ebook img

Are Echinoderm Egg Size Distributions Bimodal? PDF

9 Pages·1997·3.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Are Echinoderm Egg Size Distributions Bimodal?

Reference:Bin/. Bull. 193:297-305.(December, 1997) Are Echinoderm Egg Size Distributions Bimodal? MARY A. SEWELL* AND CRAIG M. YOUNG Department ofLan'al Ecology, HarborBranch Oceanographic Institution, 5600 U.S. 1 North, Fort Pierce, Florida 34946 Marine invertebrates can be categorized into species In marine invertebrates there is a tradeoffbetween fe- that reproduce by producing either large numbers of cundityandtheamount ofenergy thatcanbeinvestedin small, energeticallyinexpensiveeggsthatbecomeplank- eachegg.Thus,asarule,aspeciesproduceseithermany, totrophic larvae, orfewer, larger eggs with more yolk small eggs with planktotrophic development or fewer, andlecithotrophicdevelopment(1). Theselectiveadvan- larger eggs with lecithotrophic development (1). As the tagesofthesealternativestrategieswereconsideredin a size ofeggs may differ between closely related species, series ofsimple mathematical models by Vance (2. 31. eggsizeisassumedtobesubjecttoconsiderableselective Thesemodelspredictedthatintermediateeggsizesshould pressure (15-17). This has prompted interest in docu- havelowerreproductiveefficiency, andthatonlvextreme menting patterns ofegg size among species and higher egg sizes should be evolutionarily stable (2, 3). Specifi- taxa, and in exploring how factors such as phylogeny cally, Vance'smodels (2. 3), andlatermodifications (4- (15), fertilization biology (16, 18. 19), length ofthe pre- 7), predictthateggsofmarineinvertebratesshouldhave hatching (14, 20) and prefeeding periods (17), and size bimodalsizedistributions, reflectingthecontrastbet\veen andorganiccontentatmetamorphosis(e.g., 14,21)might smallegg/feedingandlargeegg/nonfeedingmodesofde- be important for selection ofegg size. velopment and the selection against intermediate egg In early mathematical modeling Vance (2, 3) viewed sizes. Evidenceforbimodalityineggsizedistributionsis, planktotrophy and lecithotrophy asextreme formsoflar- however, equivocal, with unimodal distributions seen in val development, and his models suggested that only the the majority ofcomparative studies thatareappropriate extreme egg sizes would confer maximum reproductive testsofthehypothesis(8-13).Bimodaldistributionshave efficiency (number of newly metamorphosed adults per been describedonly in afewgroupsofmolluscs (4)and unit of energy devoted to reproduction). Subsequently, in asteroidandechinoidechinoderms (14). Here we test the prediction ofbimodality in egg sizes within taxa of theprediction ofbimodalityin theholothuroidandophi- marine invertebrates was tested by a number ofauthors uroid echinoderms and show that although the natural usingpreviouslypublishedornewdatasets.Mostofthese log-transformed egg size distributions are visually uni- studies showed unimodal egg size distributions (see also modal,theholothurianeggsizedistributionisstatistically fig. 2 in ref. 22). Examples include prosobranch gastro- composedoftwo discrete modes. Moreover, reexamina- pods (9, 10), opisthobranchs (II), muricid gastropods t(i1o4n)owifththteheasatdedriotiidonanofddeacthaifnrooimd megogresirzeecednitstlriitbeurtaitounrse (w8i)t,hcohuittnounrss(e2e3)g,gsth(o1r2a)c,iIcnadno-bPaarcniafcilcesCo(n2n4)s,(a1n3)d,sbtiovmaaltvoe-s confirms that there are t\vo statistical modes in the egg pods (25). Bimodal distributions in egg size were de- size distributions ofthese classes. Thus, in the phylum scribed in American species ofthe genus Crepidula (4), Echinodermata, there is a bimodal egg size distribution in prosobranch gastropods from Danish waters (4), and in three ofthe fourclasses in which thisprediction can in echinoid and asteroid echinoderms (14). be tested. Manyofthe early studies used data sets that were not adequate for a valid test of the distribution patterns of R*ePcreeisveendta1d1drMeassr:chDep1t9.77o;faBcicoelpotgeidca2l2ScSieepntc.es1,99U7..S.C.LosAngeles. esegtgs:s(iaz)e.thWeedatdaesfhinoeudldtihnrceleudceritbeortihapfloarnkatpoptrroopprhiiacte(fdeaedt-a CA90089-0371;e-mail: [email protected] ing) and lecithotrophic (nonfeeding) forms of develop- 297 298 M. A. SEWELL AND C.M. YOUNG ment; (b) the egg sizes should be from species that span its use fortheoretical discussions oflife-history patterns. a broad range ofhabitats and a wide geographic range; Hrstly,manyspecieshaveoblatelyorprolatelyspheroidal and(c)thedatashouldexcludespeciesthatprovideaddi- eggs,sothateggswiththesamediametermayhavediffer- tional maternal investment (e.g., nurse eggs, capsules). ent egg volumes (30). We did not attempt to convert Criterion(b) isnecessarybecauseeggsizemaybecorre- publishedeggdiameterstovolumesbecauseinmostcases lated with habitat for example, more planktotrophs in only one ofthe two linear dimensions required for such the tropics (1) and use ofspecies from a limited geo- acalculationwaspresented.Secondly,eggmeasurements graphic area might under- or overemphasize a particular made from histological sections will underestimate egg developmental type. Criterion (c) is necessary because diameter because of tissue shrinkage during processing Vance's models (2, 3) assume that reproductive energy and the hydration ofthe egg during spawning (30). We is invested solely in the egg. Additionally, because the used the diameters of both intraovarian and freshly models (2, 3) were developed in terms ofenergetic con- spawned eggs in this paper to increase the sample sizes tent rather than egg size per se. for all data sets it is for statistical analysis (n > 100 species for all classes). assumed that there is acorrelation between egg size and Because the size classes in the raw (100//m) and In- energetic content. transformed analyses (In 0.25) are relatively large, we The primary criterion, that planktotrophic and lecitho- assumed that intraovarian egg diameters would have a trophic formsbepresent, is violatedby threeofthe taxa: low probability of moving into an adjacent size class thoracican barnacles (24) and stomatopods (25), neither should a freshly spawned egg diameter be available. ofwhichgroupsincludespecieswithlecithotrophicdevel- Thirdly, eggs differ in theirorganic components lipid, opment, and chitons (23), which do not include species protein,etc (27,30)andourassumptionthateggdiame- with planktotrophic development. Criterion (b) may be ter is an effective measure ofmaternal investment may violated by Ockelmann's bivalve data set (8) because prove to be untenable. planktotrophsarerareinEastGreenland(26),incompila- Previous studies of egg size distributions in marine tions ofegg sizes in American species ofCrepidula (4) invertebrates have determined the number of modes in and Danish prosobranchs (4), and in studies with low the distribution by visual appraisal. In this paper we in- samplesizes(4,23,24,25). Violationofcriterion(c)has steadmadeuseofstatisticaltechniquesdesignedtodiffer- beenavoidedbyremovalofspeciesusingnurseeggs(12, entiate length-frequency classes offish populations (31). fig. 2inref. 22).Withtheremoval ofstudies thatclearly Histograms ofegg diameter frequencies were generated violatecriterion (a) there are unimodal egg size distribu- foreachclassusingtherawandIn-transformeddiameters tionsinsixtaxa(8-13)andbimodaldistributionsinfour as shown in Figures 1-4. A modal analysis using the taxa (4, 14). method of Schnute and Fournier (31) was then used to The best known, and most widely cited, example of identify the Gaussian modes presented in these figures. thebimodulityineggsizeswithinataxonistheextensive Becausetheanalysisisrelativelyinsensitivetothedimen- data set compiled by Emlet et al. (14) for asteroid and sionsofthesizeclasses(31;B. Smith,pers.comm.),this echinoid echinoderms. This data set meets criteria (a)- method provides an objective way to examine the egg (c) above, incorporating egg sizes from 89 asteroid spe- sizedistribution inaparticulartaxonanddirectlytestthe ciesand 109 echinoid species from a variety ofhabitats. hypothesis ofbimodality ofegg sizes in marine inverte- Moreover, in this phylum there is a strong correlation brates (2, 3). The complete raw data sets used forthese between egg size andenergetic content (27). Ofthe four analysesareavailabletointerestedreadersfromeitherof remainingclassesofechinoderms,ourcriteriaarenotmet the authors. in thecrinoids, wherethereare noknownplanktotrophic Holothuroids show an extreme range in egg diameter, species (28), orintheconcentricycloids, where there are fromaminimumof50pmin the apodidSynaptula reci- only twodescribedspecies(29). Inthispaperwetestthe procanstoamaximumof4400/urnintheelasipodPsych- predictionofbimodalityineggsizesinthetworemaining ropoteslongicauda (Fig. 1A). About 80% ofthe species classes, the holothuroids and ophiuroids, which meetthe have eggs smaller than 1000/jm in diameter (Fig. 1A), criteriadefined above, andwe incorporate new data into withfourmodesinthesize-frequencydistribution(Table thepublishedeggsizedistributionsofechinoidsandaster- I). The first mode is at an egg diameterof 194fjm (Fig. oids (14). 1A, Table 1), and comprises species with eggs from 50 Theegg sizedatasets used in thisanalysis werecom- to about 300/ym with planktotrophic orunknown devel- piled from the published literature and our own unpub- opment (Fig. 1A). A second, but overlapping, mode is lisheddata, with the implicit assumption that all echino- seenat421 pm,withspecieswithlecithotrophic.brooded, derm eggs are basically alike. As noted by Turner and or unknown development (lecithotrophs: 150-950//m; Lawrence (30), although egg diameter is an easy repro- Fig. 1A). A large number of species in the unknown ductive character to measure, there are shortcomings in categoryinthismodearedendrochiroteholothurianswith EGG SIZE IN ECHINODERMS 299 HOLOTHUROIDEA =184 ooooooooooooooooo~o"oooooo Egg Diameter((am) 0- CMCMCNCNCNCNOJCNCMCSICMCNCNCMCNCNCNCvJCMCM CD^CQ^ oT <oO < Cv-O C*M CCOM CTO CCDO * CO T CD O*OOCDOO*iaCiD Ln Egg Diameter Figure 1. Eggsizedistributionpattern intheclassHolothuroidea( = 184). Informationontheegg sizeofspeciesofholothurianswascompiledfromthepublishedliteratureandourownunpublisheddata. Ifmore than one egg size was reported for a particular species, the maximum value was used in the figure.Thetypeoflarvaldevelopment(planktotrophic,lecithotrophic,brooding)wasbasedontheknown developmentofthatspeciesfromlaboratoryorfieldcollections.Thisresultedinalargenumberofspecies with unknown developmental type; egg size was not used to infer developmental mode. Species were categorized as having an auricularia larva (planktotrophic). a doliolaria larva only (lecithotrophic), or internal/externalbrooding.Twospecies,HolothuriafloridanaandThyonefusus, thatarereportedtohave pelagicdirectdevelopmentwereincludedwiththelecithotrophs.Thecompleterawdatasetforthisfigure canbeobtainedfromeitheroftheauthors.(A)Histogramoftheuntransformedeggdiametersintheclass Holothuroidea;.t-axis shows the midpoint ofthe 100-^m size class. (B) Histogram ofthe natural log- transformedeggdiametersintheclassHolothuroidea;x-axisshowsthemidpointoftheIn0.25sizeclass. PartBfollowsEmletetal.(14)inusingthenaturallogtransformationofeggdiametertocombinespecies with large lecithotrophic eggs into asmallernumberofcategories. Legendto developmental type isas showninpartB:P = planktotrophic(n = 20); L = lecithotrophic(n = 22);B = brooded( = 38); ?= unknowndevelopment(H = 104). Solidlinedifferentiatesmodesidentifiedinthestatisticalanalysis(see TableIfordetails). egg sizes in the 200-800//m range. As there are no development type (Fig. 1A) the majority ofthe latter known planktotrophs in this order (32), this mode may species are elasipod holothurians and may have direct additionally include 20 lecithotrophic species. The last development(33).Thus,intheholothuriansthefirstmode twomodes,at 1024and2603//m,areprimarilycomposed containsmainlyspecieswithplanktotrophicdevelopment; ofspeciesthatarelecithotrophic,brood,orhaveunknown the following three modes are species with nonfeeding 300 M. A. SEWELL AND C.M. YOUNG Table1 Kexnllxnliinx/iiliiiiiil\'xixfurcw.v/'rcilixtrilnitiniixinnxteroul (n = 149),t'chmoid(n = Ml), hclotliurniilIn = 1X4). andophiuroidechinodemu in = /->'-) No ol Class modes EGG SIZE IN ECHINODERMS 301 oooooooooooooooooooo n in m m in n co r co 01 Egg Diameter Lnininininininininininmininininininmin CMCNCNCNCNCNCNJCNJCSJOMCNJCMCNCNCSJCNICNCNCMCN CO COT-CD CO COT-COT CO' CD i- cp T- cp 06 od <T> CD Ln Egg Diameter(jam) Figure2. EggsizedistributionpatternintheclassOphiuroidea(n= 1321.Informationontheeggsize ofspeciesofophiuroidswascompiledfrom Hendler(109ophiuroidspecies,ret". 38)andlaterpublished literature.ThetypeoflarvaldevelopmentwasbasedonHendler'sclassification(ref.38,p.456):plankto- trophic =witharelativelylong-livedophiopluteuslarvae;abbreviated= reducedophioplutei.embryosin an attached fertilization envelope, lecilhotrophic vitellaria larvae, or demersal larvae; brooded/direct = viviparous,internalorexternalbrooding,orwithaneggcapsule.Thecompleterawdatasetforthisfigure canbeobtainedfromeitheroftheauthors.