ebook img

Z = 63 - 100 PDF

490 Pages·2004·6.499 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Z = 63 - 100

Chapter 6 Characteristics and structure of atomic nuclear levels for Z = 63 to Z = 76 V.G. Soloviev †, A.V. Sushkov, N.Yu. Shirikova Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research Dubna, Russia 6–2 Z =63 to Z =76 [Ref. p. 6–174 6 Characteristics and structure of atomic nuclear levels for Z=63 to Z=76 6.1 Introduction The aim of this chapter (of the following survey) is to present experimental data on energies and structure of the excited states in deformed nuclei from Z = 63 to Z = 76. There are also a few spherical isotopes of Eu, Gd and Tb. A specific feature of deformed nuclei is the explicit singling out of the degrees of freedom connectedwiththe rotationofthe nucleus asa whole. Aphenomenologicaldescriptionofrotation makes it possible to write the wave function of a deformed nucleus in the form (cid:1) 2I+1 ΨIMK(θl,n)= 16π2 [DMI K(θl)Ψn(Kπ)+(−)I+KDMI ,−K(θl)Ψn(−Kπ)], (6.1) where the wave function Ψn(Kπ) describes an internal motion and the generalizedspherical func- tion DMI K(θl) describes rotation; n=1,2,3,...labels states with a givenKπ. The totalHamilto- nian is H =T +H +H . (6.2) rot cor int The kinetic energy of rotation, T , and the Coriolis interaction, H , coupling internal motion, rot cor H , with rotation, are usually written in the form int I(I+1) T = , (6.3) rot 2J Hcor =−(I+J−+I−J+)/2J, (6.4) where I is the total angular momentum, J is the angular momentum of the internal motion, and J is the moment of inertia. The equilibrium shape of deformed nuclei is an axially symmetric ellipsoid which is described by the function R(θ,φ)=R {1+β Y (θ,φ)+β Y (θ,φ)}, (6.5) 0 2 20 4 40 where R0 = r0A1/3 is the radius of the spherical nucleus of the same volume. Here Yλµ(θ,φ) are spherical functions; β and β are the parameters of the quadrupole (λ = 2) and hexadecapole 2 4 (λ = 4) deformations. In the axially symmetric potential, the spherical subshell nlj splits into j +1/2 twice-degenerate levels. The single-particle state is characterized by the set of quantum numbersqσ, q equalsthe parityπ, theprojectionK ofthe angularmomentumJ onthe symmetry axis of the nucleus, and the Nilsson asymptotic quantum numbers NnzΛ↑ (if K = Λ+1/2) or NnzΛ↓ (if K =Λ−1/2), while σ =±1 relates to time reversal states. The mean field of a deformed nuclei is often described by using the Woods-Saxon potential in theformgiveninChapter1(eqs. 1.11–1.15). Thesingle-particleenergiesandwavefunctionsofthe Woods-Saxon potential change vary slowly with increasing A. Therefore, they are computed for thefourzonesofthedeformednucleiintherare-earthregion. TheparametersoftheWoods-Saxon potential for deformed nuclei are given in Table 1.2 in Chapter 1. Landolt-Bo¨rnstein New Series I/18C Ref. p. 6–174] Z =63 to Z =76 6–3 The wave function φK(q) of the single-particle state of the axially symmetric Woods-Saxon potential can be written in the following expansion over the single-particle wave functions ψnljK of the spherically symmetric Woods-Saxon potential (cid:2) φK(q)= aqnljψnljK (6.6) nlj with the normalization (cid:2) (aq )2 =j+1/2. (6.7) nlj q The structure of the band head is presented