ebook img

Zeta Functions of Graphs: A Stroll through the Garden PDF

253 Pages·2010·2.34 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Zeta Functions of Graphs: A Stroll through the Garden

This page intentionally left blank CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 128 EditorialBoard B. BOLLOBA´S, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO ZETA FUNCTIONS OF GRAPHS Graph theory meets number theory in this stimulating book. Ihara zeta functions of finitegraphsarereciprocalsofpolynomials,sometimesinseveralvariables.Analogies aboundwithnumber-theoreticfunctionssuchasRiemannorDedekindzetafunctions. Forexample,thereisaRiemannhypothesis(whichmaybefalse)andaprimenumber theorem for graphs. Explicit constructions of graph coverings use Galois theory to generalizeCayleyandSchreiergraphs.Thennon-isomorphicsimplegraphswiththe samezetafunctionareproduced,showingthatyoucannot“hear”theshapeofagraph. The spectra of matrices such as the adjacency and edge adjacency matrices of a graph are essential to the plot of this book, which makes connections with quantum chaos and random matrix theory and also with expander and Ramanujan graphs, of interestincomputerscience.Pitchedatbeginninggraduatestudents,thebookwillalso appeal to researchers. Many well-chosen illustrations and exercises, both theoretical andcomputer-based,areincludedthroughout. Audrey Terras is Professor Emerita of Mathematics at the University of California, SanDiego. CAMBRIDGESTUDIESINADVANCEDMATHEMATICS EditorialBoard: B.Bolloba´s,W.Fulton,A.Katok,F.Kirwan,P.Sarnak,B.Simon,B.Totaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersoffromCambridgeUniversityPress.Fora completeserieslistingvisit:http://www.cambridge.org/series/sSeries.asp?code=CSAM Alreadypublished 78V.PaulsenCompletelyboundedmapsandoperatoralgebras 79F.Gesztesy&H.HoldenSolitonequationsandtheiralgebro-geometricsolutions,I 81S.MukaiAnintroductiontoinvariantsandmoduli 82G.TourlakisLecturesinlogicandsettheory,I 83G.TourlakisLecturesinlogicandsettheory,II 84R.A.BaileyAssociationschemes 85J.Carlson,S.Mu¨ller-Stach&C.PetersPeriodmappingsandperioddomains 86J.J.Duistermaat&J.A.C.KolkMultidimensionalrealanalysis,I 87J.J.Duistermaat&J.A.C.KolkMultidimensionalrealanalysis,II 89M.C.Golumbic&A.N.TrenkTolerancegraphs 90L.H.HarperGlobalmethodsforcombinatorialisoperimetricproblems 91I.Moerdijk&J.MrcunIntroductiontofoliationsandLiegroupoids 92J.Kolla´r,K.E.Smith&A.CortiRationalandnearlyrationalvarieties 93D.ApplebaumLe´vyprocessesandstochasticcalculus(1stedition) 94B.ConradModularformsandtheRamanujanconjecture 95M.SchechterAnintroductiontononlinearanalysis 96R.CarterLiealgebrasoffiniteandaffinetype 97H.L.Montgomery&R.C.VaughanMultiplicativenumbertheory,I 98I.ChavelRiemanniangeometry(2ndedition) 99D.GoldfeldAutomorphicformsandL-functionsforthegroupGL(n,R) 100M.B.Marcus&J.RosenMarkovprocesses,Gaussianprocesses,andlocaltimes 101P.Gille&T.SzamuelyCentralsimplealgebrasandGaloiscohomology 102J.BertoinRandomfragmentationandcoagulationprocesses 103E.FrenkelLanglandscorrespondenceforloopgroups 104A.Ambrosetti&A.MalchiodiNonlinearanalysisandsemilinearellipticproblems 