ebook img

Z Boson Transverse Momentum Distribution, and ZZ and WZ Production: Measurements Using 7.3 – 8.6 fb–1 of p¯p Collisions at √s = 1.96 TeV PDF

225 Pages·2012·10.171 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Z Boson Transverse Momentum Distribution, and ZZ and WZ Production: Measurements Using 7.3 – 8.6 fb–1 of p¯p Collisions at √s = 1.96 TeV

Springer Theses Recognizing Outstanding Ph.D. Research For furthervolumes: http://www.springer.com/series/8790 Aims and Scope The series ‘‘Springer Theses’’ brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent fieldofresearch.Forgreateraccessibilitytonon-specialists,thepublishedversions includeanextendedintroduction,aswellasaforewordbythestudent’ssupervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on specialquestions.Finally,itprovidesanaccrediteddocumentationofthevaluable contributions made by today’s younger generation of scientists. Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria • They must be written in good English. • ThetopicshouldfallwithintheconfinesofChemistry,Physics,EarthSciences, Engineering andrelatedinterdisciplinaryfieldssuchasMaterials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics. • The work reported in the thesis must represent a significant scientific advance. • Ifthethesisincludespreviouslypublishedmaterial,permissiontoreproducethis must be gained from the respective copyright holder. • They must have been examined and passed during the 12 months prior to nomination. • Each thesis should include a foreword by the supervisor outlining the signifi- cance of its content. • The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field. Mika Vesterinen Z Boson Transverse Momentum Distribution, and ZZ and WZ Production –1 Measurements Using 7.3–8.6 fb of p ffiffiffi pp(cid:2) Collisions at s = 1.96 TeV Doctoral Thesis accepted by the University of Manchester, UK 123 Author Supervisor Dr. MikaVesterinen Prof.TerryWyatt Universityof Manchester Universityof Manchester UnitedKingdom UnitedKingdom ISSN 2190-5053 ISSN 2190-5061 (electronic) ISBN 978-3-642-30787-4 ISBN 978-3-642-30788-1 (eBook) DOI 10.1007/978-3-642-30788-1 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012940240 (cid:2)Springer-VerlagBerlinHeidelberg2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Supervisor’s Foreword This Ph.D. thesis presents three major pieces of new work: • thedevelopmentofnoveltechniquesformeasuringthetransversemomentumof Z bosons; • theapplicationofthesenoveltechniquestodatafromtheDØexperimentatthe Tevatron and a comparison of the measured distributions with state-of-the-art QCD calculations; • precise measurements of the cross sections for WZ and ZZ vector boson pair production [1]. A novel analysis variable, /(cid:2), is proposed [2]. This is sensitive to the same g physics asthe p‘‘ distribution,butissignificantly lesssusceptibletothe effects of T detector resolution and efficiency. In particular, since /(cid:2) depends exclusively on g the directions of the two leptons, which are measured with a precision of a mil- liradian or better, /(cid:2) is experimentally very well measured compared to any g quantities that rely on the momenta of the leptons. Using 7.3 fb(cid:3)1 of p(cid:2)p collisions collected by the DØ detector at the Fermilab Tevatron,thenormalizedcrosssectionismeasuredasafunctionofthevariable/(cid:2)in g bins of boson rapidity and in both dielectron and dimuon final states [3]. These measurementsareofunprecedentedprecisionandexposedeficienciesinthecurrent state-of-the-artQCDpredictionsforvectorbosonproductionathadroncolliders.In addition, these data exclude in hadron–hadron collisions the hypothesis of ‘low-x broadening’(Thisistheideathattheintrinsictransversemomentumofpartonsinside theprotonbecomesbroaderasthemomentumfractionxbecomesverysmall). These new experimental techniques and measurements have stimulated con- siderableinterestinthetheoreticalandexperimentalparticlephysicscommunities. For example, resummed QCD calculations of the distribution of /(cid:2) have been g made and compared with the above DØ measurements [4]. Measurements of /(cid:2) g are now being extended at the Tevatron to lepton pairs with masses outside the Z v vi Supervisor’sForeword resonance region. These techniques have now been picked up by the LHC experiments, where measurements of /(cid:2) distributions are now being performed. g The measurements of the cross sections for WZ and ZZ vector boson pair production build on earlier measurements by DØ, but use improved analysis techniques and almost the