in terms of the quasiparticle operators αqσ and α+qσ and phonons Q+λµiσ. We used the quasiparticle operators αqσ and α+qσ instead of the particle operatorsaqσ anda+qσ,which areconnectedto eachother by the Bogolubovcanonicaltransforma- tion aqσ =uqαqσ +σvqα+q−σ (6.8) with the condition u2+v2 =1. (6.9) q q The u2 and v2 are particle- and hole-pair densities, respectively. q q The one-phonon operator in the random-phase approximation(RPA) has the form (cid:2) 1 Q+ = {ψλµiA+(q q ;µσ)−φλµi A(q q ;µ,−σ)}, (6.10) λµiσ 2 q1q2 1 2 q1q2 1 2 q q 1 2 where λµ are the multipole and its projection, i = 1,2,3,... labels the RPA roots, A+(q q ;µσ) 1 2 andA(q q ;µσ)arepairsofquasiparticlecreationandannihilationoperators. Duetotheorthonor- 1 2 malization condition of the wave functions of the one-phonon states, the following conditions are fulfilled: (cid:2) 1 (ψqλµqiψqλ(cid:1)qµ(cid:1)i(cid:1) −φλqµqi φλq(cid:1)µq(cid:1)i(cid:1)) = δλλ(cid:1)δµµ(cid:1)δii(cid:1), 2 1 2 1 2 1 2 1 2 q q (cid:2)1 2 (ψλµiφλ(cid:1)µ(cid:1)i(cid:1) −ψλ(cid:1)µ(cid:1)i(cid:1)φλµi ) = 0. (6.11) q q q q q q q q 1 2 1 2 1 2 1 2 q q 1 2 For low-lying nonrotational states the wave function of a doubly even nucleus can be approxi- mately treated as a one-phonon state Q+ Ψ , (6.12) λµiσ 0 where Ψ is the ground state wave function of a doubly even nucleus, which is determined as 0 a phonon vacuum. For a more exact description of nonrotational states in the Quasiparticle- PhononNuclear Model (QPNM)a wavefunction consists ofa sum ofone- andtwo-phononterms. The wave function (6.12) of the one-phonon collective state contains the contribution of many two-quasiparticle configurations. The largest of them can be observed in a one-nucleon transfer reaction or in au β-decay. The observed large two-quasiparticle components of the wave function of one-phonon states are given in the tables. Thewavefunctionsoflow-lyingnonrotationalstatesinodd-massdeformednucleihavetheform (cid:2) (cid:2) (cid:2) τ τ Ψn(K0π0σ0τ0) = { 0Cqn0α+q0σ0 + 0 Dqn3λ2µ2i2 q q σ λ µ i σ 0 3 3 2 2 2 2 ×α+q3σ3Q+λ2µ2i2σ2δσ3K3+σ2µ2,σ0K0}Ψ0, (6.13) Landolt-Bo¨rnstein New Series I/18C 6–4 Z =63 to Z =76 [Ref. p. 6–174 τ =ν(π) for neutron (proton) odd-mass nuclei. The normalization condition yields 0 (cid:2) (cid:2) (cid:2) τ τ 0(Cqn)2+ 0 (Dqnλ µ i )2[1+LK0(q3,λ2µ2i2)]=1, (6.14) 0 3 2 2 2 q q λ µ i 0 3 2 2 2 where the factor LK0(q3,λ2µ2i2) comes from antisymmetrizing the quasiparticle-phonon compo- nents of (6.14). The (Cn)2 values are measured in one-nucleon transfer reactions (spectroscopic q factor) and β-decays. Th0e contribution to the normalization condition of quasiparticle ⊗ phonon componentsaredeterminedexperimentallyfromEλandM1reducedprobabilitiesfromtheground to the excited states. The wave function of low-lying nonrotational states in doubly-odd deformed nuclei has the following simple form: (cid:2) 1 Ψn(K0π0s1r2)= √2 (δσ1,σ2 −σ1δσ1,−σ2)α+s1σ1α+r2σ2Ψ0, (6.15) σ σ 1 2 where q ≡s for a neutron and q ≡r for a proton single-particle state. By analyzingexperimentaldata onrotationalstatesinodd-massdeformednuclei, the predom- inantly one-quasiparticle structure of the ground states and of a number of excited states was clearly brought forth. The experimental excitation energies of the well-established levels in odd- massdeformednucleiwiththeone-quasiparticlecomponentlargerthan80%arecollectedinTables 6.1and6.2. Kπ andthe asymptoticquantumnumbers NnzΛ↑andNnzΛ↓ areshownin the first line; the element and its mass number A are given in the first and second column, respectively. Energies of the ground states are denoted by 0. It is evident that the independent quasiparticle model correctly describes the general feature of one-quasiparticle spectra in odd-mass deformed nuclei. The one-to-one correspondence between the sequence of single-particle levels of the mean field and the sequence of one-quasiparticle states is clearly established. Each orbit first enters as a particle state. Its energy decreases with increasing N(Z) and at some value of N(Z) the orbit corresponds to the Fermi level, i.e., it forms the ground state. Finally, the orbit becomes a hole state and its energy increases with N(Z). There are, however,severalexceptions, e.g. for N =91 and 95, when two-single-particle levels cross in the vicinity of the Fermi level. 6.1.1 General features of the level schemes and tables of nuclear levels The isotopes considered are ordered by atomic number (Z) and subordered by mass number (A). Level schemes and tables are given for each stable isotope (A,Z), and for isotopes for which there is detailed information in the region from Z = 63 to Z = 76. For spherical nuclei the levelschemes include all levels with the established energies,the angularmomentum J and parity π. For deformed nuclei the level schemes include levels with the established energies, the total angular momentum I and parity π that are members of rotational bands. Additional information (reactions, nuclear structure, etc.) for these levels and other ones with defined Iπ is presented in the tables. 6.1.2 Description of the level schemes 6.1.2.1 Deformed nuclei Levels are presented by horizontal bars, heavy bars denote the ground state and the heads of the rotational bands. Level energies [keV] are located near the right-hand side. The total angular Landolt-Bo¨rnstein New Series I/18C Ref. p. 6–174] Z =63 to Z =76 6–5 Table 6.1. Energies of one-quasiparticle states in odd N nuclei (in keV). Element Nilsson asymptotic quantum numbers A 532↓ 402↓ 505↑ 651↑ 521↑ 642↑ 523↓ 633↑ 521↓ 512↑ 514↓ N Sm 153 127 321 98 0 36 195 91 Gd 155 287 268 122 105 0 267 321 Gd 157 477 426 0 64 437 704 93 Dy 159 621 416 356 549 0 178 310 534 Er 161 396 0 189 172 Gd 159 743 681 0 68 146 506 95 Dy 161 552 488 680 75 0 26 367 758 Er 163 463 444 463 104 69 0 346 609 Gd 161 313 0 510 97 Dy 163 849 421 251 0 351 Er 165 534 551 243 47 0 465 298 478 Yb 167 572 212 30 0 188 308 505↑ 651↑ 521↑ 642↑ 523↓ 633↑ 521↓ 512↑ 514↓ 624↑ 510↑ Dy 165 535 0 108 184 99 Er 167 753 812 668 0 208 348 802 Yb 169 929 657 584 570 0 24 191 960 Er 169 1394 850 245 0 92 822 101 Yb 171 981 95 0 122 835 935 Hf 173 165 0 107 521↑ 642↑ 523↓ 633↑ 521↓ 512↑ 514↓ 624↑ 510↑ 512↓ 503↑ Er 171 198 0 531 706 906 103 Yb 173 351 399 0 636 1031 Hf 175 207 125 0 348 644 867 Yb 175 1009 920 633 0 268 511 809 105 Hf 177 746 560 509 0 324 567 804 1060 W 179 477 222 430 0 309 705 Yb 177 109 0 333 709 1226 107 Hf 179 614 518 215 0 375 721 827 W 181 954 385 366 409 0 458 726 662 Os 183 0 171 Hf 181 68 0 255 109 W 183 623 0 209 453 Os 185 403 0 128 102 W 185 716 24 0 237 111 Os 187 557 0 9.8 100 W 187 145 0 351 113 Os 189 36 0 217 momentum I (in unit h¯), parities π, and Kn are located near the left-hand side of the level. Here K is the projection of I onto the nuclear symmetry axis, n=1,2,3,... labels the Kπ states. The ground state band of the doubly even nucleus is denoted by IπK = 0+0 , 2+0 , 4+0 , etc. gsb gsb gsb Thefirstexcited0+ stateisdenotedbyIπKn =0+01. ThenextstatewiththesameKπ isdenoted by IπK . For example, the ground state has Kπ = 5/2−, then the ground state band is denoted 2 by IπKn = 5/2−5/21, 7/2−5/21, and so on. The lowest excited state with fixed Kπ is denoted Landolt-Bo¨rnstein New Series I/18C 6–6 Z =63 to Z =76 [Ref. p. 6–174 Table 6.2. Energies of one-quasiparticle states in odd Z nuclei (in keV). Element Nilsson asymptotic quantum numbers A 532↑ 413↓ 411↑ 523↑ 411↓ 404↓ 514↑ 402↑ 402↓ 541↓ 505↑ Z Eu 153 98 0 103 63 155 105 0 231 911 157 197 0 396 Tb 155 227 271 0 65 157 327 328 0 572 837 159 364 348 0 548 777 161 482 315 0 418 Ho 159 672 0 206 166 424 67 161 299 0 211 252 424 163 1114 876 360 0 298 440 471 165 1056 995 360 0 429 715 681 167 1073 259 0 392 974 169 1366 1090 254 0 359 1079 Tm 163 136 87 0 23 69 165 491 161 0 81 315 160 167 471 293 0 179 522 172 169 571 379 0 316 785 342 171 676 425 0 636 913 751 173 317 0 Lu 169 493 97 0 439 187 30 71 171 662 208 0 470 296 70 173 735 425 0 451 358 124 175 627 0 396 343 350 177 570 0 150 458 762 Ta 175 865 339 0 132 36 51 73 177 488 0 74 70 187 179 520 0 30 239 628 181 615 0 6 482 183 0 73 459 Re 181 826 262 0 432 75 183 851 496 0 599 185 378 0 933 917 187 626 771 206 0 773 by IπK . For example, the lowest excited state with Kπ =1/2+ is denoted by 1/2+1/2 . Similar 1 1 notation is used in doubly even nuclei. E2or/andM1 transitionsexperimentallyobservedinbandarerepresentedby transitionarrow only. For example, the E2 transitions between 4+2 and 2+2 , between 4+0 and 2+0 were 1 1 1 1 observed experimentally. They are given in Fig. 6.1. No γ-ray transitions were observed between 4+2 and 3+2 , between 3+2 and 2+2 , between 2+0 and 0+0 , and so on. The ground state of 1 1 1 1 1 1 odd-mass or doubly odd nucleus is denoted by IπK . In some cases some of the high-lying levels 1 arenot drawninthe figures when it is not possible for technical reasons,but informationonthem is provided in the tables. Landolt-Bo¨rnstein New Series I/18C Ref. p. 6–174] Z =63 to Z =76 6–7 4+0 1360 1 2+0 (cid:1) 1350 1 0+0 1080 1 9/2−5/2 1020 2 4+2 980 1 7/2−5/2 901 3+2 883 2 1 2+2 (cid:1) 810 5/2−5/2 (cid:1) 811 1 2 7/2+1/2 610 1 6+0gsb 540 5/2+1/21 (cid:1) 527 3/2+1/2 (cid:1) 487 1 1/2+1/2 (cid:1)(cid:1) 451 1 4+0 (cid:1) 260 11/2−5/21 280 gsb 9/2−5/2 (cid:1) 160 1 2+0gsb (cid:1) 80 7/2−5/21 (cid:1) (cid:1) 72 0+0 (cid:1) 0 5/2−5/2 (cid:1)(cid:1) 0 gsb 1 IπKn E [keV] IπKn E [keV] Fig. 6.1. Doublyeven nucleus (left) and odd-mass nucleus (right). 6.1.2.2 Spherical nuclei Levels are plotted by horizontallines, a thick line correspondsto the nuclear groundstate. At the left-handside ofthe figureinformationonthe totalangularmomentumJ andparityπ ofthe level is indicated as Jπ. Index n=1,2,... indicates whether a state Jπ is the first, second, etc., in the n total energy spectrum. Excitation energies of levels in keV relative to the ground state are given at the right-hand side of the figure. Decays of levels by γ-transitions are plotted by vertical lines. For each level the transition which has the largest intensity is plotted by a thick line. If a level decays into only one other level, this transition is also specified by a thick line. At the bottom of eachlevelscheme the value ofneutron, S , andproton,S , separationenergiesandofmass excess n p ∆, in keV, is provided. Inafewexceptionalcasesitwasnotpossibletopresentallknownlevelsinthefigurefortechnical reasons. Then the figure is cut at the higher energy region. The information on truncated levels is provided in the table. Landolt-Bo¨rnstein New Series I/18C 6–8 Z =63 to Z =76 [Ref. p. 6–174 6.1.3 Description of the tables The levels are ordered by the energies of the head of rotational bands. The head of the table contains the neutron separation energy S (in keV), proton separation energy S (in keV), and n p mass excess ∆ = M − A (in keV) with ∆(12C) = 0, by definition. The tables contain basic information on the excited states and their population. These data are following: 1) T1/2 is half-life. Conventional units are employed - y=year, d=day, h=hour, m=minute, s=second, ms=10−3 s, µs=10−6 s, ns=10−9 s, ps=10−12 s, fs=10−15 s. 2) quadrupolemoment,Q,(inbarn)(forsphericalnuclei),andmagneticmoment,µ,(innuclear magnetons, µN), of the ground state and excited levels. 3) γ-ray transition rates: a) Transitions to the ground state of doubly even nuclei, i) B(E1)=B(E1;1−Kn→0+0gsb)withK =0or1,inunite2fm2 and/orinWeisskopf units (W.u.). ii) B(M1)=B(M1;1+1n→0+0gsb) in unit µ2N =11·10−3 e2fm2 and/or in W.u. iii) B(Eλ)=B(Eλ;λπKn→(cid:3)0+0gsb)(cid:4)for λ=2, 3, and 4, in units e2fm2λ and/or in W.u., 1 3 2 B(Eλ)W.u. = 4π λ+3 (1.2·A1/3)2λ e2 fm2λ (cid:3) (cid:4) 10 3 2 B(Mλ)W.u. = π λ+3 (1.2·A1/3)2λ−2 µ2N fm2λ−2 . b) {RIefπdfuKcendf}psrtoabtaebsialirteiegsivoefnthbeyBγ-(rEayλ→trIafπnfsKitinofn)s,Bbe(tMwλee→nItfπhfeKinnfit)iainl {WI0π.u0K. Tn0h}isannodtafitnioanl is used for γ-ray transitions between excited states in doubly even, doubly odd and odd-mass nuclei. The experimental ρ2(E0) values following from the matrix elements ofthe E0transitions(E0internalconversions)andX(E0/E2)valuesfollowingfromthe reduced probabilities of the E0 and E2 transitions are given in the tables. c) Reduced transition probabilities for spherical nuclei, B(Eλ→Jπ) or B(Mλ→Jπ), for n n γ-decay of the level into levels at lower energies with quantum numbers Jπ. They are n given in W.u. B(M1/E2→Jπ) means that decay to the Jπ level occur by M1 and E2 n n transitions. For such cases the mixing ratio, δ, is given in brackets if it is known. 4) logft values for β−-decays, for EC (electron capture) or/and β+-decays with logft≤7.0. 5) Population of the levels by one-nucleon transfer reactions. (d,p), (d,t), (α,t), (t,α), etc., denote that the intensities of relevant reactions were observed. 6) Experimentalinformationaboutthedominantorlargeone-ortwo-quasiparticleconfiguration (in special cases in %) is extracted from a) au (allowed unhindered) β transitions, b) one-nucleon transfer reactions. Additional, model-dependent Nilsson asymptotic quantum numbers NnzΛ↑ at K =Λ+1/2 and NnzΛ↓ at K =Λ−1/2 are used for neutron, ν, and proton, π, quasiparticles. 7) Strengths of (p,t) and (t,p) reactions relative to the ground-to-groundstates strength: S˜n(p,t)= SS(np(,pt,)t) and S˜n(t,p)= SS(nt,(pt,)p) . gsb gsb Landolt-Bo¨rnstein New Series I/18C 151Eu Ref. p. 6–174] 6–9 63 88 25/2− 2152 1 1/2+ 1749 1 21/2− (cid:1) 1564 1 17/2− (cid:1) 1041 19/2−1 (cid:1) (cid:1) 957 5/21+ 902 5 5/2+ 697 5/2+4 654 13/2−3 (cid:1) 611 1 9/2+ 503 15/2−1 (cid:1) (cid:1) (cid:1) 502 1 9/2− (cid:1) 350 5/21+ 260 7/2−2 (cid:1) (cid:1) (cid:1) 243 11/21− (cid:1) (cid:1) (cid:1) 196 1 7/2+ (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) 22 5/2+1 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) 0 1 Jnπ Sn = 7934 keV, Sp = 4891 keV, ∆=−74663 keV E [keV] Jnπ E T1/2 Information on Ref. [keV] structure and population of the levels [97S] 57//22+1+1 022 s9t.a6bnles 2Bd(5M/21/isEl2a→rge5,/Q2+1=)=0.980.33·b1a0r−n3,/µ8.=1 W3.4.7u1.7(δµ=N,0(.03H29e),,d1),g(7α/2,ti)s large, Q=1.28 barn, µ=2.591 µN 11/2− 196 58.9 µs B(M2→7/2+)=0.0336 W.u., B(E3→5/2+)=5.9 W.u., 1 1h11/2 is larg1e, Coul. exc., (n,n(cid:1)γ), (d,t), (31He,d), (α,t) 7/2− 243 0.36 ns B(E1→ 7/2+) = 2.5·10−8 W.u., B(E1→ 5/2+) = 4.5·10−5 W.u., 1 Coul. exc., (1n,n(cid:1)γ), (3He,d), (α,t) 1 5/2+ 260 Coul. exc., (n,n(cid:1)γ), (d,t), (3He,d), (α,t), (p,t) 9/22− 350 <0.1 ns B(E2→7/2−)>70 W.u., B(E1→7/2+)>5.6·10−7 W.u., 1 logft=6.681 (EC from 7/2−, 151Gd), C1oul. exc., (n,n(cid:1)γ), (d,t) 15/2− 502 (n,n(cid:1)γ) 9/2+1 503 Coul. exc., (p,p(cid:1)), (d,d(cid:1)), (n,n(cid:1)γ), (d,t), (3He,d), (α,t), (p,t) 13/12− 611 (n,n(cid:1)γ) 5/2+1 654 (n,n(cid:1)γ), (d,t), (3He,d), (α,t), (p,t) 5/23+ 697 Coul. exc., (d,d(cid:1)), (n,n(cid:1)γ), (d,t), (3He,d), (α,t), (p,t) 4 5/2+ 902 (p,t) 19/52− 957 (n,n(cid:1)γ) 17/21− 1041 (n,n(cid:1)γ) 21/21− 1564 1 1/2+ 1749 (3He,d), (α,t) 25/12− 2152 1 Landolt-Bo¨rnstein New Series I/18C 152Eu 6–10 [Ref. p. 6–174 63 89 2− 221 4 3+ 221 4 3− 221 3 4+ 214 3 2− 214 3 4− 203 4 3+ 201 3 5− 201 2 7+ 193 1 5− 181 1 1+ 158 2 4− (cid:1) (cid:1) (cid:1) (cid:1) 151 3 (cid:1) (cid:1) 6+ 149 8−1 (cid:1) 148 1 (cid:1) (cid:1) (cid:1) (cid:1) 3+ 146 4−2 (cid:1) (cid:1) (cid:1) (cid:1) 142 2 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) 4+ 125 2 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) 2+ 121 2−1 (cid:1) (cid:1) (cid:1) (cid:1) 118 2 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) 3+ 114 2−1 (cid:1) (cid:1) (cid:1) 111 1 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1)(cid:1)(cid:1) (cid:1) 5+ 108 1 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1)(cid:1) (cid:1) (cid:1) 4+ 90 4−1 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) 90 1 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) 1+ 78 3−1 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) 77 2 1− (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) 65 1 0− (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1)46 1 3− (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)0 1 Jnπ Sn = 6307 keV, Sp = 5601 keV, ∆=−72898 keV E [keV] Landolt-Bo¨rnstein New Series I/18C

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.