ebook img

Zero-sum problems in abelian groups PDF

33 Pages·2006·0.37 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Zero-sum problems in abelian groups

Expo.Math.24(2006)337–369 www.elsevier.de/exmath Zero-sum problems in finite abelian groups: A survey Weidong Gaoa,Alfred Geroldingerb,∗ aCenterforCombinatorics,NankaiUniversity,Tianjin300071,PRChina bInstitutfürMathematikundWissenschaftlichesRechnen,Karl-FranzensUniversität, Heinrichstrasse36,8010Graz,Austria Received19December2005 Abstract Wegiveanoverviewofzero-sumtheoryinfiniteabeliangroups,asubfieldofadditivegrouptheory andcombinatorialnumbertheory.Indoingsoweconcentrateonthealgebraicpartofthetheoryand onthedevelopmentsincetheappearanceofthesurveyarticlebyY.Caroin1996. (cid:1)2006ElsevierGmbH.Allrightsreserved. MSC2000:11B50;11P70;11B75 Keywords:Zero-sumsequences;Finiteabeliangroups 1. Introduction LetGbeanadditivefiniteabeliangroup.Incombinatorialnumbertheoryafinitesequence S = (g ,...,g) = g · ... · g of elements of G, where the repetition of elements is 1 l 1 l allowedandtheirorderisdisregarded,issimplycalledasequenceoverG,andS iscalled a zero-sum sequence if g + ··· + g = 0. A typical direct zero-sum problem studies 1 l conditions which ensure that given sequences have non-empty zero-sum subsequences withprescribedproperties.Theassociatedinversezero-sumproblemstudiesthestructure ofextremalsequenceswhichhavenosuchzero-sumsubsequences. ∗ Correspondingauthor. E-mailaddress:[email protected](A.Geroldinger). 0723-0869/$-seefrontmatter(cid:1)2006ElsevierGmbH.Allrightsreserved. doi:10.1016/j.exmath.2006.07.002 338 W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 TheseinvestigationswereinitiatedbyaresultofP.Erdo˝s,A.GinzburgandA.Ziv,who provedthat2n−1isthesmallestintegerl ∈ NsuchthateverysequenceS overacyclic group of order n has a zero-sum subsequence of length n (see [47]). Some years later, P.C.Baayen,P.Erdo˝sandH.Davenport(see[138,45,143])posedtheproblemtodetermine thesmallestintegerl ∈NsuchthateverysequenceSoverGoflength|S|(cid:1)lhasazero-sum subsequence.InsubsequentliteraturethatintegerlhasbeencalledtheDavenportconstant ofG.ItisdenotedbyD(G),anditsprecisevalue–intermsofthegroupinvariantsofG– isstillunknowningeneral. These problems were the starting points for much research, as it turned out that ques- tions of this type occur naturally in various branches of combinatorics, number theory and geometry. Conversely, zero-sum problems have greatly influenced the development of various subfields of these areas (among others, zero-sum Ramsey theory was initiated by the works of A. Bialostocki and P. Dierker). So there are intrinsic connections with graph theory, Ramsey theory and geometry (see [119,4,12,13] for some classical papers and [11,10,105,14,108,40,123] for some recent papers). The following observation goes backtoH.Davenport:IfRistheringofintegersofsomealgebraicnumberfieldwithideal classgroup(isomorphicto)G,thenD(G)isthemaximalnumberofprimeideals(counted with or without multiplicity) which occur in the prime ideal decomposition of aR for