Expo.Math.24(2006)337–369 www.elsevier.de/exmath Zero-sum problems in finite abelian groups: A survey Weidong Gaoa,Alfred Geroldingerb,∗ aCenterforCombinatorics,NankaiUniversity,Tianjin300071,PRChina bInstitutfürMathematikundWissenschaftlichesRechnen,Karl-FranzensUniversität, Heinrichstrasse36,8010Graz,Austria Received19December2005 Abstract Wegiveanoverviewofzero-sumtheoryinfiniteabeliangroups,asubfieldofadditivegrouptheory andcombinatorialnumbertheory.Indoingsoweconcentrateonthealgebraicpartofthetheoryand onthedevelopmentsincetheappearanceofthesurveyarticlebyY.Caroin1996. (cid:1)2006ElsevierGmbH.Allrightsreserved. MSC2000:11B50;11P70;11B75 Keywords:Zero-sumsequences;Finiteabeliangroups 1. Introduction LetGbeanadditivefiniteabeliangroup.Incombinatorialnumbertheoryafinitesequence S = (g ,...,g) = g · ... · g of elements of G, where the repetition of elements is 1 l 1 l allowedandtheirorderisdisregarded,issimplycalledasequenceoverG,andS iscalled a zero-sum sequence if g + ··· + g = 0. A typical direct zero-sum problem studies 1 l conditions which ensure that given sequences have non-empty zero-sum subsequences withprescribedproperties.Theassociatedinversezero-sumproblemstudiesthestructure ofextremalsequenceswhichhavenosuchzero-sumsubsequences. ∗ Correspondingauthor. E-mailaddress:[email protected](A.Geroldinger). 0723-0869/$-seefrontmatter(cid:1)2006ElsevierGmbH.Allrightsreserved. doi:10.1016/j.exmath.2006.07.002 338 W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 TheseinvestigationswereinitiatedbyaresultofP.Erdo˝s,A.GinzburgandA.Ziv,who provedthat2n−1isthesmallestintegerl ∈ NsuchthateverysequenceS overacyclic group of order n has a zero-sum subsequence of length n (see [47]). Some years later, P.C.Baayen,P.Erdo˝sandH.Davenport(see[138,45,143])posedtheproblemtodetermine thesmallestintegerl ∈NsuchthateverysequenceSoverGoflength|S|(cid:1)lhasazero-sum subsequence.InsubsequentliteraturethatintegerlhasbeencalledtheDavenportconstant ofG.ItisdenotedbyD(G),anditsprecisevalue–intermsofthegroupinvariantsofG– isstillunknowningeneral. These problems were the starting points for much research, as it turned out that ques- tions of this type occur naturally in various branches of combinatorics, number theory and geometry. Conversely, zero-sum problems have greatly influenced the development of various subfields of these areas (among others, zero-sum Ramsey theory was initiated by the works of A. Bialostocki and P. Dierker). So there are intrinsic connections with graph theory, Ramsey theory and geometry (see [119,4,12,13] for some classical papers and [11,10,105,14,108,40,123] for some recent papers). The following observation goes backtoH.Davenport:IfRistheringofintegersofsomealgebraicnumberfieldwithideal classgroup(isomorphicto)G,thenD(G)isthemaximalnumberofprimeideals(counted with or without multiplicity) which occur in the prime ideal decomposition of aR for ir- reducibleelementsa ∈ R.Indeed,inthetheoryofnon-uniquefactorizationsithasturned