:0) (cid:1) X6 X   8 Y.-H. Quano where β = r 1 and z = x2v as usual. The normal product operation places P ’s to the 1 − −r α right of Qβ’s, qas well as Bm’s (m > 0) to the right of B m’s. For some useful OPE formulae − and commutation relations, see Appendix A. In what follows we set π = r(r 1)P , π = π π = rL (r 1)K . µ − ε¯µ µν µ− ν µν − − µν The operatoprs K , L and π act on as scalars ε ε ,k , ε ε ,l and ε ε ,rl µν µν µν l,k µ ν µ ν µ ν F h − i h − i h − − (r 1)k , respectively. In what follows we often use the symbols − i G = [K ], G = [L ]. K µν ′L µν ′ 06µ<ν6n 1 06µ<ν6n 1 Y − Y − For 0 6 µ 6 n 1 the type I vertex operator Φ(v)a+ε¯µ can be expressed in terms of U (v) − a ωj and U (v) on the bosonic Fock space . The explicit expression of Φ(v)a+ε¯µ can found −αj Fl,a+ρ a in [15]. 4.3 Type II vertex operators Let us define the basic operators for j = 1,...,n 1 − j j+1 V−αj(v) = (−z)r−r1 : exp−β2 √−1Qαj +Pαj log(−z) − Am−mAm (xjz)−m:, m=0 (cid:0) (cid:1) X6 r j(n−j)  Vωj(v) = (−z)2(r−1) n j 1 :exp β √ 1Q +P log( z) + x(j 2k+1)mAk z m :, ×  2 − ωj ωj − m − m −  m=0 k=1 (cid:0) (cid:1) X6 X   where β = r and z = x2v, and Aj = [rm]x Bj . For some useful OPE formulae and 2 r 1 m [(r 1)m]x m − − commutationqrelations, see Appendix A. For 0 6 µ 6 n 1 the type II vertex operator Ψ (v)ξ+ε¯µ can be expressed in terms of V (v) − ∗ ξ ωj and V (v) on the bosonic Fock space . The explicit expression of Ψ (v)ξ+ε¯µ can found −αj Fξ+ρ,k ∗ ξ in [16]. 4.4 Free field realization of tail operators In order to construct free field realization of the tail operators, we also need another type of basic operators: 1 W−αj(v) = ((−1)rz)r(r−1) j j+1 O O × : exp−β0 √−1Qαj +Pαj log(−1)rz) − m−m m (xjz)−m :, m=0 (cid:0) (cid:1) X6   where β = β + β = 1 , ( 1)r := exp(π√ 1r) and Oj = [m]x Bj . Concerning 0 1 2 √r(r 1) − − m [(r 1)m]x m − − useful OPE formulae and commutation relations, see Appendix A. We cite the results on the free field realization of tail operators. In [1] we obtained the free ξa′ field representation of Λ(u) satisfying (3.5) for ξ = ξ: ξa ′ ν dz Λ(u)ξξaa−−εε¯¯νµ = GKI j=µ+12π√−j1zjU−αµ+1(vµ+1)···U−αν(vν) Y Form Factors of Belavin’s (Z/nZ)-Symmetric Model and Its Application 9 ν 1 − × (−1)Ljν−Kjνf(vj+1−vj,πjν)G−K1, (4.1) j=µ Y where v = u and µ < ν. In [2] we obtained the free field representation of Λ(v)ξ+ε¯n−1a+ε¯n−1 µ ξ+ε¯µa+ε¯n−2 satisfying (3.6) as follows: ( 1)n µ[a ] [ξ 1] Λ(u)ξξ++εε¯¯µn−a+1aε¯+n−ε¯n2−1 = (x−1 −x)(xn2−r;2xn2−r1)3 µn−[11]− ′GKG′L−1 − ′ − ∞ n 2 − dzj W u r 1 V (v ) V (v ) ×IC′j=µ+12π√−1zj −αn−1 − −2 −αn−2 n−2 ··· −αµ+1 µ+1 Y (cid:0) (cid:1) n 2 − × (−1)Lµj−Kµjf∗(vj −vj+1,πµj)G−K1G′L, (4.2) j=µ+1 Y for 0 6 µ 6 n 2 with ∆u = n 1 and v = u. Concerning other types of tail operators ξa′ − − −2 n−1 Λ(u) , the expressions of the free field representation can be found in [1, 2]. ξa 4.5 Free field realization of CTM Hamiltonian Let n 1 j n 1 H = ∞ [rm]x − x(2k 2j 1)mBk (Bj Bj+1)+ 1 − P P F [(r 1)m]x − − −m m− m 2 ωj αj m=1 − j=1k=1 j=1 X XX X n 1 j n 1 = ∞ [rm]x − x(2j 2k 1)m(Bj Bj+1)Bk + 1 − P P (4.3) [(r 1)m]x − − −m− −m m 2 ωj αj m=1 − j=1k=1 j=1 X XX X be the CTM Hamiltonian on the Fock space [19]. Then we have the homogeneity relation l,k F φµ(z)qHF = qHFφµ q−1z , and the trace formula (cid:0) (cid:1) xnβ1k+β2l2 tr x2nHFG = | | G . Fl,k a (x2n;x2n)n−1 a ∞ (cid:0) (cid:1) Let ρ(l,ik) = Gax2nHF. Then the relation (3.2) holds. We thus indentify HF with free field (i) (1) representations of H , the CTM Hamiltonian of A model in regime III. l,k n 1 − 5 Form factors for n = 2 In this section we would like to find explicit expressions of form factors for n = 2 case, i.e., the eight-vertex model form factors. Here, we adopt the convention that the components 0 and 1 for n = 2 are denoted by + and . Form factors of the eight-vertex model are defined as matrix − elements of some local operators. For simplicity, we choose σz as a local operator: σz = E(1) E(1), ++− −− where E(j) is the matrix unit on the j-th site. The free field representation of σz is given by µµ′ σz = εΦ (u)Φε(u). ∗ε ε= X± c 10 Y.-H. Quano Here, Φ (u) is the dual type I vertex operator, whose free filed representation can be found ∗ε in [1, 2]. The corresponding form factors with 2m ‘charged’ particles are given by 1 F(i)(σz;u ,...,u ) = Tr Ψ (u ) Ψ (u )σzρ(i) , (5.1) m 1 2m ν1···ν2m χ(i) H(i) ∗ν1 1 ··· ∗ν2m 2m (cid:16) (cid:17) where c (x4;x4) χ(i) = Tr (i)ρ(i) = (x2;x2)∞. H ∞ In this section we denote the spectral parameters by zj = x2uj, and denote integral variables by w = x2va. a By using the vertex-face transformation, we can rewrite (5.1) as follows: 1 F(i)(σz;u ,...,u ) = t u u + 1 l1 t u u + 1 l2m m 1 2m ν1···ν2m χ(i) ′ν∗1 1− 0 2 l ··· ′∗ν2m 2m− 0 2 l2m−1 l1,X...,l2m (cid:0) (cid:1) (cid:0) (cid:1) ε t (u u )k tε(u u )k1 × ∗ε − 0 k1 − 0 k2 k≡l+Xi(mod2)εX=± k1X=k±1k2=Xk1±1 Tr Ψ (u )l Ψ (u )l2m−1Φ (u)k Φ(u)k1Λ(u )l2mk2[k]x4HF , × (i) ∗ 1 l1··· ∗ 2m l2m ∗ k1 k2 0 lk [l] Hl,k(cid:18) ′ (cid:19) where H is the CTM Hamiltonian defined by (4.3). F Let 1 F(i)(σz;u ,...,u ) = ε t (u u )k tε(u u )k1 m 1 2m ll1···l2m χ(i) ∗ε − 0 k1 − 0 k2 k≡l+Xi(mod2)εX=± k1X=k±1k2=Xk1±1 Tr Ψ (u )l Ψ (u )l2m−1Φ (u)k Φ(u)k1Λ(u )l2mk2[k]x4HF . (5.2) × (i) ∗ 1 l1··· ∗ 2m l2m ∗ k1 k2 0 lk [l] Hl,k(cid:18) ′ (cid:19) Then we have F(i)(σz;u ,...,u ) = F(i)(σz;u ,...,u ) m 1 2m ll1···l2m m 1 2m ν1···ν2m ν1,X...,ν2m tν1 u u + 1 l tν2m u u + 1 l2m−1. × ′ 1− 0 2 l1··· ′ 2m− 0 2 l2m (cid:0) (cid:1) (cid:0) (cid:1) For simplicity, let l =l j for 1 6j 6 2m. Thenfrom therelation (3.4), Λ(u )l2mk2 vanishes j − 0 lk unless k = k 2. Thus, the sum over k and k on (5.2) reduces to only one non-vanishing 2 1 2 − term. Furthermore, we note the formula 0 u u 1+k εt∗ε(u−u0)kk−1tε(u−u0)kk−−21 = (−1)1−i{ }[{u −u00][k− 1] }. ε= − − X± Here, we use k l i (mod 2). The sum with respect to k for the trace over the zero-modes − ≡ parts can be calculated as follows: 2m m 1 u u0 1+k ( zj)2(rr−l1)−k2(x−1z)−l+(r−r1)k − ( wa)−rr−l1+k { − − } − − k l+i(mod2) j=1 a=1 ≡ X Y Y ( 1)rx−r+1z0 −r−l1+kr xrr−l21−2kl+(r−r1)k2 × − (cid:0) (cid:1)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.