ir- reducibleelementsa ∈ R.Indeed,inthetheoryofnon-uniquefactorizationsithasturned outthatthemonoidofallzero-sumsequencesoverGcloselyreflectsthearithmeticofa KrullmonoidwhichhasclassgroupGandeveryclasscontainsaprime(see[96,Corollary 3.4.12]).Ontheotherhand,itwasfactorizationtheorywhichpromotedtheinvestigationof inversezero-sumproblems,whichappearnaturallyinthatarea.Apartfromallthat,zero- sumproblemsoccurinvarioustypesofnumbertheoreticaltopics(asCarmichealnumbers [1],Artin’sconjectureonadditiveforms[19]orpermutationmatrices[135]). Zero-sum problems are tackled with a huge variety of methods. First of all we men- tion methods from additive group theory including all types of addition theorems (see [96,136,137,142,112,107,109,103,133,124,9]). Furthermore, group algebras [74], results fromthecoveringarea[164,132,80],fromlinearalgebra[32,31]andpolynomialmethods [2,3]playcrucialroles.Moreover,inthemeantimezero-sumtheoryhasalreadydeveloped itsownmethodsandawealthofresultswhichpromoteitsfurtherdevelopment. The first survey article on zero-sum theory, written byY. Caro, appeared 10 years ago in 1996 (see [23,24]). The aim of the present article is to sketch the development in the lastdecadeandtogiveanoverviewoverthepresentstateoftheareaunderthefollowing two restrictions. First, we do not outline the relationships to other areas, as graph the- ory, Ramsey theory or the theory of non-unique factorizations, but we restrict to what is sometimes called the algebraic part of zero-sum theory. Second, although since the 1960s zero-sum problems were studied also in the setting of non-abelian groups (see [36,146,150,147,148,170,63,39,172]), we restrict to the case of abelian groups. Since Y. Caro’s article has an extended bibliography on the literature until 1994, we also re- fer to his bibliography and concentrate ourselves on papers having appeared since that time.InSection2,wefixournotationsandterminology,andwegivethedefinitionsofthe keyinvariants.Theninthesubsequentsectionswepresentthestateofknowledgeonthese invariantsandontheassociatedinverseproblems. Throughoutthisarticle,letGbeanadditivefiniteabeliangroupandletG•=G\{0}. W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 339 2. Preliminaries Let N denote the set of positive integers, P ⊂ N the set of all prime numbers and let N =N∪{0}.Forintegersa,b∈Zweset[a,b]={x ∈Z|a(cid:2)x(cid:2)b},andforc∈Nlet 0 N(cid:1)c=N\[1,c−1].Forarealnumberx,wedenoteby(cid:5)x(cid:6)thelargestintegerthatisless thanorequaltox,andby(cid:7)x(cid:8)thesmallestintegerthatisgreaterthanorequaltox. Throughout, all abelian groups will be written additively. For n ∈ N, let C denote a n cyclicgroupwithnelements,andletnG={ng |g ∈G}.BytheFundamentalTheoremof FiniteAbelianGroupswehave G(cid:1)C (cid:2)···(cid:2)C (cid:1)C (cid:2)···(cid:2)C , n1 nr q1 qs where r = r(G) ∈ N is the rank of G, s = r∗(G) ∈ N is the total rank of G, 0 0 n ,...,n ∈ N are integers with 1<n | ... | n and q ,...,q are prime powers. 