ebook img

Zeros of polynomials and solvable nonlinear evolution equations PDF

179 Pages·2018·1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Zeros of polynomials and solvable nonlinear evolution equations

ZEROS OF POLYNOMIALS AND SOLVABLE NONLINEAR EVOLUTION EQUATIONS Reporting a novel breakthrough in the identification and investigation of solvable and integrable systems of nonlinearly coupled evolution equations, this book includes many examples that illustrate this approach. Beginning with systems of ODEs,includingsecond-orderODEsofNewtoniantype,itthendiscussessystems of PDEs, and systems evolving in discrete time. It reports a novel, differential algorithm to evaluate all the zeros of a generic polynomial of arbitrary degree: a remarkable development of a fundamental mathematical problem with a long history. This book will be of interest to applied mathematicians and mathematical physicists working in the area of integrable and solvable nonlinear evolution equations; it can also be used as supplementary reading material for general AppliedMathematicsorMathematicalPhysicscourses. francesco calogero is Professor of Theoretical Physics (Emeritus) at the SapienzaUniversityofRome,Italy.Hehaspublishednumerouspapersandbooks on physics and mathematics as well as on arms control and disarmament topics and he served as Secretary General of the Pugwash Conferences on Science and WorldAffairsfrom1989–1997(1995NobelPeacePrize). ZEROS OF POLYNOMIALS AND SOLVABLE NONLINEAR EVOLUTION EQUATIONS FRANCESCO CALOGERO PhysicsDepartment,UniversityofRome“LaSapienza”,Rome,Italy INFN,SezionediRoma1 UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108428590 DOI:10.1017/9781108553124 ©FrancescoCalogero2018 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2018 PrintedandboundinGreatBritainbyClaysLtd,ElcografS.p.A. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Calogero,Francesco,1955–author. Title:Zerosofpolynomialsandsolvablenonlinearevolutionequations/ FrancescoCalogero(SapienzaUniversityofRome,retired). Description:Cambridge:CambridgeUniversityPress,2018.| Includesbibliographicalreferences. Identifiers:LCCN2018017272|ISBN9781108428590(hardback) Subjects:LCSH:Evolutionequations,Nonlinear.|Zero(Thenumber)| Polynomials.|Differentialequations,Partial.|Differentialequations,Nonlinear. Classification:LCCQC20.7.E88C2682018|DDC530.1/55353–dc23 LCrecordavailableathttps://lccn.loc.gov/2018017272 ISBN978-1-108-42859-0Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pageix 1 Introduction 1 2 Parameter-DependentMonicPolynomials:Definitions,KeyFormulas andOtherPreliminaries 4 2.1 Notation 4 2.2 KeyFormulas 6 2.2.1 First-OrderandSecond-OrdertDerivativesoftheZeros ofaMonict-DependentPolynomial 7 2.2.2 Third-OrderandFourth-Ordert-DerivativesoftheZeros ofaMonict-DependentPolynomial 7 2.2.3 Proofs 8 2.3 PeriodicityoftheZerosofaTime-DependentPeriodicPolynomial 9 2.4 HowCertainEvolutionEq(cid:2)ua(cid:3)tionsCanBeMadePeriodic 10 2.4.1 TheODEγ(cid:2)(cid:2) = c γ(cid:2) 2γ−1 andItsIsochronousVariant 12 (cid:2) (cid:3) 2.4.2 TheODEγ(cid:2)(cid:2) = (y¯(cid:2))−1(cid:3) γ(cid:2) 2 andItsIsochronousVariant 16 2.4.3 TheODEγ(cid:2)(cid:2) = c γ(cid:2) α andItsIsochronousVariant 17 (cid:2) (cid:3) 2.4.4 TheSolvableODEγ(cid:2)(cid:2) = ρ γ(cid:2) 2γ−1+cγρ andRelated IsochronousVersions (cid:2) (cid:3) 19 2.4.5 OtherSolvableCasesoftheODEγ(cid:2)(cid:2) = c γ(cid:2) αγβand RelatedIsochronousVariants 21 2.N NotesonChapter2 25 3 ADifferentialAlgorithmtoComputeAlltheZerosofaGeneric Polynomial 26 3.1 ADifferentialAlgorithmBasedonaSystemofFirst-Order ODEsSuitabletoEvaluateAlltheZerosofaGenericPolynomial 26 v vi Contents 3.2 ADifferentialAlgorithmBasedonaSystemofSecond-Order ODEsSuitabletoEvaluateAlltheZerosofaGenericPolynomial 29 3.2.1 Introduction 29 3.2.2 TheTask 29 3.2.3 TheAlgorithm 30 3.2.4 TheProof 30 3.2.5 Remarks 31 3.N NotesonChapter3 32 4 SolvableandIntegrableNonlinearDynamicalSystems:Mainly NewtonianN-BodyProblemsinthePlane 34 4.1 The“Goldfish” 36 4.2 IntegrableHamiltonianN-BodyProblemsofGoldfish