(A)Histogramoftheuntransformedeggdiametersintheclass Ophiuroidea; .v-axis shows the midpoint of the 100-jjm size class. (B) Histogram of the natural log- transformedeggdiametersintheclassOphiuroidea;.v-axisshowsthemidpointofthe In 0.25 sizeclass. LegendtodevelopmentaltypeisasshowninpartB: P= planktotrophic(n = 22);A=abbreviated(n = 12);B/D =brooded/direct(n = 31);?= unknowndevelopment(n =67).Solidlinedifferentiatesmodes identifiedinthestatisticalanalysis(seeTableIfordetails). planktotrophicdevelopment,buthastheshortestperiodof asteroidsthatshowtwoseparate,distinct,andstatistically development (65 days) ofany ofthe Antarctic asteroids differentiatedmodes(Fig.3B).Therearefewspecieswith studiedby BoschandPearse(35). Forthese species,par- egg sizes in the size class In 5.5 to 5.75, equivalent to ticularly, it would be ofinterest to examine whether the egg diameters of245 to 314//m (Fig. 3B). energetic content or biochemical composition of their Twenty-two egg sizes were added to the echinoid data eggs differs from those of other asteroids of the same set of Emlet et al. (14). The untransformed distribution developmental type. comprises four modes (Fig. 4A, Table I). The first two In the fourechinoderm classes analyzed, it is only the modes, at 102 and 317//m. overlap considerably and are 302 M. A. SEWELL AND C.M. YOUNG 50 ASTEROIDEA N=149 40- cfl g> '8 Q. CO 20- 10- ooooooooooooooooooooo Egg Diameter (|im) CoTNdJcCroN^-CN: JCTCO-Nc1*C\NiCccNo\I*iCcNoJccCooN'^CT-N*cI3oC:NCNICCON'CCNCONTC-NCCNOI*CNCCNOC*N-CCNOI Ln Egg Diameter(jam) Figure3. EggsizedistributionpatternintheclassAsteroidea(n = 149).Informationontheeggsize ofspeciesofasteroidsderivedfromEmletetal. (14)andmorerecentliterature. Thecompleterawdata setforthis figure can be obtained from eitherofthe authors. (A) Histogram ofthe untransformedegg diametersintheclassAsteroidea;.r-axisshowsthemidpointofthe 100-/jm sizeclass.(B)Histogramof thenaturallog-transformedeggdiametersintheclassAsteroidea:.v-axisshowsthemidpointoftheIn0.25 size class. Legend to developmental type is as shown in part B: P = planktotrophic (n = 47): L = lecithotrophic(n=57);B=brooded(n=26);?=unknowndevelopment(n= 19).Solidlinedifferentiates modesidentifiedinthestatisticalanalysis(seeTable1fordetails). composed of planktotrophic, facultative planktotrophic. Brisaster latifrom, 14) as well as all the lecithotrophic and some lecithotrophic species (Fig. 4A). The last two and brooding species (Fig. 4B). modesareoflecithotrophicandbroodingspecies(Fig.4A). Twoconclusionscanbedrawnfromthestatisticalanal- The In-transformed histogram shows statistically two yses presented here. Firstly, in all classes the untrans- modes (Fig. 4B, Table I). The first (In 4.60) comprises formed egg size distributions show three to four modes, 68% of the species and is composed almost entirely of the first being primarily of planktotrophic species, and planktotrophic species, with the facultative planktotroph theremainingtwotothreecontainingmainlyspecieswith Encope inicltelini (37) at the point of overlap between nonfeedingdevelopment(i.e., lecithotrophic,abbreviated, modes 1 and 2 (Fig. 4B). The second mode, at In 6.22, brooded, or direct development). Secondly, the In-trans- has ahigh standard deviation (Table I) and includes two formed distributions are bimodal in the holothurians, as- speciesoffacultativeplanktotrophs(Clypeasterrosaceus. teroids,andechinoids, but unimodalintheophiuroids. In EGG SIZE IN ECHINODERMS 303 60 ECHINOIDEA 