outthatthemonoidofallzero-sumsequencesoverGcloselyreflectsthearithmeticofa KrullmonoidwhichhasclassgroupGandeveryclasscontainsaprime(see[96,Corollary 3.4.12]).Ontheotherhand,itwasfactorizationtheorywhichpromotedtheinvestigationof inversezero-sumproblems,whichappearnaturallyinthatarea.Apartfromallthat,zero- sumproblemsoccurinvarioustypesofnumbertheoreticaltopics(asCarmichealnumbers [1],Artin’sconjectureonadditiveforms[19]orpermutationmatrices[135]). Zero-sum problems are tackled with a huge variety of methods. First of all we men- tion methods from additive group theory including all types of addition theorems (see [96,136,137,142,112,107,109,103,133,124,9]). Furthermore, group algebras [74], results fromthecoveringarea[164,132,80],fromlinearalgebra[32,31]andpolynomialmethods [2,3]playcrucialroles.Moreover,inthemeantimezero-sumtheoryhasalreadydeveloped itsownmethodsandawealthofresultswhichpromoteitsfurtherdevelopment. The first survey article on zero-sum theory, written byY. Caro, appeared 10 years ago in 1996 (see [23,24]). The aim of the present article is to sketch the development in the lastdecadeandtogiveanoverviewoverthepresentstateoftheareaunderthefollowing two restrictions. First, we do not outline the relationships to other areas, as graph the- ory, Ramsey theory or the theory of non-unique factorizations, but we restrict to what is sometimes called the algebraic part of zero-sum theory. Second, although since the 1960s zero-sum problems were studied also in the setting of non-abelian groups (see [36,146,150,147,148,170,63,39,172]), we restrict to the case of abelian groups. Since Y. Caro’s article has an extended bibliography on the literature until 1994, we also re- fer to his bibliography and concentrate ourselves on papers having appeared since that time.InSection2,wefixournotationsandterminology,andwegivethedefinitionsofthe keyinvariants.Theninthesubsequentsectionswepresentthestateofknowledgeonthese invariantsandontheassociatedinverseproblems. Throughoutthisarticle,letGbeanadditivefiniteabeliangroupandletG•=G\{0}. W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 339 2. Preliminaries Let N denote the set of positive integers, P ⊂ N the set of all prime numbers and let N =N∪{0}.Forintegersa,b∈Zweset[a,b]={x ∈Z|a(cid:2)x(cid:2)b},andforc∈Nlet 0 N(cid:1)c=N\[1,c−1].Forarealnumberx,wedenoteby(cid:5)x(cid:6)thelargestintegerthatisless thanorequaltox,andby(cid:7)x(cid:8)thesmallestintegerthatisgreaterthanorequaltox. Throughout, all abelian groups will be written additively. For n ∈ N, let C denote a n cyclicgroupwithnelements,andletnG={ng |g ∈G}.BytheFundamentalTheoremof FiniteAbelianGroupswehave G(cid:1)C (cid:2)···(cid:2)C (cid:1)C (cid:2)···(cid:2)C , n1 nr q1 qs where r = r(G) ∈ N is the rank of G, s = r∗(G) ∈ N is the total rank of G, 0 0 n ,...,n ∈ N are integers with 1<n | ... | n and q ,...,q are prime powers. 