ebook img

Zero Divisors in Hopf Algebras PDF

9 Pages·2015·0.163 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Zero Divisors in Hopf Algebras

Zero Divisors in Hopf Algebras CalebMcWhorter Spring2015 1 Historical Background The development of group rings was slow. The study of group rings began with Arthur Cayley (study- ing CS ) in about 1854. Group rings then appeared in some works in the late 1800s in complex algebras. 3 However,itwasnottillaftertheturnofthecenturythatgroupringswereusedinrepresentationtheoryto answerrealquestions. Finitedimensionalcomplexringsoccurnaturallyinthestudyofrepresentationsof finitegroups,i.e. Maschke’sTheorem(ifGisafinitegroupandkisafieldsuchthat|G|·1 (cid:54)=0,thenkGis k asemisimplek-algebra)andSchur’sLemma(ifLisasimpleR-modulethenEnd Lisadivisionring).Nev- R ertheless, the first monogrammed work on group rings was not until “The Algebraic Structure of Group Rings” by Donald S. Passman in 1977. Much of what is known about group rings came when studying semisimplerings. Rickartshowedin1950thatifK = C,thenKGissemisimpleregardlessofthegroupG. ∼ First,wewillneeddefineagroupring. Oneinitialopenquestion(nowsolved)wasdoesRG = RH imply thatG ∼= H? ThiscouldnotalwaysbethecasegiventhatifR =Cand|G| < ∞,thenCGisisomorphictoa directproductofmatrixrings(asweshallsee)soforanytwononisomorphicabeliangroupsG,Hoforder n,wehaveCG ∼=Cn ∼=CH. Infact,Hertweckshowedin2001thattherearetwononisomorphicgroupsof order225·972havingnonisomorphicgrouprings. 2 Group Rings Definition2.1(GroupRing). Let R bearingwithidentityand G agroup. Agroupring, denoted RG, isaring consistingofsumsoffinitesupport ∑ a g g g∈G wherea ∈ Randg ∈ G. Theoperationsaredefinedasfollows: g ∑ ∑ ∑ a g+ b g = (a +b )g g g g g g∈G g∈G g∈G (cid:32) (cid:33)(cid:32) (cid:33) ∑ ∑ ∑ a g b g = c g g g g g∈G g∈G g∈G wherecg = ∑h∈Gagbg−1h. Thisringisunitalwithidentity1R1G. ThisgroupringisaleftR-moduleunderaction ∑ ∑ r· a g = (ra )g g g g∈G g∈G 1 Thegroupringisthenafree R-modulewithbasisconsistingofcopiesofelementsof G withrank|G|. If Risafield (oftendenotedk),kGisavectorspaceoverk,withacanonicalbasisconsistingoftheelementsofG. IfGisfinite,then kGisafinitedimensionalk-algebra. TheringkGisoftencalledthegroupalgebra. Remark 2.2. Multiplication in a group ring might seem strange but it is exactly what is required when we force (a g)(b h) = a b gh. One could simply define this to be the product. One could also define g h g h (cid:16) (cid:17)(cid:16) (cid:17) ∑ a g ∑ b g = ∑ c g,wherec = ∑ a b . Onenaturalseestheequivalenceviagh = u g∈G g g∈G g u∈G u u gh=u g h ifandonlyifg = uh−1orviceversagh = uifandonlyifh = g−1u. Definition 2.3 (Support Group). For a function f ∈ RG, the support of f, denoted Supp(f), consisting of the finitesubsetofpoints x ∈ G forwhich f(x) (cid:54)= 0. Thesupportgroupof f isthesmallestsubgroupof G containing Supp(f). Theidentityofagroupringis1 ·1 . Ingeneral, RG isnotcommutative. Infact, RG iscommutative R G if and only if both R and G are commutative.The group ring RG is a ring extension of R as we have a ringhomomorphism R → RG givenbyr (cid:55)→ r·1 . So RG isbydefinitionan