full Tevatron Run II data set. At the time of their publication [1]theyrepresenttheworld’smostprecisemeasurementsofthecross sections for WZ and ZZ production. These cross sections are sensitive to anom- alous triple-gauge-couplings, and thus probe the electroweak component of the standard model. WZ and ZZ production are two of the smallest cross section processes currently accessible at a hadron collider and represent major sources of backgroundinsearchchannelsforHiggsbosons.Understandingtheseprocessesis thereforecrucialfordemonstratingsensitivitytothepresenceofastandardmodel Higgs boson at the Tevatron. Manchester, April 2012 Prof. Terry Wyatt References 1.DØ Collaboration, V. M. Abazov et al., arXiv:1201.5652v1 [hep-ex] (2012) [submitted to Phys.Rev.D] 2.A.Banfi,S.Redford,M.Vesterinen,P.Waller,T.R.Wyatt,Eur.Phys.J.C71,1600(2011) 3.DØCollaboration,V.M.Abazovetal.,Phys.Rev.Lett.106,122001(2011). 4.A.Banfi,M.Dasgupta,S.Marzani,L.Tomlinson,HighEnergyPhys.1201,044(2011) Acknowledgments First of all I would like to thank my Supervisor, Terry Wyatt, for guiding me through the past 4 years with endless enthusiasm and ingenuity. ThankstoFredLoebingerforinspiringmetoapplytothisprogram(andalsoto the MPhys program 4 years earlier), and to Stefan Söldner-Rembold for encour- aging me to join the D0 experiment. I am grateful for the tireless IT support(and entertainment)fromSabahSalihwhilebasedinManchester.Iwouldliketothank Mark Owen for helping me to get started with the various D0 frameworks and generalcodingduringmyfirstyear.ThankstoallmembersoftheD0Manchester group and other friends who helped to make my 2 years at Fermilab enjoyable. OfcourseIamthankfulthatmyfiancéeJoannaBurgesshasbeensopatientand understanding during the last 4 years; particularly the 2 years that I was based at Fermilab. I also thank my parents for always supporting my apparent interest in science from an early age. vii Contents 1 Introduction and Theoretical Background. . . . . . . . . . . . . . . . . . . 1 1.1 The Standard Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scattering Amplitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Electroweak Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Strong Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 The Drell-Yan Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5.1 Factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5.2 Higher Order Corrections . . . . . . . . . . . . . . . . . . . . . 9 1.5.3 Monte Carlo Event Generators. . . . . . . . . . . . . . . . . . 11 1.5.4 Drell-Yan Transverse Momentum Distribution. . . . . . . 13 1.6 Electroweak Diboson Production. . . . . . . . . . . . . . . . . . . . . . 13 1.6.1 Previous Measurements . . . . . . . . . . . . . . . . . . . . . . 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 The Accelerator Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 The Initial Accelerator Chain . . . . . . . . . . . . . . . . . . 17 2.1.2 The Main Injector and Antiproton Source. . . . . . . . . . 18 2.1.3 The Tevatron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 The D0 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Inner Tracker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Calorimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.3 Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.4 Trigger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Experimental Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Detector Alignment and Calibration. . . . . . . . . . . . . . . . . . . . 29 3.1.1 Calorimeter Calibration. . . . . . . . . . . . . . . . . . . . . . . 29 ix x Contents 3.2 Particle Reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.1 Charged Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.2 Electrons and Photons . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.3 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.4 Hadronic Taus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.5 IC Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.6 Hadronic Jets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.7 Missing Transverse Energy. . . . . . . . . . . . . . . . . . . . 34 3.3 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 Multivariate Classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Electron and Photon Energy Calibration . . . . . . . . . . . . . . . . . . . 37 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 Correction of the /-Bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Energy Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4.1 Additional Calibrations. . . . . . . . . . . . . . . . . . . . . . . 