50- 40- 'o a CO 30- O 20- 10- f"pfr III I n m Egg Diameter (jam) CNCNCNfMCMCMCNCNCMCMCNCNCMCSIOJCMCMOlCNCSI TO- COD TT-- CTD- CM CCND CO CD CDI CD CD cd coop cp Ln Egg Diameter Figure4. EggsizedistributionpatternintheclassEchmoidea< = 131).Informationontheeggsize ofspeciesofechinoidsderivedfromEmletettil. (14)andmorerecentliterature.Thecompleterawdata setforthis figurecan be obtained from eitherofthe authors. (A) Histogram ofthe untransformedegg diametersintheclassEchinoidea:.Y-axisshowsthemidpointofthe 100-/jmsizeclass.(B)Histogramof thenaturallog-transformedeggdiametersintheclassEchinoidea;.v-axisshowsthemidpointoftheIn0.25 sliezceithcolatsrso.phiLceg(ennd=t1o6)d;evPe-lLopm=enftaaclulttavtpieveisplaasnkstohtorwonphin(npa=rt3)B;:BP==brpolaondketdot(rnop=hic8);( ?==8u5n);knLow-n development(n = 19).Solidlinedifferentiatesmodesidentifiedinthestatisticalanalysis(seeTableIfor details). those classes with a bimodal distribution, it is only the allclasses,thereissomeoverlapineggsizebetweenthese asteroidsandechinoidsthatshowademarcationbetween planktotrophic speciesandspecies with lecithotrophicor modes with feeding and nonfeeding development. In the brooded development (Figs. 1-4). Egg sizes ofspecies holothuroids, the modes are less visually distinct, and with "intermediate" forms ofdevelopment, suchasfac- lecithotrophic and brooding developmental types are ultative planktotrophy (e.g., 17) or modified benthic de- found in both modes. velopment(e.g., Patiriellaexigua, egg400/jm:34),gen- Theegg sizedataexaminedhere(Figs. 1-4) illustrate erally fit within the mode for other lecithotrophic and the need to view marine invertebrate development as a brooding species (Figs. 3 and 4). reproductive continuum (5, 17, 22). Histograms of the An important direction for future research on echino- egg size distribution show species with planktotrophic derm eggs is examination ofthe assumption made here, development forming a distinctive group at smaller egg and in othercomparative studies (e.g.. 14), that all eggs sizes (max. egg size <300^m; Figs. 1-4). However, in are basically equal (27). This question should be ad- 304 M. A. SEWELL AND C.M. YOUNG dressedat two levels. Firstly, withinanechinodermclass 7. Havenhand,J.N.1995. Evolutionary'ecologyoflarvaltypes.Pp. wcheemnieceadl icnofmopromsaittiioonnoonfstpheecieenserwgietthicacpoanrtteinctulaarnddevbeilo-- X. e7Odc9.k-Ce1l2Rm2CainnPnr,EescsKo,.loN\geVy.wo1f9Y5oM8ra.kr.inTeheInzveorotleobgryatoefLEaans'taGe,reLe.nlMacnEddmwaarridn,e opmental type. For example, in the Holothuroidea it Lamellibranchia.Medd. Groenl. 122: 1-256. would be of interest to determine whether the eggs of 9. kohn, A.J. 1961. Studies on spawning behavior, egg masses, known lecithotrophs (egg diameter 150-950/jm) differ andlarvaldevelopmentinthegastropodgenusConns. II.Observa- in any way from those ofthe planktotrophic species or tions in the Indian Oceanduring the Yale Seychellesexpedition. fpSeorcdoosmntdthhlaeyt,laarrwegheseu(ns1p5esc0utf-fe4id4cio0ef0nth/audvrnai)tnaeggdhgiasrveoecfttbdheeeevnedelecopop-mmspeeinalteed(l,3a3s)ii.