R-algebra. Finally, themap G G → RGgivenbyg (cid:55)→1 ·gisagroupembeddingofGintothegroupofunitsofRG. Furthermore,these R typesofmapscanbenaturallyextended. Proposition2.4. Ifϕ : S → Risaringhomomorphism,thenϕextendsuniquelytoahomomorphismofgrouprings ϕ : SG → RGgivenby (cid:32) (cid:33) ∑ ∑ ϕ a g = ϕ(a )g g g g∈G g∈G If ϕ isinjective, thensotoois ϕ. Inthiscase, SG canbeinterpretedasasubringof RG as SG canonicallyembeds intoRG. Proposition2.5. If ϕ : H → G isagrouphomomorphism, then ϕ extendsuniquelytoahomomorphismofgroup rings ϕ : RH → RGgivenby (cid:32) (cid:33) ∑ ∑ ϕ a g = a ϕ(g) g g g∈G g∈G ThisshowsthatifH ≤ G,thenRHcanbecanonicallyembeddedintoRG. Proposition2.6. Let R beacommutativering, G agroup, and A an R-algebra. If ϕ : G → I(A), where I(A) is the set of invertible elements of A, be a group homomorphism. Then ϕ induces a unique R-algebra homomorphism ϕ : RG → Asuchthat ϕ(g) = ϕ(g)forallg ∈ G. TherearealsoprojectionmapsoftheR-moduleRGontosubmodulesRH,whereH ≤ G.Theprojection map is π : RG → RH mapping the basis elements g ∈ G\H to 0. That is for a ∈ RG given by a = H ∑ a g,wehave g∈G g ∑ π (a) = a g H g g∈H Proposition 2.7. Let H ≤ G be groups and R be a ring. The projection map π : RG → RH is an R-module H homomorphismsuchthatfora ∈ RG,b ∈ RH,wehave π (ab) = π (a)b H H π (ba) = bπ (a) H H 2 Example 2.8. Let k be a field and let G = (cid:104)g(cid:105) be a cyclic group of order n. We know k[x] is a PID. Take the map ϕ : k[x] → kG given by x (cid:55)→ g is a surjective ring homomorphism. It is clear that xn −1 ∈ kerϕ. Furthermore, if p(x) ∈ kerϕ, then we know p(x) = q(x)(xn−1)+r(x) for q(x),r(x) ∈ k[x] with degr(x) < n so that kerϕ is the PID generated by xn−1. Therefore by the First Isomorphism Theorem, kG ∼= k[x]/(xn−1). Example2.9. BytheArtin-WedderburnTheorem, anygroupringover k isisomorphicasa k-algebratoa directproductofmatrixringsoverafinitedimensionaldivisionalgebraD. Then i n kG ∼= ∏M (D) ni i i=1 Remark2.10. Asareminder,theArtin-WedderburnTheoremstatesthatifRisafinitedimensionalsemisim- plealgebra,thenRisisomorphictoaproductofmatrixalgebrasoverdivisionrings. Example2.11. Asaspecificexampleofthepreviousexample,ifkisanalgebraicallyclosedfield,thepoly- nomialxn−1factorscompletelyintoirreduciblefactors n xn−1= (x−ζ )(x−ζ )···(x−ζ ) = ∏x−ζ 1 2 n i i=1 Furthermore,ifnisaprimenumberandk =C,thentherootsofunityζ ,ζ ,··· ,ζ arealldistinct. IfM is 1 2 n i themaximalidealofC[x]generatedbythepolynomialx−ζ ,thenbytheChineseRemainderTheorem i n n CG ∼=C[x]/∏M ∼= ∏C[x]/M ∼=Cn i i i=1 i=1 Example2.12. IfR =CandG =Z,weknowthatCZ∼=C[x,x−1],theringofformalsums∑n∈Zanxnwith finitesupport. Example 2.13. Given any linear group representation ρ : G → GL(V), where V is a vector space over a fieldk. ThisgrouprepresentationhasakG-modulestructureonV andviceversa. Agroupring RG canbeidentifiedwiththefinitelysupported R-valuedfunctionson G. Suppose x ∈ RG. Then x = ∑ a G. Wecantheninterpret xasafunction x : G → Rgivenby x(g) = a . Thegroup g∈G g g ringRGcanthenbegivenadditionoperations (x+y)(g) = x(g)+y(g) forallx,y ∈ RGandg ∈ G. Multiplicationissimilar (x∗y)(g) = ∑ x(gh−1)y(h) h∈G