40 4.4.2 A / Dependence Energy Calibration . . . . . . . . . . . 41 mod 4.4.3 Shower Shape Dependence. . . . . . . . . . . . . . . . . . . . 49 4.4.4 Pseudorapidity Dependence. . . . . . . . . . . . . . . . . . . . 49 4.4.5 Fits for the / Dependence . . . . . . . . . . . . . . . . . . 49 mod 4.4.6 Iteration of the Corrections. . . . . . . . . . . . . . . . . . . . 49 4.4.7 Resolution Improvements . . . . . . . . . . . . . . . . . . . . . 50 4.4.8 Energy Dependence . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5 Monte Carlo Over-Smearing . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5.1 The Crystal Ball Function. . . . . . . . . . . . . . . . . . . . . 56 4.5.2 Method to Fit for the Crystal Ball Parameters. . . . . . . 59 4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5.4 Data Versus MC Comparisons. . . . . . . . . . . . . . . . . . 63 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Novel Variables for Studying the Drell-Yan Transverse Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1 Previous Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2 First Idea: the a Variable . . . . . . . . . . . . . . . . . . . . . . . . . . 65 T 5.3 Second Idea: Mass Ratios of a and p‘‘ . . . . . . . . . . . . . . . . . 67 T T 5.4 Third Idea: The /(cid:2) Variable . . . . . . . . . . . . . . . . . . . . . . . . . 68 g 5.5 Simple Parameterised Detector Simulation . . . . . . . . . . . . . . . 69 5.6 Scaling Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.7 Experimental Resolution for Dilepton Scattering Angle . . . . . . 70 5.8 Experimental Resolution for Variables Related to p‘‘. . . . . . . . 70 T 5.9 Acceptance and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Contents xi 5.10 Sensitivity to the Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.11 Discussion on the Different Variables. . . . . . . . . . . . . . . . . . . 76 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6 Measurement of the Drell-Yan /(cid:2) Distribution. . . . . . . . . . . . . . . 81 g 6.1 The Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.2 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.1 Event Selection Strategy. . . . . . . . . . . . . . . . . . . . . . 82 6.2.2 Data Sample and Skims . . . . . . . . . . . . . . . . . . . . . . 84 6.2.3 Monte Carlo Samples. . . . . . . . . . . . . . . . . . . . . . . . 85 6.2.4 Common Dielectron and Dimuon Requirements . . . . . 85 6.2.5 Dielectron Event Selection . . . . . . . . . . . . . . . . . . . . 85 6.2.6 Dimuon Event Selection. . . . . . . . . . . . . . . . . . . . . . 86 6.3 Corrections to the Fully Simulated Monte Carlo Events . . . . . . 89 6.3.1 Instantaneous Luminosity Profile. . . . . . . . . . . . . . . . 91 6.3.2 Generator Level Physics Re-Weightings. . . . . . . . . . . 91 6.3.3 Electron Energy and Muon Momentum Smearing . . . . 92 6.3.4 Track / and g Smearing. . . . . . . . . . . . . . . . . . . . . . 92 6.3.5 Electron Track p Smearing . . . . . . . . . . . . . . . . . . . 92 T 6.3.6 Local Muon p Smearing . . . . . . . . . . . . . . . . . . . . . 94 T 6.3.7 Trigger and Offline Efficiencies. . . . . . . . . . . . . . . . . 94 6.4 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.5 Comparison of Data with Simulation . . . . . . . . . . . . . . . . . . . 110 6.6 Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.6.1 Binning in /(cid:2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 g 6.6.2 Bin-by-Bin Unfolding. . . . . . . . . . . . . . . . . . . . . . . . 133 6.7 Systematic Uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.8.1 Theoretical Predictions. . . . . . . . . . . . . . . . . . . . . . . 135 6.8.2 Comparison of Data and RESBOS . . . . . . . . . . . . . . . . 137 6.8.3 Fitting for g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 2 6.9 Cross Checks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.9.1 Dielectron Versus Dimuon Comparison . . . . . . . . . . . 137 6.9.2 /-Gap Checks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.9.3 Unfolding Closure Test Using g . . . . . . . . . . . . . . . . 138 2 6.9.4 Data Subset Checks Using g . . . . . . . . . . . . . . . . . . 139 2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7 Measurement of the ZZ and WZ Production Cross Sections. . . . . . 141 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2 Dataset and MC Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2.1 Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2.2 MC Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.