1 r 1 r 1 s Moreover,n ,...,n ,q ,...,q areuniquelydeterminedbyG,andweset 1 r 1 s (cid:1)r (cid:1)s q −1 d∗(G)= (n −1) and k∗(G)= i . i q i=1 i=1 i Clearly,n =exp(G)istheexponentofG,andif|G|=1,thenr(G)=d∗(G)=k∗(G)=0 r andexp(G)=1. Lets ∈ N.Ans-tuple(e ,...,e )ofelementsofGissaidtobeindependentife (cid:9)= 0 1 s i foralli ∈[1,s]and,foreverys-tuple(m ,...,m )∈Zs, 1 s (cid:1)s m e =0 implies m e =···=m e =0. i i 1 1 s s i=1 An s-tuple (e ,...,e ) of elements of G is called a basis if it is independent and G= 1 s (cid:10)e (cid:11)(cid:2)···(cid:2)(cid:10)e (cid:11). 1 s Wewritesequencesmultiplicativelyandconsiderthemaselementsofthefreeabelian monoidoverG,apointofviewwhichwasputforwardbytherequirementsofthetheory of non-unique factorizations. Thus, we have at our disposal all notions from elementary divisibility theory which provides a suitable framework when dealing with subsequences ofgivensequences,andwemayapplyalgebraicconceptsinanaturalway. LetF(G)bethefreeabelianmonoid,multiplicativelywritten,withbasisG.Theelements ofF(G)arecalledsequencesoverG.WewritesequencesS ∈F(G)intheform (cid:2) S= gvg(S) with v (S)∈N for all g ∈G. g 0 g∈G We call v (S) the multiplicity of g in S, and we say that S contains g, if v (S)>0. S is g g called squarefree if v (S)(cid:2)1 for all g ∈ G. The unit element 1 ∈ F(G) is called the g emptysequence.AsequenceS iscalledasubsequenceofSifS |SinF(G)(equivalently, 1 1 v (S )(cid:2)v (S)forallg ∈G),anditiscalledapropersubsequenceofSifitisasubsequence g 1 g with1(cid:9)=S (cid:9)=S.IfasequenceS ∈F(G)iswrittenintheformS=g ·...·g,wetacitly 1 1 l assumethatl ∈N andg ,...,g ∈G. 0 1 l 340 W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 Forasequence (cid:2) S=g ·...·g = gvg(S) ∈F(G), 1 l g∈G wecall (cid:1) |S|=l= v (S)∈N the length of S, g 0 g∈G h(S)=max{v (S)|g ∈G}∈[0,|S|] the maximum of the multiplicities of S, g (cid:1)l 1 k(S)= ∈Q(cid:1)0 the cross-number of S, ord(g ) i=1 i supp(S)={g ∈G|v (S)>0}⊂G the support of S, g (cid:1)l (cid:1) (cid:1)(S)= g = v (S)g ∈G the sum of S, i g i=1 g∈G (cid:3) (cid:4) (cid:5) (cid:1) (cid:4) (cid:4) (cid:2) (S)= g (cid:4)I ⊂[1,l] with |I|=k k i(cid:4) i∈I the set of k-term subsums of S, for all k ∈N, (cid:6) (cid:6) (cid:2)(cid:2)k(S)= (cid:2)j(S), (cid:2)(cid:1)k(S)= (cid:2)j(S), j∈[1,k] j(cid:1)k and (cid:2)(S)=(cid:2)(cid:1)1(S) the set of (all) subsums of S. ThesequenceS iscalled • zero-sumfreeif0∈/(cid:2)(S), • azero-sumsequenceif(cid:1)(S)=0, • aminimalzero-sumsequenceifitisanon-emptyzero-sumsequenceandeveryproper subsequenceiszero-sumfree, • ashortzero-sumsequenceifitisazero-sumsequenceoflength|S|∈[1,exp(G)]. WedenotebyB(G)thesetofallzero-sumsequencesandbyA(G)thesetofallminimal zero-sumsequences.ThenB(G) ⊂ F(G)isasubmonoid(alsocalledtheblockmonoid overG);itisaKrullmonoidandA(G)isthesetofatomsofB(G)(see[96,Proposition 2.5.6]).Foranymapofabeliangroups(cid:3):G → G(cid:13),thereexistsauniquehomomorphism (cid:3):F(G) → F(G(cid:13))with(cid:3)|G=(cid:3).Usually,wesimplywrite(cid:3)insteadof(cid:3).Explicitly, (cid:3):F(G) → F(G(cid:13)) is given by (cid:3)(g · ... · g) = (cid:3)(g ) · ... · (cid:3)(g) for all l ∈ N 1 l 1 l 0 and g ,...,g ∈ G. If S ∈ F(G), then |(cid:3)(S)|=|S| and supp((cid:3)(S))=(cid:3)(supp(S)). If 1 l (cid:3):G → G(cid:13) isevenahomomorphism,then(cid:1)((cid:3)(S))=(cid:3)((cid:1)(S)),(cid:2)((cid:3)(S))=(cid:3)((cid:2)(S))and W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 341 (cid:3)(B(G)) ⊂ B(G(cid:13)). In particular, we use the inversion (g (cid:14)→ −g) and the translation (g (cid:14)→g +g),andforS=g ·...