forallx,y ∈ RGandg ∈ G,where∗isjustordinaryconvolution. For any nontrivial group, a group ring can never be simple as they always contain a proper nonzero ideal. Definition 2.14 (Augmentation Ideal). Let G be a nontrivial group and let E be the trivial group. Consider the homomorphism ϕ : G → E. IfRisaring,itisclearthatRE ∼= R. Theextendedringhomomorphism ϕ : RG → R iscalledtheaugmentationmap. Thekernelofthismapiscalledtheaugmentationideal: (cid:40) (cid:41) ∑ ∑ kerϕ = a g | a =0 g g g∈G g∈G Thisidealisdenotedω(RG). 3 Notice that if R is a field then the augmentation ideal of RG is maximal as it is the kernel of a ring homomorphismintoafield. 3 Idempotents and Zero Divisors Justtomakeclearthedefinitionforgrouprings. Proposition 3.1. An element x = ∑ a g ∈ RG is in the center of RG if and only if the coefficients a are g∈G g g containedinthecenterofRandag = ahgh−1 forallg,h ∈ G. ThezerodivisorconjectureofKaplanskyiscloselyrelatedtoanotherconjectureasthetwoconceptsare similar. Wewilldiscussthemsimultaneously. However,wefirstgivesomedefinitions. Definition3.2(ZeroDivisor). Anelement y ∈ R isazerodivisorifthereisanonzeroelement x ∈ R suchthat xy = 0. Anelementisatrivialzerodivisorify = 0. Leftandrightzerodivisorsaredefinedintheobviousway. If theringRiscommutative,allthedefinitionsareequivalent. Example3.3. Ifn = pqforsomeprimes p,q,then p,qarezerodivisorsinZ/nZ. Example3.4. Wehavetwoexamplesofzerodivisorsin M (R) 2 (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) 1 1 1 1 0 0 = 2 2 −1 −1 0 0 (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) 1 0 0 0 0 0 = 0 0 0 1 0 0 Definition3.5(Idempotent). Anelement e ∈ R isanidempotentif e2 = e. Amap e : R → R isanidempotent mappingife2 = e. Anidempotentistrivialife =0ore =1. Example3.6. Anmatrixwith0’sand1’salongitsdiagonalsandzeroselsewhereisanidempotentmatrix in M (R). n Example3.7. If M = N⊕LisanR-module,thentheprojectionmapsπ andπ areidempotentmaps. N L Remark3.8. Ifeisanidempotent,thenalltheconjugatesofebyaunitareidempotents. Thatis,ifeisan idempotentandx ∈ Risaunit,thenxex−1 isanidempotent. Furthermore,ifeisanidempotentthen1−e isanidempotent. Noticealsothatanilpotentelementisalsoazerodivisor. Observe that nontrivial idempotents e ∈ R imply the existence of zero divisors as e(1−e) = 0 = (1−e)e. However,theexistenceofidempotentsismorestringentthanrequiringzerodivisorsasZ/4Zhas nontrivialzerodivisorsbutnonontrivialidempotentelements. Conjecture1(Kaplanksy). LetkbeafieldandGatorsionfreegroup. ThenkGcontainsnonontrivialidempotents. ItisclearthatifRcontainsanidempotentelements,sotoodoesRG. Furthermore,itisnecessarythatG betorsionfreeforotherwiseitwouldhaveafinitesubgroupHandthen 1 ∑ x = h |H| h∈H wouldbeanidempotent(sethat Hh = H forallh ∈ H). ThisconjecturehasbeenconfirmedbyFormanek for noetherian groups (groups which satisfy the ascending chain condition) in the case where k has char- acteristic 0. Furthermore, if R is an integral domain and G is torsion free abelian then RG is an integral domainsoRGcannotcontainnontrivialidempotents(forotherwiseitwouldcontainzerodivisors). 