ebook img

Zainab Taha Al-Abdullah PDF

222 Pages·2013·26.77 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Zainab Taha Al-Abdullah

A University of Sussex DPhil thesis  Available online via Sussex Research Online:  http://sro.sussex.ac.uk/    This thesis is protected by copyright which belongs to the author.    This thesis cannot be reproduced or quoted extensively from without first  obtaining permission in writing from the Author    The content must not be changed in any way or sold commercially in any  format or medium without the formal permission of the Author    When referring to this work, full bibliographic details including the  author, title, awarding institution and date of the thesis must be given  Please visit Sussex Research Online for more information and further details 1 The Study of the Growth Mechanism of TiO Nanotubes and Their Applications 2 By Zainab Taha Al-Abdullah A Thesis Submitted for the Degree of Doctor of Philosophy School of Life Sciences University of Sussex November 2012 i Declaration I hereby declare that this work has not been submitted in any substance to another University for the award of any other degree or other academic or professional distinction. Signature ……….……………….. Zainab Taha Yassin Al-Abdullah ii Acknowledgments I would like to express my sincere gratitude and obligation to my supervisor Dr. Qiao Chen for guiding me through my study. I started working with him with very little knowledge of the subject, but his patience and support helped me gain a lot of experimental skills and understanding. I am grateful for all the help and the support from him and his research group. Without them, the thesis would be impossible. I would also like to thank my second supervisor, Dr. Alaa Abdul-Sada who has given valuable advice, help and support throughout this work. I would like to thank the Ministry of Higher Education and Scientific Research in Iraq for giving me this great opportunity and sponsoring my PhD study. I hope my work will benefit the country in the future. I would like to express my warmest thanks to Victoria Smith for her assistance in the English language and support. I would also like to thank my colleague Rantej Kler for the support and help with computer programmes and sharing knowledge. I am grateful to our group members, including Daniel Lester, Fang Yuanxing, Teo Mertanen, Giacomo Canciani, Ali Shahroozi, Brnyia Omar, Adward Lee and Jasbir Bedi, for their help and sharing their knowledge and experiences. I specially thank Dr. Mark Osborne and his group members Simon Cooper and Remi Boulineau for their help and support. I wish to express my enormous gratitude to Prof. Malcolm Heggie and Dr John Turner for their encouragement and academic support. Special thanks must goes to Dr. Julian iii Thorpe for TEM imaging. I would also like to thank Mr. Mick Henry in the teaching lab for his help. I would like to thank Dr. Talib Al-Salih for encouragement and support. Although Karen White is no longer a member of the Sussex staff, I would like to extend my gratitude for her help and kindness throughout the process leading to the offer of a place. I would like to express my gratitude to my dear husband and my lovely kids for all the patience, help and encouragement throughout the whole intense process and I am sorry that they had to sacrifice part of their life, plans and dreams to allow me to achieve my ambition. I would like to express my sincere gratitude to my father for offering his house a surety for my scholarship. This showed the confidence he had in me. Special thanks to my mother and brothers who have always been there for me in all the difficult times, for their love, support and encouragement, for their belief in my ability during my experience in the UK. Special thank for my friends Dr. Waleed Alhusabi, Dr Raghad Al-Salhi, Shatha Sami, Youssra Al-Hilaly, Dr. Asma Mohammed, Maan Rasheed and Amran Yunis for providing great assistance and always being available for help and suggestions. I dedicate this thesis to my dear Bassam iv University of Sussex Zainab Taha Yassin Al-Abdullah D.Phil The Study of the Growth Mechanism of TiO Nanotubes and Their 2 Applications Summary This research project focused on the creation of nanomaterials and their applications. The main aim was to control the growth of TiO nanotubes with various morphologies and to 2 investigate potential applications for controlled drug release and for photocatalytic water splitting. The electrochemical anodisation process in fluoride-containing organic electrolytes was employed to prepare vertically aligned TiO nanotubular arrays, with inner diameters of 2 individual nanotubes ranging from 50 to 150 nm. A variety of morphologies was created by precise control of experimental conditions and parameters. The formation of crystal phases in the TiO nanotubes was controlled by the annealing temperature (in air) and monitored by 2 powder X-ray diffraction (XRD). The fundamental anodisation parameters affecting the morphologies, such as anodisation voltage, electrolyte composition, stirring and the effect of magnetic fields were investigated. Various processing procedures that affect the anodisation process have been studied. The influence of hydroxide islands on the growth mechanism was shown by analysis of anodisation current-time profiles, contact angle measurements and SEM observations. The effect of pre-patterns on the Ti substrate was also studied. The substrate was patterned either mechanically or by Electron Beam Lithography (EBL) with polymethylmethacrylate (PMMA) as a positive photoresist. Instead of circular nanotubes, polygonal TiO nanotubes were formed from the mechanically patterned substrate whereas 2 rectangular and tube-in-tube TiO nanotubes