-t TwH\uihlmtlohm.m.epBcisMotol.ionggh,1ia9ci6aTn3l..OeEcm.epAah1nac9os6ogi7mrs.p..arJC.aDotliSlirh.evicemt1oe7:nmdobe3srv-eye5kol1ilo.poCmgoelyln.otfFmiisanhr.ithn1ee2:gnau2sd2ti9rbo-rp2ao5nd3cs.h, wouldbeofinteresttocompareeggcharacters(size,ener- Catllnui laevis, with a discussion ofdevelopmental processes in getic content, and composition) between echinoderm Opisthobranchia../. Mar. Biol.Ass. U.K.47: 1-22. classes. In a recent review of the relationship between 12. Spight,T.M. 1976. Ecologyofhatchingsizeformarinesnails. e(si2gz7ge),sseinhzeeorwgaeentddictehcnaoetnrtgteehntetir,ceacwnoednrtebeinaotvcehirneamgeiecchadilinfcofdoeemrrpemonssc,iestiJiaonencekbglege- 1134. pEOKhemoclyhoenlpt,ao,tgAtiR.ea.rJn.2Bs,.4,:iannL2dC.8o3FRn.-.n2sE9..M4cP.CEelrdarrwoeannr.ddo1n,98Pa6r.nesds,LRiO.fxeRf.ohirsdSt.torryatahnmdabnino.geo1g9r8a7-. tweendevelopmental types,but the low numberofavail- Echinoderm larval ecology viewed from the egg. Pp. 55-136 in ablestudiesmadeitnecessarytocombineeggparameters EchinodermStudies. Vol. 2.M.JangouxandJ.M.Lawrence,eds. fromdifferentechinodermclasses. With increasingstudy A.A. Balkema. Rotterdam. on the energy content and biochemical composition of 15. Lessios,H.A. 1990. Adaptation andphylogenyasdeterminants eggsofthelesswellknownechinodermclasses(holothur- oPfaneagmga.siAzem.inNueic.hi1n3o5d:er1m-s13f.rom the twosides ofthe Isthmusof oids,ophiuroids.crinoids)wemaybebetterabletointer- 16. Levitan,D.R. 1993. The importanceofsperm limitation tothe pret patterns ofegg size distribution (Figs. 1, 2) and for- evolutionofeggsizeinmarineinvertebrates.Am.Nat. 141: 517- mulate or test new hypotheses on factors important for 536. the selection ofegg size. 17. Herrera, J.C.,S.K. McWeeney,and L.R. McEdward. 1996. Diversity ofenergetic strategies among echinoid larvae and the transitionfromfeedingtononfeedingdevelopment. Oceanol.Acta Acknowledgments 19: 313-321. lowRsehsiepartcohMsuApSporftrowmasthperoDviivdiesdiobnyoafpMosatr-idnoectoSrcailenfceel,- 18. Pstirozadedoel-iosnfkfyf.,rAeRem-..sDpN.aa,wtna.enr1sd4:8R:.coR1n.6s0eS-qt1ur7ea3nt.chemsanonf.th1e99f6e.rtilEivzoaltuiotni-ofnecoufndeigtgy HarborBranch Oceanographic Institution. We especially 19. Levitan,D.R. 1996. Predictingoptimalanduniqueeggsizesin thankDr. B. Smith. EnvironmentCanada,forperforming free-spawningmarineinvertebrates.Am.Nat. 148: 174-188. the statistical analyses. We also thank Drs. R. Mooi, 20. Dickie, L., M. Hart, and R. Helling. 1989. Prefeeding larval aDn.dS.tMa.xoBnilolmeytt,,aannddDrDs..PAa.wMseotnaxfaosr,hMe.lpTewmikthine,gRg.sEizme-s 21. dSnoetivrdeasl.tohIpmnmaveennrntt,ehtRri..meRR.ei/s1tr9no7od7t..cDoerEvregelgloaptsie.zde1,w5il:atrh2v2ael9g-dg2e3vs2eil.zeopimnenrte,gualnardjeucvhei-- son, and the anonymous reviewers fortheirassistance in nilesizeinbenthicmarineinvertebrates.Am.Nat. Ill:373-376. clarifyingthemanuscript.SupportedbyNSFgrantsOCE- 22. Perron, F.E.,and R.H. Carrier. 1981. Egg size distributions 8717922^8916264,and9116560. HarborBranchContri- amongcloselyrelatedmarineinvertebratespecies:aretheybimodal bution No. 1217. orunimodal?Am. Nat. 118: 749-755. 23. Pearse,J.S. 1979. Polyplacophora. Pp. 27-85 inReproduction ofMarineInvertebrates, Vol. 5, A.C.GieseandJ.S.Pearse,eds. Literature Cited AcademicPress,NewYork. 