4 Proposition3.9. IfRisanintegraldomainandGisatorsionfreeabeliangroup,thenRGisanintegraldomain. Proof: IfH ≤ G,wehavetheinclusionRH (cid:44)→ RG. Ifx ∈ RGisatorsionelement,thereisa0(cid:54)= y ∈ RG suchthatxy =0. LetHbethesubgroupofGgeneratedbythesupportsofx,yandformthesubgroupring RH. Thenx,y ∈ RH,whereHisfinitelygenerated. ItthensufficestoconsiderthecasewhereGisafinitely generatedtorsionfreeabeliangroup. Let G = Zn and let Q = Frac(R) be the field of fractions. Consider the field of rational functions Q(x ,··· ,x ). Theelementsof G aren-tuplesofintegers. Mapanyn-tupleto xmi···xmn. Thisisagroup 1 n 1 n homomorphism,whichthenextendstoaringhomomorphismRG (cid:44)→ Q(x ,··· ,x ). ButQ(x ,··· ,x )is 1 n 1 n afield. However,thereisastrongerconjecture,alsoformulatedbyKaplanksy. Conjecture2(Kaplanksy). LetkbeafieldandGatorsionfreegroup. ThenkGhasnonontrivialzerodivisors. It is clear that R need be a domain as R ⊆ RG and that G need be torsion free for G ⊆ RG. If G containedanytorsionelementgofordern >2,thenx =1−gwouldbeatorsionelementinRGbyletting y =1+g+···+gn−1,whichisnonzerosothatwehave 0= gn−1= (1−g)(1+g+···+gn−1) = xy This conjecture has been shown for several classes of groups. For example in 1976, Brown, Farkas, Sniderconfirmedtheconjectureforpolycyclic-by-finitegroupsoverfieldsofcharacteristic0. Definition3.10(PolycyclicGroups). Apolycyclicgroupisasolvablegroupwithcyclicfactors. Thatis,wehavea chainofnormalsubgroups 1= G (cid:69)G (cid:69)G ···(cid:69)G = G 0 1 2 n suchthatGi+1/Gi iscyclicfori = 0,1,··· ,n−1. Agroupiscalledapolycyclic-by-finteifitcontainsapolycyclic normalsubgroupHoffiniteindex. Itisalsoknownthatif k isafieldand G isatorsionfreegroup,then kG hasnonontrivialcentralzero divisors.Theresulthasalsobeenshownforfiniteconjugacyclassgroups(FCC-groups)anduniqueproduct groups(up-groups). However, theconjecturehasnotevenbeenshownforanytorsionfreegroup G over F .Therearesomeresultsthatgiveequivalenciesfortheconjecture,butnoneofwhichareofanyparticular 2 use. Proposition3.11. LetkbeafinitefieldandGbeatorsionfreegroup. IfkGisadomainthenCGisadomain. Proposition3.12. LetGbeatorsionfreegroup. Thefollowingareequivalent: (i) Foranyfieldk,kGisadomain. (ii) Foranyfinitefieldk,kGisadomain. Remark 3.13. There is actually a stronger conjecture which would imply the two given above: Let k be a field and G a torsion free group. Then kG contains no nontrivial unit. This is known as the Kadison- Kaplanksyconjecture. IfonecanshowthisconjectureholdsforthereducedC∗-algebra,thentheconjecture holds and we obtain the above conjectures as corollaries. The Kadison-Kaplanksy conjecture was shown to hold in 1997 by Higson and Kasparov for groups a-(T)-menable groups or those with the Haagerup property;thatis,groupsadmittingametricallyproperaffineisometricactiononHilbertspaces. Examples of such groups are amenable, free coxeter, countable subgroups of GL (k), or any discrete subgroups of 2 SO(n,1)orSU(m,1). 