were formed by using EBL. 2 v The TiO nanotubes were used as photoanodes for photocatalytic water splitting using a 2 photoelectrochemical cell for generating hydrogen gas. The effects of nanotube morphology and crystal structure on the efficiency of the conversion of photon energy to chemical energy were studied on samples annealed at various temperatures, and with a range of organic hole scavengers. In addition, control of the morphology was realised by surface passivation with organic thin films and by the control of the anodisation parameters. With stepwise control, bottle shaped nanotubes (nanobottles) were designed and created for their application in controlled drug release. Scanning and transmission electronic microscopy (SEM and TEM) were used to examine the structure and morphology of the nanotubes. The surface composition was studied by X-ray Photo-electron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDX). Crystal phases were identified by XRD. vi Table of contents Declaration ....................................................................................................................... I Acknowledgments .......................................................................................................... II Summary ....................................................................................................................... IV List of Figures ............................................................................................................. XIV List of Tables ............................................................................................................... XX Chapter 1 Introduction ................................................................................................... 1 1.1 An Overview of TiO Nanotube Structure and Synthesis ........................................... 1 2 1.1.1 The Electronic Structure of the Semiconductor ............................................. 4 1.1.2 Fermi Level and Doping ................................................................................. 4 1.1.3 The Fundamentals of Synthesis of TiO Nanotubular Arrays ........................ 6 2 1.1.4 Study of Anodisation Parameters ................................................................. 10 1.1.4.1 Anodisation Voltage .............................................................................. 10 1.1.4.2 The Distance between the Electrodes .................................................... 13 1.1.4.3 Electrolyte .............................................................................................. 14 1.1.4.4 Fluoride Concentration .......................................................................... 14 1.1.4.5 pH........................................................................................................... 15 1.1.4.6 Temperature ........................................................................................... 15 1.1.5 The Development of the Anodisation Method for Creating TiO Nanotubes 2 ..................................................................................................................................... 16 1.1.5.1 The First Generation of TiO Nanotubes (using Aqueous Electrolytes) 16 2 1.1.5.2 The Second Generation of TiO Nanotubes (using Buffered Solutions) 2 ................................................................................................................................. 16 1.1.5.3 The Third Generation of TiO Nanotubes (using Polar Organic 2 compounds) .............................................................................................................. 17 1.1.5.4 The Fourth Generation of TiO Nanotubes from (Non-Fluoride, Acid 2 Base Electrolytes) .................................................................................................... 18 1.2 Titanium Dioxide: A Broad Range of Applications ................................................. 18 1.2.1 TiO in Photocatalysis .................................................................................. 19 2 1.2.2 Water Splitting by TiO Photocatalysis ........................................................ 22 2 1.2.2.1 The Mechanism of Hydrogen Production by a Photoelectrochemical Cell (PEC) ................................................................................................................ 23 vii 1.2.2.2 The Efficiency of TiO in a PEC: Problems and Solutions ................... 25 2 1.2.3 Photovoltaic Application .............................................................................. 27 1.2.3.1 Solar Energy for photoexcitation ........................................................... 29 1.2.3.2 Current-Voltage (I-V) Classification ..................................................... 30 1.2.3.3 Fill Factor ............................................................................................... 31 1.2.3.4 The Efficiency........................................................................................ 32 1.2.4 Drug Delivery ............................................................................................... 32 1.3 Other Applications of TiO ....................................................................................... 33 2 1.4 Thesis Aims ............................................................................................................... 34 Chapter 2 Experimental ............................................................................................... 37 2.1 Abstract ..................................................................................................................... 37 2.2 Sample Preparation ................................................................................................... 