·g ∈F(G)weset 0 1 l −S=(−g )·...·(−g) and g +S=(g +g )·...·(g +g)∈F(G). 1 l 0 0 1 0 l Ifg ∈Gisanon-zeroelementand S=(n g)·...·(ng), where l ∈N and n ,...,n ∈[1,ord(g)], 1 l 0 1 l then n +···+n (cid:15)S(cid:15) = 1 l g ord(g) iscalledtheg-norm ofS.IfS isazero-sumsequenceforwhich{0}(cid:9)=(cid:10)supp(S)(cid:11)⊂Gis afinitecyclicgroup,then ind(S)=min{(cid:15)S(cid:15) |g ∈G with (cid:10)supp(S)(cid:11)=(cid:10)g(cid:11)}∈N g 0 iscalledtheindexofS.Wesetind(1)=0,andifsupp(S)={0},thenwesetind(S)=1. Nextwegivethedefinitionofthezero-suminvariantswhichwearegoingtodiscussin thesubsequentsections.Weconcentrateoninvariantsdealingwithgeneralsequences,as introduced in Definition 2.1. However, by an often used technique, problems on general sequencesarereducedtoproblemsonsquarefreesequences,andthuswebrieflydealalso with invariants on squarefree sequences (or in other words, with sets), as introduced in Definition2.2. Definition2.1. Letexp(G)=nandk,m∈Nwithk(cid:1)exp(G).Wedenoteby • D(G)thesmallestintegerl ∈ NsuchthateverysequenceS ∈ F(G)oflength|S|(cid:1)l hasanon-emptyzero-sumsubsequence.Theinvariant D(G) iscalledtheDavenport constant ofG. • d(G)themaximallengthofazero-sumfreesequenceoverG. • (cid:4)(G) the smallest integer l ∈ N such that every sequence S ∈ F(G) of length |S|(cid:1)l hasashortzero-sumsubsequence. • s (G)thesmallestintegerl ∈NsuchthateverysequenceS ∈F(G)oflength|S|(cid:1)l mn hasazero-sumsubsequenceT oflength|T|=mn.Inparticular,wesets(G)=s (G). n • snN(G)thesmallestintegerl ∈NsuchthateverysequenceS ∈F(G)oflength|S|(cid:1)l hasanon-emptyzero-sumsubsequenceT oflength|T|≡0modn. • E (G)thesmallestintegerl ∈ NsuchthateverysequenceS ∈ F(G)oflength|S|(cid:1)l k hasazero-sumsubsequenceT withk(cid:1)|T|. • (cid:5)(G)thesmallestintegerl ∈N withthefollowingproperty: 0 Foreveryzero-sumfreesequenceS ∈F(G)oflength|S|(cid:1)lthereexistasubgroup H ⊂Gandanelementa ∈G\H suchthat G•\(cid:2)(S)⊂a+H. Asimpleargument(see[96,Section5.1]fordetails)showsthat d(G)=max{|S||S ∈F(G), (cid:2)(S)=G•} and 1+d(G)=D(G)=max{|S||S ∈A(G)}. 342 W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 Definition2.2. Wedenoteby • Ol(G) the smallest integer l ∈ N such that every squarefree sequence S ∈ F(G) of length|S|(cid:1)lhasanon-emptyzero-sumsubsequence.TheinvariantOl(G)iscalledthe OlsonconstantofG. • ol(G)themaximallengthofasquarefreezero-sumfreesequenceS ∈F(G). • cr(G) the smallest integer l ∈ N such that every squarefree sequence S ∈ F(G•) of length|S|(cid:1)lsatisfies(cid:2)(S)=G.Theinvariantcr(G) iscalledthecriticalnumberofG. • g(G)thesmallestintegerl ∈NsuchthateverysquarefreesequenceS ∈F(G)oflength |S|(cid:1)lhasazero-sumsubsequenceT oflength|T|=exp(G). Weusetheconventionthatmin(∅)=sup(∅)=0.ForasubsetG ⊂Gandsomeinteger 0 l ∈N,R.B.EggletonandP.Erdo˝s(see[41])introducedthef-invariant f(G ,l)=min{|(cid:2)(S)||S ∈F(G ), S squarefree and zero-sumfree, |S|=l}. 