5 4 Hopf Algebras Definition4.1(k-algebra). Ak-algebraisak-vectorspacewithtwolinearmaps m : A⊗ A → Aandu : k → A k calledmultiplicationandunit,respectively,suchthatthefollowingdiagramsarecommutative A⊗A⊗A m⊗1 A⊗A A⊗A u⊗1 1⊗u 1⊗m m k⊗A A⊗k A⊗A m A A Therightdiagramgivestheidentityelementin Abysetting1 = u(1 ). A k Definition4.2(TwistMap). Forany k-spacesV,W, thetwistmap τ : V⊗W → W⊗V isgivenby v⊗w (cid:55)→ w⊗v. Definition4.3(Coalgebra). Ak-coalgebra(withcounit)isak-vectorspace, A,withtwok-linearmaps ∆ : A → A⊗Aand(cid:101) : A → k calledco-multiplication/co-productandcounit,respectively,suchthatthefollowingdiagramscommute A⊗A⊗A ∆⊗1 A⊗A A⊗A (cid:101)⊗1 1⊗(cid:101) 1⊗∆ ∆ k⊗A A⊗k 1⊗− −⊗1 ∆ A⊗A A A Thisandthepreviousdefinitiongivethat∆isinjectiveandmissurjective. Definition4.4(Bialgebra). Abialgebra A isa k-vectorspace, A = (A,m,u,∆,(cid:101)), where (A,m,u) isanalgebra and(A,∆,(cid:101))isacoalgebrasuchthatitsatisfiestheequivalentconditions. (i) ∆,(cid:101)arealgebrahomomorphisms (ii) m,uarecoalgebrahomomorphisms. Example 4.5. If G is any group, let B = kG be the group ring. Then B is a bialgebra via ∆g = g×g and (cid:101)(g) =1forallg ∈ G. Example4.6. If gisanyk-Liealgebraand B = U(g)isitsuniversalenvelopingalgebra,then Bbecomesa bialgebravia∆x = x⊗1+1⊗xand(cid:101)(x) =0forallx ∈ g. 6 Definition4.7(BialgebraMorphism). Abialgebramorphismisamorphismwhichisbothanalgebraandcoalgebra morphism. Remark4.8. If A,Barek-algebras,then A⊗Bisak-algebrawithoperation(a⊗b)(c⊗d) = ac⊗db. That is, A⊗B⊗A⊗B1⊗−τ→⊗1 A⊗A⊗B⊗Bm−A⊗→mB A⊗B a whereτ : B⊗A → A⊗Bistheflipb⊗a −→ ⊗b. TheunituA⊗B of A⊗Bisgivenby k ∼= k⊗k u−A⊗→uB A⊗B Likewise,ifC,Darecoalgebras,then⊗Dwith∆C⊗D givenby C⊗D ∆−C⊗→∆D C⊗C⊗D⊗D1⊗−τ→⊗1C⊗D⊗C⊗D andcounit C⊗D (cid:101)−C⊗→(cid:101)D k⊗k ∼= k Inparticular,thisappliesfor A = BandC = D. Definition4.9. LetAbeak-algebra.ThefinitedualofAisA◦ = {f ∈ A∗ | f(I) =0forsomeideal I of Asuchthat dimA/I < ∞}, where A∗ = Hom (A,k) is the linear dual of V. Note that A,A∗ determine a nondegenerate bilinear form k (cid:104), (cid:105) : A∗⊗A → kvia(cid:104)f,a(cid:105) = f(a). Proposition4.10. If Aisanalgebra,then A◦ isacoalgebrawithcomultiplication∆ = m∗ andcounit(cid:101) = u∗. If A iscommutative,then A◦ iscocommutative. Remark4.11. A◦ isthelargestsubspaceV of A∗ suchthatm∗(V) ⊆V⊗V. Definition 4.12 (Convolution Product). Let C be a coalgebra and A an algebra. Then Hom (C,A) becomes an k algebraundertheconvolutionproduct (f ∗g)(c) = m◦(f ⊗g)(∆c) forall f,g ∈ Hom (C,A),c ∈ C. TheunitelementinHom (C,A) = u(cid:101). Onedefinesthetwistconvolution, or k k anti-convolution,omHom (C,A)by k (f ×g)(c) = m◦(f ⊗g)(τ◦∆(c)) Definition4.13(HopfAlgebra). Let A = (A,m,u,∆,(cid:101))beabialgebra. ThenalinearendomorphismSfrom Ato Aisanantipodefor Aifthefollowingdiagramcommutes A⊗A m A m A⊗A 1⊗s u(cid:101) s⊗1 A⊗A A A⊗A ∆ ∆ Thatisforalla ∈ A,(cid:101)(a) = ∑a S(a ) = ∑S(a )a . AHopfalgebraisabialgebrawithanantipode. Equivalently, 1 2 1 2 thereisanelementS ∈Hom (H,H)whichisaninverseto1 underconvolution. k H Example4.14. LetGbeanygroupandkafield. ThenkGisaHopfalgebrabydefiningS(g) = g−1 forall g ∈ G. Since S is linear, we know 1 = (cid:101)(g) = gg−1 = g−1g for all g ∈ G. We define ∆(g) = g⊗g and (cid:101)(g) =1forallg ∈ G. 7 Remark4.15. Inparticular,thisexampleshowsthataproofofthezerodivisorconjectureforHopfalgebras