TypeFeaturingN ArbitraryFunctions 39 4.2.1 AVerySimpleIsochronousCase 41 4.2.2 ACaseThatInvolvesEllipticFunctionsintheSolutions 42 4.2.3 ARatherSimpleCaseandItsIsochronousVariant 43 4.2.4 AnotherRatherSimpleCase,ItsIsochronousVariant, andItsTreatmentintheRealContext 47 4.2.5 TheGoldfish-CMModel 61 4.2.6 AnN-BodyProblemInvolvingN2 ArbitraryCoupling Constants 64 4.3 SolvableN-BodyProblemswithAdditional Velocity-DependentForces 65 4.3.1 AVerySimpleExample 66 4.3.2 AnotherSimpleExampleandItsIsochronousVariant 67 4.3.3 YetAnotherSimpleIsochronousModel 70 4.3.4 ASolvableN-BodyProblemofGoldfishTypeFeaturing ManyArbitraryParameters,andItsIsochronousVariant 72 4.3.5 AnIntegrableHamiltonianN-BodyProblemofGoldfish Type,andItsIsochronousVariant 76 4.4 AnotherN-BodyProblemWhichIsIsochronousWhenIts2N ParametersAreArbitraryRationalNumbers 78 4.5 TwoClassesofSolvableN-BodyProblemsofGoldfishType 85 4.6 SolvableN-BodyProblemsIdentifiedviatheFindingsof Subsection2.2.2 90 4.7 SolvableDynamicalSystems(SetsofFirst-OrderODEs) 99 4.7.1 AnIsochronousDynamicalSystem 99 4.7.2 AnotherIsochronousDynamicalSystem 102 Contents vii 4.8 HowtoManufactureManyMoreSolvableDynamicalSystems 105 4.N NotesonChapter4 107 5 SolvableSystemsofNonlinearPartialDifferentialEquations(PDEs) 110 5.1 AC-IntegrableSystemofNonlinearPDEs 112 5.2 AS-IntegrableSystemofNonlinearPDEs 113 5.3 Proofs 115 5.4 Outlook 116 5.N NotesonChapter5 118 6 GenerationsofMonicPolynomials 119 6.1 HierarchiesofSolvableN-BodyProblemsRelatedto GenerationsofPolynomials 125 6.2 ThePeculiarMonicPolynomialsTheZerosofWhichCoincide withTheirCoefficients 131 6.N NotesonChapter6 141 7 DiscreteTime 143 7.1 SolvableDiscrete-TimeDynamicalSystems 145 7.2 Examples 153 7.3 Outlook 158 7.N NotesonChapter7 159 8 Outlook 160 8.N NotesonChapter8 161 Appendix ComplexNumbersandReal2-Vectors 162 References 164 Preface This short book is based on the algebraic relationship among the N zeros and the N coefficients of a (monic) polynomial of arbitrary degree N. This is a core mathematical topic since time immemorial; indeed the important mathematical subdiscipline called “algebraic geometry” originated from investigations of this relationshipandisfocusedonitsramifications,whicharequitedeep.Theapproach used in this book is instead quite elementary; it is essentially based on the simple idea to consider (monic) polynomials of arbitrary degree N in their argument— say,thecomplexvariablez—whichmoreoveralsodependonaparameter—saythe realvariablet—generallyconvenientlyinterpretedas“time”(thedependenceona secondparameterplayingtheroleofadditional“space”variableisalsoconsidered, see Chapter 5). This implies that both the N coefficients and the N zeros of such a time-dependent monic polynomial depend on time, and this simple notion allows a certain number of interesting developments relevant to the topics mentioned in the title of this book. Some of these developments emerged quite recently; indeed this book is a compilation of results obtained and published by its author—alone orwithcollaborators—overthelastthreeyears.Thisisreflectedinitsbibliography and in the fact that occasionally the text below is drawn—even verbatim—from thesepublications.Butunpublishedfindingsarealsoincluded. Theauthorisverygratefultohisco-authors—OksanaBihun,MarioBruschi,and Franc¸ois Leyvraz—who have been instrumental in obtaining some of the findings reported in this book (as specified below), and also to his co-authors of previous papersonrelatedtopics—severalofwhichareidentifiedinthebibliographicnotes at the end of each chapter, and/or are referred to in the papers quoted there— including Fabio Briscese, Antonio Degasperis, Silvana De Lillo, Luca Di Cerbo, Riccardo Droghei, Marianna Euler, Norbert Euler, Jean Pierre Franc¸oise, David Go´mez-Ullate, Sandro Graffi, Vladimir I. Inozemtsev, Sabino Iona, Edwin Lang- mann, Mauro Mariani, Paolo Maria Santini, Matteo Sommacal, Ji Xiaoda, and Ge Yi. Interactions with these colleagues and with others I met in Rome and at ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.