21.. bTiVnohavtonetrcrosetem,obnriR,an.tveGeRsr...teA1b19mr97a.5t30ea.Ns.a.t.BRiOeo1pnl0.r7or:Rdeepu3vrc.3ot9di2u-v5c3e:t5i2av1.ne-d4s5tl.raartveagliesecionlmoagryinoefbmeanrtihniec 2245.. ctBRhaeoeraimnrkmeavos,a,nriMaHc.t.ii,rLor.naipnw1edi9dte7hs9M...loJ.cBaTalAh,rnenigemees.ov.gorElac1upo9thl6i.i5oc.na3al4r,:yEag3en9gcd1os-lsio4pzeg0ecy,2i.fonifaculfpialfceituhosirssstiioznrey,sopaamnted- 3. bVeanntchei,ciRn.veRr.teb1r9a7t3ebs..AmM.orNeut.on10r7e:pr3o5du3c-t3i6v1e.strategies in marine otegrynsofinMasrtionmeatIonpvoedrteCbrruastteasc.ea.S.PEp..S2t3a5nc-y2k6,0edi.nURneipvreordsuicttyivoefSEocuotl-h 4 Cr2ih8nr2ei.sitnviearntseebnr,atFe.rBe.p,roadnudctTi.veMp.attFeernncsh.eTlh.et1ir9.79P.opulE.voBliuotl.io1n6:of26m7a-- 26. CbGaernratonhltii,cnaAi.nPvree1rs9ts8e.3b.rCaotleOus.mnbAitmah.e.eNvato.lut1i2o2n:o5f49b-r5o5od5.protectioninmarine 5. Strathmann,R.R.1985. Feedingandnonfeedinglarvaldevelop- 27. Jaeckle, W.B. 1995. Variation in the size,energycontent, and mentandlife-historyevolutioninmarineinvertebrates.Annu. Rev. biochemical composition of invertebrate eggs: correlates to the 6. ERcoou!g.hSgyastr.de1n6:,3J.391-938691.. Theevolutionofmarinelifecycles. Pp. tmeobdraeteofLlaanr'vaael.deLv.elMocpEmdewnat.rdP,p.e4d.9-C7R7CinPErecsosl,ogNyeowfMYaorrki.neInver- 270-300 inMathematicalEvolutional? Theory. M.W. Feldman, 28. Holland,N.D.1991. Echinodermata:Crinoidea.Pp.247-299in ed. PrincetonUniversityPress.Princeton.NJ. ReproductionofMarine Invertebrates. Vol. VI. Echinodermsand EGG SIZE IN ECHINODERMS 305 Lophophorates. A.C. Giese, J.S. Pearse, and V.B. Pearse, eds. P.parciviparuwithanoverviewofdevelopmentintheAsterimdae. BoxwoodPress,PacificGrove.CA. Biol. Bull. 191: 17-26. 29 Rowe.F.W.E.,D.T.Anderson,andJ.M.Healy.1991. Echino- 35. Bosch,I.,andJ.S.Pearse. 1990. Developmentaltypesofshal- dermata:Concentricycloidea.Pp.751-760inReproductionofMa- low-waterasteroidsofMcMurdoSound.Antarctica.Mar.Biol.104: rineInvertebrates, Vol. VI,EchinodermsandLophophorates, A.C. 41-46. Giese.}.S. Pearse,andV B. Pearse.eds.BoxwoodPress.Pacific 36. Komatsu,M.1975. Onthedevelopmentofthesea-star.Astropec- Grove.CA. tenlaiespinosusMeissner.Biol. Bull. 148:49-59. 30. Turner,R.L..andJ.M.Lawrence.1979. Volumeandcomposi- 37. Eckert,G.L.1995. Anovellarvalfeedingstrategyofthetropical tion ofechinoderm eggs: implications tor the use ofegg size in sanddollar.Encopemichelini(Agassi/I:adaptationtofoodlimita- life-historymodels.Pp.25 10inReproductiveEcologyofMarine tionandanevolutionarylinkbetweenplanktotrophyandlecithotro- Invertebrates.S.E.Stancyk,ed.UniversityofSouthCarolinaPress. phy.J. Exp.Mar. Biol.Ecol. 187: 103-128. Columbia. 38. Hendler,G.1991. Echinodermata:Ophiuroidea.Pp.355-511 in 31. Schnute.J..andD.Fournier. 1980. Anewapproachtolength- Reproduction ofMarineInvertebrates. Vol. VI. Echinodermsand frequencyanalysis:growthstructure.Can.J. Fish.Aijitat.Sci. 37: Lophophorates, A.C. Giese, J.S. Pearse, and V.B. Pearse, eds. 1337-1351. BoxwoodPress,PacificGrove,CA. 32. Strathmann,R.R.1978. Theevolutionandlossoffeedinglarval 39. Rao,C.R.1973. LinearStatisticalInferenceandItsApplications. stagesofmarineinvertebrates.Evolution32: 894-906. 2nded.JohnWiley,NewYork.625pp. 33. Billett, D.S.M. 1991. Deep-sea holothurians. Octanoxr. Mar. 40. Akaike,H. 1974. Anewlookatthestatisticalmodelidentifica- Biol.Anna. Rev. 29: 259-317. tion.IEEETrans.Autoin. ControlAC-19: 716-723. 34. Byrne,M.,andA.Cerra.1996. Evolutionofintragonadaldevel- 41. Zar, Z.H. 1984. BiostatisticalAnalysis. 2nd ed. Prentice-Hall, opmentinthediminutiveasterinidseastarsPatiriellaviviparaand EnglewoodCliffs,NJ.718pp.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.