mayverywellprovetheKaplanskyZeroDivisorConjecture. Proposition4.16. LetHbeaHopfalgebrawithantipodeS. Then (i) Sisananti-algebramorphism. Thatis, S(hk) = S(k)S(h)forallh,k ∈ H; andS(1) =1 (ii) Sisananti-coalgebramorphism;thatis, ∆◦S = τ◦(S⊗S)◦∆and(cid:101)◦S = (cid:101) Definition4.17(Group-LikeElements). LetAbeanycoalgebra.Thena ∈ Aisagroup-likeelementif∆a = a⊗a and(cid:101)(a) =1. Remark4.18. OnecanseethenomenclatureforagrouplikeelementbyexaminingExample4.5andExam- ple4.14 ThestructureofHopfalgebrasissimilartothatofgroupringsledPeterLinnelltoconjectureavariant oftheKaplanskyZeroDivisorConjectureforHopfAlgebras. Conjecture 3 (Linnell’s Conjecture). Let H be a Hopf algebra and G be a torsion free subgroup of its group-like elements. Thenifα ∈ kGandβ ∈ Harenonzerotheproductαβisnonzero. IfGisaninfinitecyclicgroupgeneratedbyxandkisafield. ConsidertheHopfalgebra H = (cid:104)g,h,x | gh =1,gx = qxg(cid:105) = (cid:77)kGxi i≥0 where 0 (cid:54)= q ∈ k\{ζn}, ζ is a root of unity, n ∈ Z, and g,h ∈ G are group-like elements. We note that comultiplication∆,counit(cid:101),andantipodeSaredefinedas ∆(g) = g⊗g ∆(h) = h⊗h ∆(x) = g⊗x+x⊗1 (cid:101)(g) =1 (cid:101)(h) =1 (cid:101)(x) =0 S(g) = h S(h) = g S(x) = −hx ItisclearthatSisinvertibleas S2(x) = S(−hx) = −S(h)S(x) = −gS(x) = −g(−hx) = ghx =1x = x Furthermore,S2(g) = S(h) = gandS2(h) = S(g) = h. Itisclearthat H isofinfiniteorderas0 (cid:54)= q ∈ kis notarootofunity. 8 Proposition4.19. Let G = Zandkisafieldand H istheHopfAlgebra H = (cid:76) kGxi. Ifα ∈ kG and β ∈ H i≥0 arenonzero,thenαβ (cid:54)=0. Proof: Supposethatα ∈ kGand β ∈ H arenonzero. Bydefinitionandassumption, β = ∑ α xi,where i i the α arenotallzeroi ∈ Z. Againbydefinition, α = ∑ a gj, wherethe a ∈ k arenotallzerofor j ∈ Z. i j j j Then αβ = ∑ αα xi. Soitsufficestoshowthat αα (cid:54)= 0forsomei ∈ Zastheproductistakenpointwise. i i i Butasαi ∈ kG,wehaveαi = ∑ki akigki,whereki ∈Z. Thenforsomei ∈Z, (cid:32) (cid:33)(cid:32) (cid:33) αα = ∑a gj ∑a gki i j ki j ki is the product of two nonzero elements of kG, which is never zero (we showed this in Proposition 3.9). Hence,αα (cid:54)=0forsomei ∈Z. Hence,αβhasatleastonenonzerocoefficient. i Roman andLinnell have managed toshow that CG0 (the Hopfalgebra of C linear maps α : CG → C such that kerα contains an ideal I of finite co-dimension d in CG) has no nontrivial zero divisors for any infinite finitely generated group G as well as a special case for Hopf algebras of representative functions overcompactgroups. References [1] S.Montgomery,HopfAlgebrasandtheirActionsonRings.AmericanMathematicalSociety,RhodeIsland, 1992. [2] A. Roman, Peter Linnell, Zero Divisors of Hopf Algebras: A Generalization of the Classical Zero- DivisorConjecture.May2012. [3] D.S.Passman,TheAlgebraicStructureofGroupRings.JohnWiley&Sons,NY.1977. [4] D.S.Passman,InfiniteGroupRings,MarcelDekker,NY,1971. [5] B.Sagan,TheSymmetricGroup.Springer-Verlag.NY,2001. [6] Bartosz Malman. Zero-Divisors and Idempotents in Group Rings. Master’s Thesis. Lund University, 2014. [7] KenBrown.HopfAlgebras.http://www.maths.gla.ac.uk/~kab/Hopf%20lects%201-8.pdf 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.