0 0 ThebasicrelationshipsbetweentheseinvariantsaresummarizedinLemma10.1. 3. On the Davenport constant LetG=C (cid:2)···(cid:2)C with1<n |...|n ,r =r(G)andlet(e ,...,e )beabasis n1 nr 1 r 1 r ofGwithord(e )=n foralli ∈[1,r].Thenthesequence i i (cid:2)r S= eni−1 ∈F(G) i i=1 iszero-sumfreewhencewehavethecrucialinequality d(G)(cid:1)d∗(G). Inthe1960s,D.KruyswijkandJ.E.Olsonprovedindependentlythefollowingresult(see [143,5,44,144]and[96,Theorems5.5.9and5.8.3]). Theorem3.1. IfGisap-grouporr(G)(cid:2)2,thend(G)=d∗(G). We present two types of results implying that d(G)=d∗(G). The first one is due to P. van Emde Boas et al. (see [44, Theorems 3.9, 4.2], where more results of this flavor maybefound)andthesecondisduetoS.T.Chapmanetal.(see[25],andalsothevarious conjecturesinthatpaper). Theorem3.2. LetG=C (cid:2)C (cid:2)C andH=C (cid:2)C (cid:2)C with1(cid:2)n |n |n . If(cid:5)(H)=d∗(H)−1,the2nn1d(G)2=n2d∗(G2n)3. n1 n2 n3 1 2 3 Theorem3.3. LetG=H(cid:2)C wherek,m∈NandH ⊂Gisasubgroupwithexp(H)|m. km Ifd(H(cid:2)C )=d(H)+m−1and(cid:4)(H(cid:2)C )(cid:2)d(H)+2m,thend(G)=d(H)+km−1. m m W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 343 In particular (use Theorem 3.1 and [96, Proposition 5.7.7]), if m is a prime power and d(H)<m,thend(G)=d∗(G). These and similar results give rise to long lists of explicit groups satisfying d(G) = ∗ ∗ d (G)(see[44,25,6,46,35]).ThefirstexampleofagroupGwithd(G)>d (G)isdueto P.C.Baayen.In[44,Theorem8.1]itisshownthat d(G)>d∗(G) for G=C24k(cid:2)C4k+2 with k ∈N, andmoreexamplesaregivenin[46].LetH ⊂Gbeasubgroup.Thend(H) + d(G/H)(cid:2) d(G),andifGisasabove,I ⊂[1,r]and (cid:7) H = C then d(H)>d∗(H) implies d(G)>d∗(G) ni i∈I ∗ (see [96, Proposition 5.1.11]).This shows that the interesting groups with d(G)>d (G) arethosewithsmallrank.A.GeroldingerandR.Schneidershowedthatthereareinfinitely manyGwithr(G)=4suchthatd(G)>d∗(G).Thefollowingresultmaybefoundin[98] and[77,Theorem3.3]. ∗ Theorem3.4. Wehaved(G)>d (G)ineachofthefollowingcases: 1. G=Cm(cid:2)Cn2(cid:2)C2n,wherem,n∈N(cid:1)3areoddandm|n. 2. G=C2i(cid:2)C25n−i,wheren∈N(cid:1)3isoddandi ∈[2,4]. LetG=C2r(cid:2)Cn wherer ∈Nandn∈N(cid:1)3 isodd.Thend(G)=d∗(G)ifandonlyif r(cid:2)4(see[98,Corollary2]).Forsomesmallr(cid:1)5andn(cid:1)3theprecisevalueofd(G)was recentlydeterminedin[49].Thegrowthofd(G)−d∗(G)isstudiedin[140]. Wemakethefollowingconjecture. Conjecture3.5. Ifr(G)=3orG=Cnr withn,r ∈N(cid:1)3,thend(G)=d∗(G). ForgroupsofrankthreeConjecture3.5goesbacktoP.vanEmdeBoas(see[46])andis supportedby[69].ForgroupsoftheformG=Cr itissupportedby[80,Theorem6.6]. n ThenextresultprovidesupperboundsonD(G).ThefirstoneisduetoP.vanEmdeBoas andD.Kruyswijk[46,Theorem7.1]andissharpforcyclicgroups(forotherapproaches andrelatedboundssee[8,141]).Thesecondboundissharpforgroupsofrank2andwith H =pG for some prime divisor p of exp(G) (see [96, Theorem 5.5.5 and Proposition 5.7.11]). Theorem3.6. Letexp(G)=n(cid:1)2andH ⊂Gbeasubgroup. 