105T.Tao&V.H.VuAdditivecombinatorics 106E.B.DaviesLinearoperatorsandtheirspectra 107K.KodairaComplexanalysis 108T.Ceccherini-Silberstein,F.Scarabotti&F.TolliHarmonicanalysisonfinitegroups 109H.GeigesAnintroductiontocontacttopology 110J.FarautAnalysisonLiegroups:anintroduction 111E.ParkComplextopologicalK-theory 112D.W.StroockPartialdifferentialequationsforprobabilists 113A.Kirillov,JrAnintroductiontoLiegroupsandLiealgebras 114F.Gesztesyetal.Solitonequationsandtheiralgebro-geometricsolutions,II 115E.deFaria&W.deMeloMathematicaltoolsforone-dimensionaldynamics 116D.ApplebaumLe´vyprocessesandstochasticcalculus(2ndedition) 117T.SzamuelyGaloisgroupsandfundamentalgroups 118G.W.Anderson,A.Guionnet&O.ZeitouniAnintroductiontorandommatrices 119C.Perez-Garcia&W.H.SchikhofLocallyconvexspacesovernon-Archimedeanvaluedfields 120P.K.Friz&N.B.VictoirMultidimensionalstochasticprocessesasroughpaths 121T.Ceccherini-Silberstein,F.Scarabotti&F.TolliRepresentationtheoryofthesymmetricgroups 122S.Kalikow&R.McCutcheonAnoutlineofergodictheory 123G.F.Lawler&V.LimicRandomwalk:amodernintroduction 124K.Lux&H.PahlingsRepresentationsofgroups 125K.S.Kedlayap-adicdifferentialequations 126R.Beals&R.WongSpecialfunctions 127E.deFaria&W.deMeloMathematicalaspectsofquantumfieldtheory Zeta Functions of Graphs A Stroll through the Garden AUDREY TERRAS UniversityofCalifornia,SanDiego CAMBRIDGEUNIVERSITYPRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore, Sa˜oPaulo,Delhi,Dubai,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521113670 (cid:2)c A.Terras2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithout thewrittenpermissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Terras,Audrey. Zetafunctionsofgraphs:astrollthroughthegarden/AudreyTerras. p. cm.–(Cambridgestudiesinadvancedmathematics;128) ISBN978-0-521-11367-0(Hardback) 1. Graphtheory. 2. Functions,Zeta. I. Title. II. Series. QA166.T472010 (cid:3) 511.5–dc22 2010024611 ISBN 978-0-521-11367-0Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Listofillustrations pageviii Preface xi PartI Aquicklookatvariouszetafunctions 1 1 Riemannzetafunctionandotherzetasfrom numbertheory 3 2 Iharazetafunction 10 2.1 Theusualhypothesesandsomedefinitions 10 2.2 Primesin X 11 2.3 Iharazetafunction 12 2.4 Fundamentalgroupofagraphanditsconnection withprimes 13 2.5 Iharadeterminantformula 17 2.6 Coveringgraphs 20 2.7 Graphtheoryprimenumbertheorem 21 3 Selbergzetafunction 22 4 Ruellezetafunction 27 5 Chaos 31 PartII Iharazetafunctionandthegraphtheoryprime numbertheorem 43 6 Iharazetafunctionofaweightedgraph 45 v vi Contents 7 Regulargraphs,locationofpolesoftheIharazeta, functionalequations 47 8 Irregulargraphs:whatistheRiemannhypothesis? 52 9 DiscussionofregularRamanujangraphs 61 9.1 Randomwalksonregulargraphs 61 9.2 Examples:thePaleygraph,two-dimensionalEuclidean graphs,andthegraphsofLubotzky,Phillips,andSarnak 63 9.3 WhytheRamanujanboundisbestpossible (AlonandBoppanatheorem) 68 9.4 WhyareRamanujangraphsgoodexpanders? 70 9.5 WhydoRamanujangraphshavesmalldiameters? 73 10 Graphtheoryprimenumbertheorem 75 10.1 WhichgraphpropertiesaredeterminedbytheIharazeta? 