37 2.3 Anodising Unit .......................................................................................................... 37 2.4 Characterisation by Electron Microscope Techniques .............................................. 38 2.5 Scanning Electron Microscopy (SEM) ..................................................................... 39 2.5.1 Stigmatism and Resolution ........................................................................... 43 2.5.2 Working Distance and Resolution ................................................................ 44 2.5.3 Working Distance and Depth of Field .......................................................... 44 2.5.4 Accelerating Voltage and Resolution ........................................................... 45 2.5.5 Preparation of SEM Specimens of Anodised TiO ...................................... 47 2 2.5.5.1 The Secondary Electron Image (SEI) .................................................... 48 2.6 Energy Dispersive X-ray Spectroscopy (EDX) ........................................................ 49 2.7 Transmission Electron Microscopy (TEM) .............................................................. 49 2.8 X-Ray Diffraction ..................................................................................................... 50 2.9 The photoelectrochemical Cell (PEC) ...................................................................... 54 2.10 Annealing ................................................................................................................ 55 2.11 Electron Beam Lithography (EBL) ......................................................................... 55 Chapter 3 A New Approach to the Catalytic Growth of Anodised TiO Nanotubes 2 ......................................................................................................................................... 58 3.1 Abstract ..................................................................................................................... 58 3.2 Introduction ............................................................................................................... 58 viii 3.3 Experimental Details ............................................................................................ 59 3.4 Results and Discussion .............................................................................................. 60 3.4.1 Creating the Catalytic Hydroxide Layer ...................................................... 61 3.4.2 Contact Angle Measurements ...................................................................... 64 3.4.3 Time Dependent SEM Study at Different Stages of Anodisation ................ 66 3.4.4 Change of Current during Anodisation ........................................................ 71 3.5 The Effect of Processing Parameters on Nanotube Morphology .............................. 79 3.5.1 Influence of Anodisation Voltage on Tube Length ...................................... 79 3.5.2 Influence of Anodisation Voltage on the Tube Diameter ............................ 80 3.5.3 Influence of the Fluoride Concentration on the Film Morphology .............. 81 3.5.4 Control of Nanotube Morphology by Mechanical Stirring .......................... 83 3.5.5 Control of Nanotube Morphology by Magnetic Fields ................................ 88 3.6 Conclusion ................................................................................................................ 93 Chapter 4 Formation of Polygonal TiO Nanotubes .................................................. 95 2 4.1 Abstract ..................................................................................................................... 95 4.2 Introduction ............................................................................................................... 95 4.3 Experimental Details ................................................................................................. 97 4.4 Results and Discussion .............................................................................................. 97 4.4.1 Morphology Evolution during the Anodisation ........................................... 99 4.4.2 The Effect of Initial Surface Texture on the Growth Mechanism .............. 101 4.4.3 Crystallinity of TiO Nanotubes: Circular vs Polygonal ............................ 101 2 4.5 Conclusion .............................................................................................................. 103 Chapter 5 Control of the Morphology of TiO Nanotubes by Patterning with 2 Electron Beam Lithography ....................................................................................... 105 5.1 Abstract ................................................................................................................... 105 5.2 Introduction ............................................................................................................. 105 5.3 Experimental Details ............................................................................................... 107 5.4 Results and Discussion ............................................................................................ 108 5.4.1The Thickness of the Resist ......................................................................... 108 5.4.2 EBL Parameters .......................................................................................... 109 5.4.3 Development of Patterns ............................................................................ 110

Description:
Qualitative description [143] and quantitative modelling of the electric field distribution Mesosponge and its Use in Dye-Sensitized Solar Cells.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.