1. d(G)(cid:2)(n−1)+nlog|G|. n 2. d(G)(cid:2)d(H)exp(G/H)+max{d(G/H),(cid:4)(G/H)−exp(G/H)−1}. Weendthissectionwithaconjecturesupportedby[96,Theorem6.2.8]. 344 W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 Conjecture3.7. If|G|>1,thenD(G)(cid:2)d∗(G)+r(G). 4. On the structure of long zero-sumfree sequences LetS ∈ F(G)beazero-sumfreesequenceoflength|S|=d(G).Accordingtogeneral philosophyininverseadditivenumbertheory(see[142,53,54]),Sshouldhavesomestruc- ture. Obviously, if G is cyclic of order n(cid:1)2, then S =gn−1 for some g ∈ supp(S) with ord(g)=n,andifSisanelementary2-groupofrankr,thenS=e ·...·e forsomebasis 1 r (e ,...,e )ofG.Apartfromthesetrivialcasesverylittleisknownuptonow.Themost 1 r modestquestionsonecouldaskarethefollowing: 1. Whatistheorderofelementsinsupp(S)? 2. Whatisthemultiplicityofelementsinsupp(S)?Whatisareasonablelowerboundfor h(S)? 3. Howlargeis supp(S)? Crucial in all investigations of zero-sumfree sequences is the following inequality of Moser-Scherk(see[96,Theorem5.3.1]):LetS ∈F(G)beazero-sumfreesequence. If S=S S then |(cid:2)(S)|(cid:1)|(cid:2)(S )|+|(cid:2)(S )|. 1 2 1 2 ByM.FreezeandW.W.Smith([52,Theorem2.5,96,Proposition5.3.5])thisimpliesthat |(cid:2)(S)|(cid:1)2|S|−h(S)(cid:1)|S|+|supp(S)|−1. Westartwiththefollowingconjecture. Conjecture4.1. Everyzero-sumfreesequenceS ∈ F(G)oflength|S|=d(G)hassome elementg ∈supp(S)withord(g)=exp(G). Theconjectureistrueforcyclicgroups,p-groups(see[96,Corollary5.1.13]),groupsof theformG=C (cid:2)C (seebelow)andforG=C (cid:2)C (see[78]).Asconcernsthesecond n n 2 2n question,thephilosophyisthatingroupswheretheexponentislargeincomparisonwith therank,h(S)shouldbelarge. For cyclic groups, there are the following results going back to J.D. Bovey, P. Erdo˝s, I.Niven,W.Gao,A.GeroldingerandY.ouldHamidoune(see[17,76,97]and[96,Theorem 5.4.5]). Theorem4.2. LetGbecyclicofordern(cid:1)3,andletS ∈F(G)beazero-sumfreesequence oflength n+1 |S|(cid:1) . 2 1. Forallg ∈supp(S)wehaveord(g)(cid:1)3. 2. Thereexistssomeg ∈supp(S)withv (S)(cid:1)2|S|−n+1. g W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 345 3. Thereexistssomeg ∈supp(S)withord(g)=nsuchthat n+5 v (S)(cid:1) if n is odd and v (S)(cid:1)3 if n iseven. g g 6 Incyclicgroupslongzero-sumfreesequencesandlongminimalzero-sumsequencescan becompletelycharacterized(see[71]). Theorem4.3. LetGbycyclicofordern(cid:1)2andletS ∈F(G)beazero-sumfreesequence oflength|S|=n−kwithk ∈[1,(cid:5)n/3(cid:6)]+1].Thenthereexistssomeg ∈Gwithord(g)=n andx1,...,xk−1 ∈[1,n−1]suchthat k(cid:2)−1 (cid:1)k−1 S=gn−2k+1 (x g) and x (cid:2)2k−2. i i i=1 i=1 Inparticular,everyminimalzero-sumsequenceS ∈ A(G)oflength|S|(cid:1)n−(cid:5)n/3(cid:6)has ind(S)=1. The index of zero-sum sequences over cyclic groups is investigated