78 PartIII Edgeandpathzetafunctions 81 11 Edgezetafunctions 83 11.1 DefinitionsandBass’sproofoftheIharathree-term determinantformula 83 11.2 PropertiesofW andaproofofthetheoremofKotani 1 andSunada 90 12 Pathzetafunctions 98 PartIV FiniteunramifiedGaloiscoveringsofconnected graphs 103 13 FiniteunramifiedcoveringsandGaloisgroups 105 13.1 Definitions 105 13.2 Examplesofcoverings 111 13.3 Someramificationexperiments 115 14 FundamentaltheoremofGaloistheory 117 15 Behaviorofprimesincoverings 128 16 Frobeniusautomorphisms 133 17 Howtoconstructintermediatecoveringsusingthe Frobeniusautomorphism 141 Contents vii 18 Artin L-functions 144 18.1 Briefsurveyonrepresentationsoffinitegroups 144 18.2 DefinitionoftheArtin–Ihara L-function 148 18.3 PropertiesofArtin–Ihara L-functions 154 18.4 ExamplesoffactorizationsofArtin–Ihara L-functions 157 19 EdgeArtin L-functions 164 19.1 DefinitionandpropertiesofedgeArtin L-functions 164 19.2 Proofsofdeterminantformulasforedge Artin L-functions 169 19.3 Proofoftheinductionproperty 173 20 PathArtin L-functions 178 20.1 DefinitionandpropertiesofpathArtin L-functions 178 20.2 Inductionproperty 180 21 Non-isomorphicregulargraphswithoutloopsormultiedges havingthesameIharazetafunction 186 22 Chebotarevdensitytheorem 194 23 Siegelpoles 200 23.1 SummaryofSiegelpoleresults 200 23.2 ProofofTheorems23.3and23.5 202 23.3 Generalcase;inflationanddeflation 206 PartV Lastlookatthegarden 209 24 Anapplicationtoerror-correctingcodes 211 25 Explicitformulas 216 26 Againchaos 218 27 Finalresearchproblems 227 References 230 Index 236 Illustrations 1.1 GraphofthemodulusoftheRiemannzeta 5 1.2 Factsaboutzetafunctionsand L-functions 6 1.3 Whatzetaand L-functionssayaboutnumberfields 6 1.4 Statisticsofprimeidealsandzeros 7 1.5 Splittingofprimesinquadraticextensions 8 2.1 “Bad”graphforthetheoryofzetafunctions 11 2.2 Anarbitraryorientationoftheedgesofagraph 11 2.3 Bouquetofloops 14 2.4 Partofthe4-regulartree 16 2.5 Tetrahedrongraph K and K −e 16 4 4 2.6 ContourmapofthemodulusofthereciprocalofIharazeta for K intheu-variable 19 4 2.7 ContourmapofthemodulusofreciprocalofIharazetafor K inthes-variable 19 4 2.8 Thecubeasaquadraticcoveringofthetetrahedron 21 3.1 FailureofEuclid’sfifthpostulate 23 3.2 Fundamentaldomainfor H modSL(2,Z) 23 3.3 Tessellationofupperhalfplanefromthemodulargroup 24 3.4 Imagesofpointsontwogeodesiccirclesaftermappinginto fundamentaldomainthenbyCayleytransformintotheunitdisc 25 5.1 Spectraandlevelspacings 32 5.2 Spectraof200randomreal50×50symmetricmatrices 33 5.3 Spectrumofrandomnormalreal1001×1001matrix 35 5.4 Levelspacinghistogramsfor166Erandanucleardataensemble 36 5.5 Odlyzko’scomparisonofthelevelspacingsofzerosofthe RiemannzetafunctionandthosefortheGUE 37 viii

Description:
Graph theory meets number theory in this stimulating book. Ihara zeta functions of finite graphs are reciprocals of polynomials, sometimes in several variables. Analogies abound with number-theoretic functions such as Riemann/Dedekind zeta functions. For example, there is a Riemann hypothesis (which
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.