1 r 1 r 1 s Moreover,n ,...,n ,q ,...,q areuniquelydeterminedbyG,andweset 1 r 1 s (cid:1)r (cid:1)s q −1 d∗(G)= (n −1) and k∗(G)= i . i q i=1 i=1 i Clearly,n =exp(G)istheexponentofG,andif|G|=1,thenr(G)=d∗(G)=k∗(G)=0 r andexp(G)=1. Lets ∈ N.Ans-tuple(e ,...,e )ofelementsofGissaidtobeindependentife (cid:9)= 0 1 s i foralli ∈[1,s]and,foreverys-tuple(m ,...,m )∈Zs, 1 s (cid:1)s m e =0 implies m e =···=m e =0. i i 1 1 s s i=1 An s-tuple (e ,...,e ) of elements of G is called a basis if it is independent and G= 1 s (cid:10)e (cid:11)(cid:2)···(cid:2)(cid:10)e (cid:11). 1 s Wewritesequencesmultiplicativelyandconsiderthemaselementsofthefreeabelian monoidoverG,apointofviewwhichwasputforwardbytherequirementsofthetheory of non-unique factorizations. Thus, we have at our disposal all notions from elementary divisibility theory which provides a suitable framework when dealing with subsequences ofgivensequences,andwemayapplyalgebraicconceptsinanaturalway. LetF(G)bethefreeabelianmonoid,multiplicativelywritten,withbasisG.Theelements ofF(G)arecalledsequencesoverG.WewritesequencesS ∈F(G)intheform (cid:2) S= gvg(S) with v (S)∈N for all g ∈G. g 0 g∈G We call v (S) the multiplicity of g in S, and we say that S contains g, if v (S)>0. S is g g called squarefree if v (S)(cid:2)1 for all g ∈ G. The unit element 1 ∈ F(G) is called the g emptysequence.AsequenceS iscalledasubsequenceofSifS |SinF(G)(equivalently, 1 1 v (S )(cid:2)v (S)forallg ∈G),anditiscalledapropersubsequenceofSifitisasubsequence g 1 g with1(cid:9)=S (cid:9)=S.IfasequenceS ∈F(G)iswrittenintheformS=g ·...·g,wetacitly 1 1 l assumethatl ∈N andg ,...,g ∈G. 0 1 l 340 W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 Forasequence (cid:2) S=g ·...·g = gvg(S) ∈F(G), 1 l g∈G wecall (cid:1) |S|=l= v (S)∈N the length of S, g 0 g∈G h(S)=max{v (S)|g ∈G}∈[0,|S|] the maximum of the multiplicities of S, g (cid:1)l 1 k(S)= ∈Q(cid:1)0 the cross-number of S, ord(g ) i=1 i supp(S)={g ∈G|v (S)>0}⊂G the support of S, g (cid:1)l (cid:1) (cid:1)(S)= g = v (S)g ∈G the sum of S, i g i=1 g∈G (cid:3) (cid:4) (cid:5) (cid:1) (cid:4) (cid:4) (cid:2) (S)= g (cid:4)I ⊂[1,l] with |I|=k k i(cid:4) i∈I the set of k-term subsums of S, for all k ∈N, (cid:6) (cid:6) (cid:2)(cid:2)k(S)= (cid:2)j(S), (cid:2)(cid:1)k(S)= (cid:2)j(S), j∈[1,k] j(cid:1)k and (cid:2)(S)=(cid:2)(cid:1)1(S) the set of (all) subsums of S. ThesequenceS iscalled • zero-sumfreeif0∈/(cid:2)(S), • azero-sumsequenceif(cid:1)(S)=0, • aminimalzero-sumsequenceifitisanon-emptyzero-sumsequenceandeveryproper subsequenceiszero-sumfree, • ashortzero-sumsequenceifitisazero-sumsequenceoflength|S|∈[1,exp(G)]. WedenotebyB(G)thesetofallzero-sumsequencesandbyA(G)thesetofallminimal zero-sumsequences.ThenB(G) ⊂ F(G)isasubmonoid(alsocalledtheblockmonoid overG);itisaKrullmonoidandA(G)isthesetofatomsofB(G)(see[96,Proposition 2.5.6]).Foranymapofabeliangroups(cid:3):G → G(cid:13),thereexistsauniquehomomorphism (cid:3):F(G) → F(G(cid:13))with(cid:3)|G=(cid:3).Usually,wesimplywrite(cid:3)insteadof(cid:3).Explicitly, (cid:3):F(G) → F(G(cid:13)) is given by (cid:3)(g · ... · g) = (cid:3)(g ) · ... · (cid:3)(g) for all l ∈ N 1 l 1 l 0 and g ,...,g ∈ G. If S ∈ F(G), then |(cid:3)(S)|=|S| and supp((cid:3)(S))=(cid:3)(supp(S)). If 1 l (cid:3):G → G(cid:13) isevenahomomorphism,then(cid:1)((cid:3)(S))=(cid:3)((cid:1)(S)),(cid:2)((cid:3)(S))=(cid:3)((cid:2)(S))and W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 341 (cid:3)(B(G)) ⊂ B(G(cid:13)). In particular, we use the inversion (g (cid:14)→ −g) and the translation (g (cid:14)→g +g),andforS=g ·...·g ∈F(G)weset 0 1 l −S=(−g )·...·(−g) and g +S=(g +g )·...·(g +g)∈F(G). 1 l 0 0 1 0 l Ifg ∈Gisanon-zeroelementand S=(n g)·...·(ng), where l ∈N and n ,...,n ∈[1,ord(g)], 1 l 0 1 l then n +···+n (cid:15)S(cid:15) = 1 l g ord(g) iscalledtheg-norm ofS.IfS isazero-sumsequenceforwhich{0}(cid:9)=(cid:10)supp(S)(cid:11)⊂Gis afinitecyclicgroup,then ind(S)=min{(cid:15)S(cid:15) |g ∈G with (cid:10)supp(S)(cid:11)=(cid:10)g(cid:11)}∈N g 0 iscalledtheindexofS.Wesetind(1)=0,andifsupp(S)={0},thenwesetind(S)=1. Nextwegivethedefinitionofthezero-suminvariantswhichwearegoingtodiscussin thesubsequentsections.Weconcentrateoninvariantsdealingwithgeneralsequences,as introduced in Definition 2.1. However, by an often used technique, problems on general sequencesarereducedtoproblemsonsquarefreesequences,andthuswebrieflydealalso with invariants on squarefree sequences (or in other words, with sets), as introduced in Definition2.2. Definition2.1. Letexp(G)=nandk,m∈Nwithk(cid:1)exp(G).Wedenoteby • D(G)thesmallestintegerl ∈ NsuchthateverysequenceS ∈ F(G)oflength|S|(cid:1)l hasanon-emptyzero-sumsubsequence.Theinvariant D(G) iscalledtheDavenport constant ofG. • d(G)themaximallengthofazero-sumfreesequenceoverG. • (cid:4)(G) the smallest integer l ∈ N such that every sequence S ∈ F(G) of length |S|(cid:1)l hasashortzero-sumsubsequence. • s (G)thesmallestintegerl ∈NsuchthateverysequenceS ∈F(G)oflength|S|(cid:1)l mn hasazero-sumsubsequenceT oflength|T|=mn.Inparticular,wesets(G)=s (G). n • snN(G)thesmallestintegerl ∈NsuchthateverysequenceS ∈F(G)oflength|S|(cid:1)l hasanon-emptyzero-sumsubsequenceT oflength|T|≡0modn. • E (G)thesmallestintegerl ∈ NsuchthateverysequenceS ∈ F(G)oflength|S|(cid:1)l k hasazero-sumsubsequenceT withk(cid:1)|T|. • (cid:5)(G)thesmallestintegerl ∈N withthefollowingproperty: 0 Foreveryzero-sumfreesequenceS ∈F(G)oflength|S|(cid:1)lthereexistasubgroup H ⊂Gandanelementa ∈G\H suchthat G•\(cid:2)(S)⊂a+H. Asimpleargument(see[96,Section5.1]fordetails)showsthat d(G)=max{|S||S ∈F(G), (cid:2)(S)=G•} and 1+d(G)=D(G)=max{|S||S ∈A(G)}. 342 W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 Definition2.2. Wedenoteby • Ol(G) the smallest integer l ∈ N such that every squarefree sequence S ∈ F(G) of length|S|(cid:1)lhasanon-emptyzero-sumsubsequence.TheinvariantOl(G)iscalledthe OlsonconstantofG. • ol(G)themaximallengthofasquarefreezero-sumfreesequenceS ∈F(G). • cr(G) the smallest integer l ∈ N such that every squarefree sequence S ∈ F(G•) of length|S|(cid:1)lsatisfies(cid:2)(S)=G.Theinvariantcr(G) iscalledthecriticalnumberofG. • g(G)thesmallestintegerl ∈NsuchthateverysquarefreesequenceS ∈F(G)oflength |S|(cid:1)lhasazero-sumsubsequenceT oflength|T|=exp(G). Weusetheconventionthatmin(∅)=sup(∅)=0.ForasubsetG ⊂Gandsomeinteger 0 l ∈N,R.B.EggletonandP.Erdo˝s(see[41])introducedthef-invariant f(G ,l)=min{|(cid:2)(S)||S ∈F(G ), S squarefree and zero-sumfree, |S|=l}. 0 0 ThebasicrelationshipsbetweentheseinvariantsaresummarizedinLemma10.1. 3. On the Davenport constant LetG=C (cid:2)···(cid:2)C with1<n |...|n ,r =r(G)andlet(e ,...,e )beabasis n1 nr 1 r 1 r ofGwithord(e )=n foralli ∈[1,r].Thenthesequence i i (cid:2)r S= eni−1 ∈F(G) i i=1 iszero-sumfreewhencewehavethecrucialinequality d(G)(cid:1)d∗(G). Inthe1960s,D.KruyswijkandJ.E.Olsonprovedindependentlythefollowingresult(see [143,5,44,144]and[96,Theorems5.5.9and5.8.3]). Theorem3.1. IfGisap-grouporr(G)(cid:2)2,thend(G)=d∗(G). We present two types of results implying that d(G)=d∗(G). The first one is due to P. van Emde Boas et al. (see [44, Theorems 3.9, 4.2], where more results of this flavor maybefound)andthesecondisduetoS.T.Chapmanetal.(see[25],andalsothevarious conjecturesinthatpaper). Theorem3.2. LetG=C (cid:2)C (cid:2)C andH=C (cid:2)C (cid:2)C with1(cid:2)n |n |n . If(cid:5)(H)=d∗(H)−1,the2nn1d(G)2=n2d∗(G2n)3. n1 n2 n3 1 2 3 Theorem3.3. LetG=H(cid:2)C wherek,m∈NandH ⊂Gisasubgroupwithexp(H)|m. km Ifd(H(cid:2)C )=d(H)+m−1and(cid:4)(H(cid:2)C )(cid:2)d(H)+2m,thend(G)=d(H)+km−1. m m W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 343 In particular (use Theorem 3.1 and [96, Proposition 5.7.7]), if m is a prime power and d(H)<m,thend(G)=d∗(G). These and similar results give rise to long lists of explicit groups satisfying d(G) = ∗ ∗ d (G)(see[44,25,6,46,35]).ThefirstexampleofagroupGwithd(G)>d (G)isdueto P.C.Baayen.In[44,Theorem8.1]itisshownthat d(G)>d∗(G) for G=C24k(cid:2)C4k+2 with k ∈N, andmoreexamplesaregivenin[46].LetH ⊂Gbeasubgroup.Thend(H) + d(G/H)(cid:2) d(G),andifGisasabove,I ⊂[1,r]and (cid:7) H = C then d(H)>d∗(H) implies d(G)>d∗(G) ni i∈I ∗ (see [96, Proposition 5.1.11]).This shows that the interesting groups with d(G)>d (G) arethosewithsmallrank.A.GeroldingerandR.Schneidershowedthatthereareinfinitely manyGwithr(G)=4suchthatd(G)>d∗(G).Thefollowingresultmaybefoundin[98] and[77,Theorem3.3]. ∗ Theorem3.4. Wehaved(G)>d (G)ineachofthefollowingcases: 1. G=Cm(cid:2)Cn2(cid:2)C2n,wherem,n∈N(cid:1)3areoddandm|n. 2. G=C2i(cid:2)C25n−i,wheren∈N(cid:1)3isoddandi ∈[2,4]. LetG=C2r(cid:2)Cn wherer ∈Nandn∈N(cid:1)3 isodd.Thend(G)=d∗(G)ifandonlyif r(cid:2)4(see[98,Corollary2]).Forsomesmallr(cid:1)5andn(cid:1)3theprecisevalueofd(G)was recentlydeterminedin[49].Thegrowthofd(G)−d∗(G)isstudiedin[140]. Wemakethefollowingconjecture. Conjecture3.5. Ifr(G)=3orG=Cnr withn,r ∈N(cid:1)3,thend(G)=d∗(G). ForgroupsofrankthreeConjecture3.5goesbacktoP.vanEmdeBoas(see[46])andis supportedby[69].ForgroupsoftheformG=Cr itissupportedby[80,Theorem6.6]. n ThenextresultprovidesupperboundsonD(G).ThefirstoneisduetoP.vanEmdeBoas andD.Kruyswijk[46,Theorem7.1]andissharpforcyclicgroups(forotherapproaches andrelatedboundssee[8,141]).Thesecondboundissharpforgroupsofrank2andwith H =pG for some prime divisor p of exp(G) (see [96, Theorem 5.5.5 and Proposition 5.7.11]). Theorem3.6. Letexp(G)=n(cid:1)2andH ⊂Gbeasubgroup. 1. d(G)(cid:2)(n−1)+nlog|G|. n 2. d(G)(cid:2)d(H)exp(G/H)+max{d(G/H),(cid:4)(G/H)−exp(G/H)−1}. Weendthissectionwithaconjecturesupportedby[96,Theorem6.2.8]. 344 W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 Conjecture3.7. If|G|>1,thenD(G)(cid:2)d∗(G)+r(G). 4. On the structure of long zero-sumfree sequences LetS ∈ F(G)beazero-sumfreesequenceoflength|S|=d(G).Accordingtogeneral philosophyininverseadditivenumbertheory(see[142,53,54]),Sshouldhavesomestruc- ture. Obviously, if G is cyclic of order n(cid:1)2, then S =gn−1 for some g ∈ supp(S) with ord(g)=n,andifSisanelementary2-groupofrankr,thenS=e ·...·e forsomebasis 1 r (e ,...,e )ofG.Apartfromthesetrivialcasesverylittleisknownuptonow.Themost 1 r modestquestionsonecouldaskarethefollowing: 1. Whatistheorderofelementsinsupp(S)? 2. Whatisthemultiplicityofelementsinsupp(S)?Whatisareasonablelowerboundfor h(S)? 3. Howlargeis supp(S)? Crucial in all investigations of zero-sumfree sequences is the following inequality of Moser-Scherk(see[96,Theorem5.3.1]):LetS ∈F(G)beazero-sumfreesequence. If S=S S then |(cid:2)(S)|(cid:1)|(cid:2)(S )|+|(cid:2)(S )|. 1 2 1 2 ByM.FreezeandW.W.Smith([52,Theorem2.5,96,Proposition5.3.5])thisimpliesthat |(cid:2)(S)|(cid:1)2|S|−h(S)(cid:1)|S|+|supp(S)|−1. Westartwiththefollowingconjecture. Conjecture4.1. Everyzero-sumfreesequenceS ∈ F(G)oflength|S|=d(G)hassome elementg ∈supp(S)withord(g)=exp(G). Theconjectureistrueforcyclicgroups,p-groups(see[96,Corollary5.1.13]),groupsof theformG=C (cid:2)C (seebelow)andforG=C (cid:2)C (see[78]).Asconcernsthesecond n n 2 2n question,thephilosophyisthatingroupswheretheexponentislargeincomparisonwith therank,h(S)shouldbelarge. For cyclic groups, there are the following results going back to J.D. Bovey, P. Erdo˝s, I.Niven,W.Gao,A.GeroldingerandY.ouldHamidoune(see[17,76,97]and[96,Theorem 5.4.5]). Theorem4.2. LetGbecyclicofordern(cid:1)3,andletS ∈F(G)beazero-sumfreesequence oflength n+1 |S|(cid:1) . 2 1. Forallg ∈supp(S)wehaveord(g)(cid:1)3. 2. Thereexistssomeg ∈supp(S)withv (S)(cid:1)2|S|−n+1. g W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 345 3. Thereexistssomeg ∈supp(S)withord(g)=nsuchthat n+5 v (S)(cid:1) if n is odd and v (S)(cid:1)3 if n iseven. g g 6 Incyclicgroupslongzero-sumfreesequencesandlongminimalzero-sumsequencescan becompletelycharacterized(see[71]). Theorem4.3. LetGbycyclicofordern(cid:1)2andletS ∈F(G)beazero-sumfreesequence oflength|S|=n−kwithk ∈[1,(cid:5)n/3(cid:6)]+1].Thenthereexistssomeg ∈Gwithord(g)=n andx1,...,xk−1 ∈[1,n−1]suchthat k(cid:2)−1 (cid:1)k−1 S=gn−2k+1 (x g) and x (cid:2)2k−2. i i i=1 i=1 Inparticular,everyminimalzero-sumsequenceS ∈ A(G)oflength|S|(cid:1)n−(cid:5)n/3(cid:6)has ind(S)=1. The index of zero-sum sequences over cyclic groups is investigated in [71,26,29]. In [127] (p. 344 with d =n) it is conjectured that every sequence S ∈ F(C ) of length n |S|=n has a non-empty zero-sum subsequence T with ind(T)=1.Among others, the g-normandtheindexofzero-sumsequencesplayaroleinarithmeticalinvestigations(see [96,Section6.8]). NextwediscussgroupsoftheformG=C (cid:2)C withn(cid:1)2(see[77,167,79],[96,Section n n 5.8]and[131]). Theorem4.4. LetG=C (cid:2)C withn(cid:1)2.Thenthefollowingstatementsareequivalent: n n (a) IfS ∈ F(G),|S|=3n−3andS hasnozero-sumsubsequenceT oflength|T|(cid:1)n, thenthereexistssomea ∈Gsuchthat0n−1an−2|S. (b) IfS ∈F(G)iszero-sumfreeand|S|=d(G),thenan−2|S forsomea ∈G. (c) IfS ∈A(G)and|S|=D(G),thenan−1|S forsomea ∈G. (d) If S ∈ A(G) and |S|=D(G), then there exists a basis (e ,e ) of G and integers 1 2 x ,...,x ∈[0,n−1]withx +···+x ≡1modnsuchthat 1 n 1 n (cid:2)n S=e1n−1 (x(cid:5)e1+e2). (cid:5)=1 Moreover,ifS ∈A(G)and|S|=D(G),thenord(g)=nforeveryg ∈supp(S),andif nisprime,then|supp(S)|∈[3,n]. Conjecture4.5. For every n(cid:1)2 the four equivalent statements of Theorem 4.4 are satisfied. 346 W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 Conjecture4.5hasbeenverifiedforn∈[2,7],andifitholdsforsomen(cid:1)6,thenitholds for2n(see[79,Theorem8.1]).Wecontinuewitharesultfornon-cyclicgroupshavinglarge exponent(see[79]). Theorem4.6. 1. LetG=C (cid:2)C with1<n |n andn >n (n +1).Let(cid:3):G→G=C (cid:2)C be n1 n2 1 2 2 1 1 n1 n1 thecanonicalepimorphismandS ∈ A(G)oflength|S|=D(G).Ifgk|(cid:3)(S)forsome k>n andsomeg ∈G,thengk|S forsomeg ∈(cid:3)−1(g). 1 2. LetG=H(cid:2)C whereexp(G)=n=lm,H ⊂ Gasubgroupwithexp(H)|m,m(cid:1)2 n andl(cid:1)4|H|>4(m−2).Let(cid:3):G→G=H(cid:2)C denotethecanonicalepimorphism m andS ∈ F(G)azero-sumfreesequenceoflength|S|=n.ThenS hasasubsequence T oflength|T|(cid:1)(l−2|H|+1)msuchthatthefollowingholds:Ifgk|(cid:3)(T)forsome k>mandsomeg ∈G,thengk|T forsomeg ∈(cid:3)−1(g). For general finite abelian groups there is the following result (see [76], [96, Theorem 5.3.6])whichplaysakeyroleintheproofofTheorem10.4.2). Theorem4.7. LetG ⊂Gbeasubset,k ∈Nandk(cid:1)2besuchthatf(G ,k)>0,andlet 0 0 S ∈F(G )beazero-sumfreesequenceoflength 0 (cid:8) (cid:9) |G|−k |S|(cid:1) +1 k. f(G ,k) 0 Thenthereexistssomeg ∈G suchthat 0 |S| |G|−k−1 v (S)(cid:1) − . g k−1 (k−1)f(G ,k) 0 If the rank of the group is large in comparison with the exponent, there is in gen- eral no element with high multiplicity (see Theorem 10.4.1), but in case of elementary p-groupsthereisthefollowingstructuralresult(see[77,Theorem10.3],[80,Corollary6.3], [96,Corollary5.6.9]). Theorem4.8. Let G be a finite elementary p-group and S ∈ F(G) be a zero-sumfree sequence of length |S|=d(G). Then (g,h) is independent for any two distinct elements g,h∈supp(S). Wecontinuewiththefollowing Conjecture4.9. LetG = C (cid:2)···(cid:2)C with1<n |···|n ,k ∈ [1,n −1]andS ∈ F(G) be a sequence of lengnth1 |S|=k +nrd(G). If S h1as no zrero-sum sub1sequence S(cid:13) of length|S(cid:13)|>k,thenS=0kT whereT ∈F(G)iszero-sumfree.

Description:
We give an overview of zero-sum theory in finite abelian groups, a subfield of additive group theory and combinatorial number theory Throughout this article, let G be an additive finite abelian group and let G. • = G\{0}. {B,C}={g(9g)(10g), (11g)(3g)(14g)} for some g ∈ G with ord(g) = 16. If S
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.