in [71,26,29]. In [127] (p. 344 with d =n) it is conjectured that every sequence S ∈ F(C ) of length n |S|=n has a non-empty zero-sum subsequence T with ind(T)=1.Among others, the g-normandtheindexofzero-sumsequencesplayaroleinarithmeticalinvestigations(see [96,Section6.8]). NextwediscussgroupsoftheformG=C (cid:2)C withn(cid:1)2(see[77,167,79],[96,Section n n 5.8]and[131]). Theorem4.4. LetG=C (cid:2)C withn(cid:1)2.Thenthefollowingstatementsareequivalent: n n (a) IfS ∈ F(G),|S|=3n−3andS hasnozero-sumsubsequenceT oflength|T|(cid:1)n, thenthereexistssomea ∈Gsuchthat0n−1an−2|S. (b) IfS ∈F(G)iszero-sumfreeand|S|=d(G),thenan−2|S forsomea ∈G. (c) IfS ∈A(G)and|S|=D(G),thenan−1|S forsomea ∈G. (d) If S ∈ A(G) and |S|=D(G), then there exists a basis (e ,e ) of G and integers 1 2 x ,...,x ∈[0,n−1]withx +···+x ≡1modnsuchthat 1 n 1 n (cid:2)n S=e1n−1 (x(cid:5)e1+e2). (cid:5)=1 Moreover,ifS ∈A(G)and|S|=D(G),thenord(g)=nforeveryg ∈supp(S),andif nisprime,then|supp(S)|∈[3,n]. Conjecture4.5. For every n(cid:1)2 the four equivalent statements of Theorem 4.4 are satisfied. 346 W.Gao,A.Geroldinger/Expo.Math.24(2006)337–369 Conjecture4.5hasbeenverifiedforn∈[2,7],andifitholdsforsomen(cid:1)6,thenitholds for2n(see[79,Theorem8.1]).Wecontinuewitharesultfornon-cyclicgroupshavinglarge exponent(see[79]). Theorem4.6. 1. LetG=C (cid:2)C with1<n |n andn >n (n +1).Let(cid:3):G→G=C (cid:2)C be n1 n2 1 2 2 1 1 n1 n1 thecanonicalepimorphismandS ∈ A(G)oflength|S|=D(G).Ifgk|(cid:3)(S)forsome k>n andsomeg ∈G,thengk|S forsomeg ∈(cid:3)−1(g). 1 2. LetG=H(cid:2)C whereexp(G)=n=lm,H ⊂ Gasubgroupwithexp(H)|m,m(cid:1)2 n andl(cid:1)4|H|>4(m−2).Let(cid:3):G→G=H(cid:2)C denotethecanonicalepimorphism m andS ∈ F(G)azero-sumfreesequenceoflength|S|=n.ThenS hasasubsequence T oflength|T|(cid:1)(l−2|H|+1)msuchthatthefollowingholds:Ifgk|(cid:3)(T)forsome k>mandsomeg ∈G,thengk|T forsomeg ∈(cid:3)−1(g). For general finite abelian groups there is the following result (see [76], [96, Theorem 5.3.6])whichplaysakeyroleintheproofofTheorem10.4.2). Theorem4.7. LetG ⊂Gbeasubset,k ∈Nandk(cid:1)2besuchthatf(G ,k)>0,andlet 0 0 S ∈F(G )beazero-sumfreesequenceoflength 0 (cid:8) (cid:9) |G|−k |S|(cid:1) +1 k. f(G ,k) 0 Thenthereexistssomeg ∈G suchthat 0 |S| |G|−k−1 v (S)(cid:1) − . g k−1 (k−1)f(G ,k) 0 If the rank of the group is large in comparison with the exponent, there is in gen- eral no element with high multiplicity (see Theorem 10.4.1), but in case of elementary p-groupsthereisthefollowingstructuralresult(see[77,Theorem10.3],[80,Corollary6.3], [96,Corollary5.6.9]). Theorem4.8. Let G be a finite elementary p-group and S ∈ F(G) be a zero-sumfree sequence of length |S|=d(G). Then (g,h) is independent for any two distinct elements g,h∈supp(S). Wecontinuewiththefollowing Conjecture4.9. LetG = C (cid:2)···(cid:2)C with1<n |···|n ,k ∈ [1,n −1]andS ∈ F(G) be a sequence of lengnth1 |S|=k +nrd(G). If S h1as no zrero-sum sub1sequence S(cid:13) of length|S(cid:13)|>k,thenS=0kT whereT ∈F(G)iszero-sumfree.
Description: