ebook img

YSO jets in the Galactic Plane from UWISH2: I - MHO catalogue for Serpens and Aquila PDF

0.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview YSO jets in the Galactic Plane from UWISH2: I - MHO catalogue for Serpens and Aquila

Mon.Not.R.Astron.Soc.000,1–13(2011) Printed17January2012 (MNLATEXstylefilev2.2) YSO jets in the Galactic Plane from UWISH2: I - MHO catalogue for Serpens and Aquila G. Ioannidis1(cid:63), D. Froebrich1† 2 1CentreforAstrophysicsandPlanetaryScience,UniversityofKent,Canterbury,CT27NH,UK 1 0 2 Receivedsooner;acceptedlater n a J ABSTRACT 6 1 JetsandoutflowsfromYoungStellarObjects(YSOs)areimportantsignpostsofcurrently ongoingstarformation.Inordertostudytheseobjectsweareconductinganunbiasedsurvey ] along the Galactic Plane in the 1-0S(1) emission line of molecular hydrogen at 2.122µm A using the UKInfrared Telescope.In this paperwe arefocusing ona 33square degreesized G regioninSerpensandAquila(18◦<l<30◦;-1.5◦<b<+1.5◦). . We trace 131 jets and outflows from YSOs, which results in a 15 fold increase in the h totalnumberofknownMolecularHydrogenOutflows.Comparedtothis,thetotalintegrated p 1-0S(1)fluxofallobjectsjustaboutdoubles,sincetheknownobjectsoccupythebrightend - o ofthefluxdistribution.Ourcompletenesslimitis3·10−18Wm−2 with70%oftheobjects r havingfluxesoflessthan10−17Wm−2. t s Generally, the flows are associated with Giant Molecular Cloud complexes and have a a scale height of 25–30pc with respect to the Galactic Plane. We are able to assign potential [ source candidates to about half the objects. Typically, the flows are clustered in groups of 1 3–5 objects, within a radius of 5pc. These groups are separated on average by about half v a degree, and 2/3rd of the entire survey area is devoid of outflows. We find a large range of 7 apparentoutflowlengthsfrom4(cid:48)(cid:48) to130(cid:48)(cid:48).Ifweassumeadistanceof3kpc,only10%ofall 3 outflowsareofparsecscale.Thereisa2.6σ overabundanceofflowpositionanglesroughly 2 perpendiculartotheGalacticPlane. 3 1. Keywords: ISM:jetsandoutflows;stars:formation;stars:winds,outflows;ISM:individual: 0 GalacticPlane 2 1 : v i 1 INTRODUCTION rence in other star forming regions (low and high mass)? Is star X formationtriggeredininfrequentburstsorisitanongoing,multi- The interstellar medium (ISM) in galaxies is radically influenced r pleepochprocessineachGMC?ThepresenceofjetsfromYSOsis a bystarformation.GiantMolecularClouds(GMCs)areheatedand anindicationofayoungpopulationandactiveaccretionwhilethe excitedbyoutflowsfromprotostarsandradiationfromhigh-mass sparsityoftheminregionswithasizeablepopulationofreddened young stellar objects (YSO). Changes in chemistry and probably sources shows a more evolved region with a larger population of theturbulentmotioninGMCsarearesultofstarformation,espe- pre-main-sequencestars.Thedynamicalageofaprotostellarout- ciallymassivestarformation.Therefore,itisofgreatimportance flowis10to100-timeslessthantheturbulentlifetimeofaGMC. tounderstandtheformationofstars. Therefore,thepresenceofalargenumberofoutflowswillbeanin- JetsandoutflowsfromYSOsaresign-postsofcurrentlyongo- dicationofcurrentlyongoingormultipleepochsofstarformation. ingstarformation(e.g.Ballyetal.(1995);Eislo¨ffel(2000);Froe- brich&Scholz(2003);Davisetal.(2009)).Previousstudiesofstar forming regions like the OrionA molecular ridge by Davis et al. Outflows from YSOs are also a direct tracer of mass accre- (2009)andStankeetal.(2002),DR21/W75byDavisetal.(2007), tion and ejection and can be used to estimate star formation effi- aswellastheTaurus-Auriga-PerseuscloudsbyDavisetal.(2008), ciencyfromregiontoregion.Thisisparticularlythecaseinhigh haveshownalargenumberofoutflowsfromYSOs.However,there massstarformingregionswheretheefficiencyisgrosslyaffected areanumberofopenquestionswhicharestilltobeaddressed.For byexistingmassiveyoungstars,whichinfluencetheenvironment example:Isalargenumberofjetsandoutflowsacommonoccur- via their hugely energetic winds and intense UV fluxes. Further- more,inmassivestarformingregions,whereyoungstarsformin clusters and massive stars influence their lower-mass neighbours, (cid:63) E-mail:[email protected] photo-evaporation and ablation of protostellar disks can suppress † E-mail:[email protected] accretion.Asaresultthemechanismthatdrivesthejetsandout- (cid:13)c 2011RAS 2 Ioannidis&Froebrich flowsisswitchedoff.Towhatdegreedotheseinteractionsaffect positions and distribution of outflows, the lengths and flux distri- accretioninYSOs? butions as well as their orientation. We conclude our findings in Thepositionofindividualprotostarscanbedetectedfromjets Sect.4. andoutflowswhiletheirevolutionarystage(e.g.Class0,ClassI)is closelyrelatedtothebrightnessinH emission(CarattioGaratti 2 et al. 2006). The mass infall/ejection history can be determined 2 DATAANDANALYSIS from jets since there is a correlation between the jet parameters, mass infall rates and accretion luminosities (Beck 2007; Antoni- 2.1 NearinfraredUKIRTWFCAMdata uccietal.2008). We obtained our near infrared narrow band imaging data in the Studies by Eislo¨ffel et al. (1994) and Banerjee & Pudritz 1-0S(1) line of H using the Wide Field Camera (WFCAM (2006) suggest that outflows are aligned parallel with the local 2 - Casali et al. (2007)) at the United Kingdom Infrared Tele- magneticfieldandperpendiculartothechainsofcores.However, scope(UKIRT). Thecamera consistsof fourRockwell Hawaii-II existingobservationsgivemixedresultswithoutadefiniteanswer (HgCdTe 2048×2048) arrays with a pixel scale of 0.4(cid:48)(cid:48). The 1- (Anathpindika & Whitworth 2008; Davis et al. 2009). Is there a 0S(1)filteriscentredat2.122µmwith∆λ=0.021µm.Ourdata correlationbetweenthemassofthedrivingsourceandtheorienta- is part of the UWISH2 survey (see F11 for details) and the H tionoftheflowwithrespecttothecloudfilament(i.e.aremassive 2 images are taken with a per pixel integration time of 720s under outflowsmorelikelytobeorthogonaltothefilamentsthanflows verygoodseeingconditions.Thetypicalfullwidthhalfmaximum fromlowmassstars)?Furthermore:Whatfractionofoutflowsand (fwhm) of the stellar point spread function is 0.7(cid:48)(cid:48), the 5σ point jetsarecollimated,andwhatfractionareparsec-scaleinlength?Is sourcedetectionlimitisabout18mag(inbroad-bandK)andthe thereacorrelationbetweenthemedianageoftheembeddedpop- surfacebrightnesslimitisabout10−19Wm−2arcsec−2 whenav- ulationandthemeanflowlength?Areoutflowssufficientinnum- eraged over the typical seeing (F11). Our narrow band data were bersandenergeticenoughtoaccountfortheturbulentmotionsin takenbetween31stofJuly2009and9thofSeptember2010. GMCs? Furthermore, we utilised the UK Infrared Deep Sky Survey In order to answer the above outlined questions we need to (UKIDSS) data in the near infrared JHK bands taken with the have a representative sample of jets and outflows from young sametelescope,sameinstrumentalset-upandtilingaspartofthe stars which is free from selection effects. This will allow us to GalacticPlaneSurvey(GPS,Lucasetal.(2008))inordertoper- perform a statistically meaningful investigation of the dynamical formthecontinuumsubtraction(H -K)ofournarrowbandimages processes associated with (massive) star formation. Therefore we 2 andtogeneratethreebandcolourimages(JHK,JHH ,JKH ; are conducting an unbiased search for jets and outflows in the 2 2 see Sect.2.3). When compared to our narrow band data the NIR Galactic Plane using the UKIRT Wide Field Infrared Survey for broadbanddatahasverysimilarquality(fwhmanddepth).Both H (UWISH2 – Froebrich et al. (2011), hereafter F11). The data 2 datasetsaretakentypicallyabout2.5to4.0yearsapart. is taken in the H 1-0S(1) emission line at 2.122µm, and thus 2 DatareductionandphotometryforbothNIRdatasetsaredone highlights regions of shock excited molecular gas (T ≈ 2000K, by the Cambridge Astronomical Survey Unit (CASU). Reduced n >103cm−3),aswellasfluorecentlyexcitedmaterial.Hence, H2 imagesandphotometrytablesareavailableviatheWideFieldAs- itcanbeusedtotraceoutflowsandjetsfromembeddedyoungstars. tronomy Unit (WFAU). The basic data reduction procedures ap- In this project we focus our attention on the Serpens/Aquila pliedaredescribedinDyeetal.(2006).Calibration(photometric regionintheGalacticPlane,coveredbyUWISH2.Inparticularwe as well astrometric) is performed using 2MASS (Skrutskie et al. investigatethearea18◦<l<30◦;-1.5◦<b<+1.5◦,whichapprox- (2006))andthedetailsaredescribedinHodgkinetal.(2009). imatelycovers33squaredegrees(seeFig.1foranoverviewofthe region). It is the first continuous area of this size completed and coversabout20%ofthetotalUWISH2area.Hence,itwillallow 2.2 DifferenceImages ustoobtainfirstbutstatisticallysignificantresultsaboutthepopu- lationofjetsandoutflowsfromyoungstarsintheGalacticPlane. In order to reveal mutually exclusive emission line regions asso- Inthispaperwepresentouranalysisoftheabovementioned ciated with H2 jets and outflows (or other H2 emitters), the H2 region.Wefocusonthedetectionofthejetsandoutflows,aswellas narrowbandimageshavebeencontinuum-subtractedusingtheK- theirpotentialsources.Wefurtheranalysethespatialdistributionof bandimagesfromtheGPS.Notethatweareworkingwithimages thediscoveredobjects,theirapparentlengths,positionanglesand about13.3(cid:48)×13.3(cid:48) insizethroughouttheproject,sincetheseare fluxes.Toconvertapparentmeasurements(suchassize)intophys- the images delivered by CASU. Every set of images (H2, K) is icallymeaningfulmeasurementsweneedthedistance.Weassume alignedbasedontheirWorldCoordinateSystem(WCS).Photom- that all outflows are at a distance of 3kpc throughout the paper, etryisperformedtodeterminethemeanfwhmofeachimage. since this turns out to be the most commonly measured distance Tocompensateforthedifferentseeingconditionsinbothim- for outflows in our sample. In our forthcoming paper (Ioannidis agesandtoenhancethesignaltonoiseratiointhedifferenceim- & Froebrich, in prep., PaperII) we will discuss in detail our dis- agesweGaussiansmoothedbothimagesbeforethecontinuumsub- tancemeasurementmethodoftheindividualjetsandoutflows.We traction.Theimagewiththeworseseeing(imageb)issmoothed willthendetermineindetailstatisticallycorrectedluminosityfunc- using a Gaussian with a fwhm of rsb=0.4(cid:48)(cid:48). The image with the tionsandlengthdistributionsofthejetsandoutflowsandinvesti- better seeing (image a) is smoothed with a Gaussian of a larger gatetheirdistributionintheGalacticPlane.Finally,inIoannidis& fwhm(rsa),whichwecalculateas: Froebrich(inprep.,PaperIII)wewillinvestigatethedrivingsource properties as well as the environment (cloud structure, clustered ra =(cid:112)(fwhmb)2−(fwhma)2+(rb)2 andisolatedstarformingregions)thejetsandoutflowsarein. s s InSect.2wediscussourdataandanalysismethods.Wethen wherefwhma isthemeanfwhmofimageaandfwhmb is present our results and discussion in Sect.3, which includes the themeanfwhmofimageb.Typicallytheseeinginbothimagesis (cid:13)c 2011RAS,MNRAS000,1–13 YSOjetsintheGalacticPlanefromUWISH2:I-MHOcatalogueforSerpensandAquila 3 Figure1.Positionsofoutflows(blacksquares)overplottedonarelativeextinctionmap(greyscaleimage)basedonnearinfraredcolourexcessinGPSdata. Pleaseseetextfordetailsonthebackgroundmap. very similar and the smoothing radii ra and rb are thus not very takenattwodifferentepochs,very’red’orvery’green’objectscan s s different. be identified as K-band variable stars in the JKH composites. 2 Inordertocompletelyremovecontinuumsourcessuchasstars Incontrast,theJHKandJHH imagescanbeusedtodetectob- 2 in the difference images, the K-band images need to be scaled. jectswithK-bandexcessemission,inotherwordscandidateyoung Sincethescalingfactorscdependsontheforegroundextinctionto stellarobjects. thestars,weexpectthistovarysignificantlyacrossimagestakenin theGalacticPlane.Wethususeapositiondependentscalingfactor sc(x,y)(’scalingimage’)forthecontinuumsubtraction. 2.4 Outflowdetection For this purpose we determine the mean scale factor for all Ouraimtoinvestigateanunbiasedsampleofjetsandoutflowsfrom starsinsmallsub-regions(10(cid:48)(cid:48)×10(cid:48)(cid:48)).Beforeapplyingthescaling youngstarsintheGalacticPlanecannotjustbeachievedbyper- image to the K-band it is smoothed with a radius of 30(cid:48)(cid:48). Thus, forming an unbiased survey. We also need to take great care not wetraceasmuchstructureoftheforegroundextinctionaspossible tointroduceanydetectionbiaswhenidentifyingtheobjectsinour whileensuringasufficientsignaltonoiseofthescalefactor. data.Thus,wefollowthestrategydescribedbelowtofindallpo- Thefinaldifferenceimagesarethencreatedas: tentialjetandoutflowcandidates. AllH -K differenceimageshavebeenvisuallyinspectedfor 2 DifferenceH2−K =H2−K∗sc extendedH2 emissionfeaturesinfullresolution.Theorderofin- spectionwascompletelyrandomtoavoidtheintroductionofbiases DuetotheGaussiansmoothingtoadaptthestellarfwhm,the duetooursearchpattern.Theoriginalsearchhasbeenperformed resultingdifferenceimageshaveahighersignaltonoisethanthe byjustoneofus.However,thesubsequentcleaningofthisinput originalH2 andK images.Whilemostofthenonsaturatedstars catalogue(seebelow)hasbeendonebytwopeople. arenotpresenttheH2emissionfeaturesarepreserved.Wenotethat Everydetectedemissionfeaturethathasbeenidentifiedinthe thedifferenceimagesareonlyusedforthepurposeofdetectionof H -K difference images at first has been confirmed in the corre- 2 jetsandoutflowsfromprotostars(seeSubsection2.4)andnotfor spondingH imagetoavoidtheinclusionofimageartefacts.We 2 photometry. thencheckeditagainstthefullresolutionJKH colourcomposite 2 of the region (such as the one shown in Fig.2). Thus, any object thatcouldpotentiallybeanimageartefacthasbeenremovedfrom 2.3 NIRColourimages thesourcelist. ThesearchforH emissionfeatures(asdescribedinSection2.4) Finally,weneedtocleantheremainingobjectsfromrealemis- 2 ismainlybasedontheH -Kdifferenceimages.However,thever- sioncontaminants.Theseincludee.g.PlanetaryNebulae(PN),Su- 2 ification that the observed feature is indeed a jet or outflow from pernovaRemnants(SNR)andfluorescentlyexcitedregionssuchas a young stellar object is greatly facilitated by the additional use edgesofmolecularclouds,HIIregionsandareasaroundyoungem- ofnearinfraredcolourcompositeimagesobtainablefromourdata beddedclusterswithmassivestars.PlanetaryNebulaecanusually sets. These images are also extremely useful to identify potential beidentifiedbytheirvisualappearance.InthecaseofSNshocks drivingsourcesforthediscoveredjetsandoutflows. andfluorescentlyexcitedcloudedgesthisismorecomplicated,as We thus created full resolution near infrared JHK, JHH they can mimic shocks from jets and outflows. We searched the 2 andJKH colourcompositesforeveryimage.Eachofthecolour SIMBADdatabaseforknownSNRsneartoouridentifiedobjects. 2 combinationsenhancesdifferentaspectsofthespectrumandthere- AnypotentialfeaturedetectednearsuchknownSNRshasbeenex- foremakesiteasiertovisuallydetectand/orverifyobjectsofin- cludedfromourlist.Weinspectedregionswith(obviously)fluores- terest.Morespecifically,theJKH imagescanbeusedtodetect centlyexcitedcloudedgesverycarefullyandexcludedanyobject 2 pureH emissionregions.SincetheH andK imageshavebeen thatpotentiallywasnotajet/outflowfeature. 2 2 (cid:13)c 2011RAS,MNRAS000,1–13 4 Ioannidis&Froebrich TheresultinglistofH emissionlineobjectsisthuscomplete theH feature,correctedforthelocalbackgroundlevelandrepeat 2 2 uptothesurveydetectionlimit,contains(almost)nofalsepositives thatmeasurement,usingidenticalaperturepositions,inthescaled andisunbiased. (usingsc(x,y),seeSect.2.2above)K-bandimagetocorrectfor thecontinuumcontainedinthenarrowbanddata. The background- and continuum-corrected H counts for 2.5 Drivingsourcesofoutflows 2 each emission feature are then converted into physical flux units Onevitaltaskinordertounderstandthepropertiesofthedetected (W/m2)usingthefluxzeropointsprovidedbyCASU.Thefinal jetsandoutflows(e.g.thelengthdistribution)istheidentification flux values for the H2 emission in the 1-0S(1) line (summed up oftheirpotentialdrivingsources.Weutiliseanumberofpublished over all knots in each MHO) are shown in TableA1 in the Ap- catalogues of YSOs as well as mid and far infrared source lists pendix. forthispurpose.TheseincludethecatalogueofYSOscompiledby Uncertaintiesinthephotometryarebasedonthevariationof Robitailleetal.(2008)fromtheSpitzerGLIMPSEsurvey(Church- thelocalbackgroundlevelintheH2 andK-bandimagesandthe well et al. 2009), detections in the AKARI/IRC mid-infrared all- choiceoftheexactpositionoftheaperturesenclosingtheH2emis- skysurveybrightsourcecatalogue(Ishiharaetal.2010;Yamamura sionregions.Typicaluncertaintiesofthemeasuredfluxesaredis- etal.2009),detectionsintheIRASPointandFaintSourceCata- cussedinSect.3.5. logue(Moshir1989,1991)anddetectionsintheBolocamGalactic PlaneSurvey(Aguirreetal.2011),whichallcoverourentiresur- veyfield.AdditionallyweusedK-bandexcesssourcesidentified 3 RESULTSANDDISCUSSION fromJHK detectedobjectsintheUKIDSSGPS,aswellasK- bandvariablesourcesidentifiedintheH -K differenceimagesas Wehavedetectedatotalof131molecularhydrogenoutflowsfrom 2 potentialdrivingsourcecandidates. YSOsinoursurveyfieldof33squaredegrees.Outofthese,121 TodecideonthemostlikelysourceforeachH feature,we (92%)objectsarenewdiscoveries.Ofthetenalreadyknownout- 2 over-plotallpotentialsourcecandidatesovertheH -K difference flows, two have been recently identified by Lee et al. (2011 in 2 images. Basedon the vicinityof source candidatesand H emis- preparation)usingUWISH2dataaswell.Thus,94%ofourout- 2 sion,thealignmentofanumberofemissionknotswithapotential flowsarenewlydiscoveredinourdataset.Hence,inthefieldin- source, or the shape of bow-shock like features we grouped the vestigatedhere,theUWISH2dataincreasedthenumberofknown H emissionobjectsintooutflowsandassignedoneMHOnumber molecularhydrogenoutflowsbyafactorof15. 2 to each of them, following the procedure outlined in Davis et al. InTableA1intheAppendixwelisttheassignedMHOnum- (2010).Figure2showsMHO2204asanexampleofadetectedjet bers, positions, fluxes, apparent lengths, position angles, source withapotentialsourcecandidate. candidatesandtheirpositions.InTableB1weshowH2-K images Therearecaseswithseveralpotentialsourcecandidates.Ifit ofeachMHOandgiveabriefdescriptionofitsmorphologyand is impossible to decide on one specific one we consider all pos- potential sources. We note that there is a difference between the sibilities. In cases where non of the above mentioned catalogues number of outflows (131) and the number of MHOs (134). The allowed us to find a potential source for an H feature, we ad- reason for this is that some of the already assigned MHO num- 2 ditionally searched the SIMBAD database for other indicators of bers are part of the same outflow. More specifically MHO2206, YSO outflow sources, such as masers and (sub)-mm sources. Fi- MHO2207andMHO2208arepartofthesameoutflow.Similarly, nally, if there are several source candidates which apparently are thebowshockMHO2212ispartofthesameflowasMHO2201. thesameobject(suchasanIRAS,BolocamandGlimpsedetection IncaseslikethesewetreatallMHOsasoneoutflow.Allobjectsin atroughlythesamecoordinates),weuseasthesourcepositionand TableA1thatarepartofanoutflowcontainingseveralMHOsare identifier the object in the survey with the highest spatial resolu- markedwithanasterisk. tion.Thereareanumberofcaseswhereweclearlydetectasmall, bipolar and symmetric jet but no object has been detected in any 3.1 Spatialdistributionandclusteringofoutflows surveyatthesuspectedsourceposition.Inthesecasesweassume thesourcetobesituatedbetweentheH2featuresontheflowaxis, WeshowthepositionsofalldetectedoutflowsinourfieldinFig.1. anditisgiventheidentifier’Noname’.Note,thatMHO2444would Thegrey-scalebackgroundmapinthisfigureisarelativeextinction beoneoftheseobjects,ifithadnothaddeepJCMTdatafromDi mapbasedonmediannearinfraredcolourexcess(e.g.Rowles& Francescoetal.(2008). Froebrich(2009))determinedfromUKIDSSGPSdata(Lucasetal. (2008)).NotethatsomeregionsinthemaphavesmallA off-sets. V Thisiscausedbyknown,minorphotometriccalibrationissuesof 2.6 Photometry theGPSdatawhichwillbecorrectedinfuturedatareleases.Since AfterthedetectionoftheH emissionfeatureswehavetomeasure wearenotusingtheactualA valuesinthepaper,thisisapure 2 V theirfluxes.Thisisstraightforward,sinceourH imageshavebeen ’cosmetic’issue. 2 fluxcalibratedbyCASU. As expected, the outflows are mainly located in areas with We define apertures around each emission feature in the H highextinction.Theiroveralldistributionhencefollowsnicelythe 2 images.Greatcareistakenthatcontinuumsources(suchasforeor giant molecular cloud complexes visible in the A map. Only a V backgroundstarsatthesamelineofsight)arenotincludedinthe smallnumberofobjectsisnotsituatedwithindenseclouds.How- apertures. We also ensure that the apertures contain as little area ever,therearenumerousareasofhighextinctionwherenooutflows as possible that seems to be free of emission in order not to add havebeendetected.InPaperIIIwewillinvestigateindetailifthere noise. Simultaneously, we use for each H feature a nearby sky- isanA thresholdforthedetectionofmolecularhydrogenflows, 2 V aperturethatiscompletelyemissionfreeanddefinesthelocalsky and which fraction of high column density clouds does not show level (see Fig.2 for an example of the apertures used in the pho- signsofon-goingstarformationintheformofjetsandoutflows. tometryofMHO2204).Wethenmeasurethenumberofcountsin Histograms of the outflow positions along and across the (cid:13)c 2011RAS,MNRAS000,1–13 YSOjetsintheGalacticPlanefromUWISH2:I-MHOcatalogueforSerpensandAquila 5 Figure2.Left:GreyscalerepresentationoftheH2-KdifferenceimageofMHO2204.ThegreenellipsesindicatetheaperturesusedtoenclosetheH2flux, whiletheblueaperturesrepresentthenearbysky.Thesolidlineindicatesthedirectionoftheflow.Right:JKH2colorcompositeofthesameregion.Both imagesare95(cid:48)(cid:48)×66(cid:48)(cid:48)insize,NorthistothetopandEasttotheleft. GalacticPlaneareshowninFig.3.AsonecanalsoseeinFig.1, groups,theaveragegroupseparation,thetotalnumberofobjects thereisanonhomogeneousdistributionalongthePlane,withpeaks andthefieldsize,wecanestimatethatabouttwothirdsofthesur- atl=20◦andl=25◦andaminimumaroundl=23◦.Thisindicates veyareaaremoreorlessdevoidofmolecularhydrogenemission theconcentrationofoutflowstospecificareasi.e.thegiantmolec- lineobjects,afactsupportedbythedistributionshowninFig.1. ularcloudcomplexes.ThelatitudedistributionshowsaGaussian like distribution with a width of about one degree. Its centre is shifted to about b=-0.25◦ hinting that the main cloud complexes 3.2 Drivingsourcecandidates in this part of the Galactic Plane are at negative latitudes. If we Wehavebeenabletoassigndrivingsourcecandidates,asdescribed assumeadistanceof3kpcfortheoutflows,thewidthofthedis- in Sect.2.5, to 68 of our 131 molecular hydrogen outflows. This tribution corresponds to a scale height of about 25-30pc. This is corresponds to just over half the objects. Overall, 75 source can- verysimilartovaluesforyoungstellarclusters(55pc,(Friel1995)) didateshavebeenidentified,sincesomeoutflowshavemorethan andOBstars(30–50pc,(Reed2000;Eliasetal.2006)),butsig- oneprobabledrivingsource.Acompletelistoftheoutflowdriving nificantly smaller than the about 125pc found for the dust at the sourcecandidatesispresentedinTableA1intheAppendix. solargalactocentricdistance(e.g.Drimmeletal.(2003);Marshall WefindthattypicallybrighterMHOs(accordingtotheirin- etal.(2006)).Theprominentincreaseofthenumberofobjectsat tegrated1-0S(1)flux,seeSect.3.5below)aremorelikelytohave b=1.5◦(rightpanelofFig.3)iscausedbyanumberofhigherlati- asourcecandidateassignedtothem.Inparticulartheaverageflux tudecloudsinparticularatl=26.5◦(seealsoFig.1). of MHOs with an assigned source candidate is almost five times Wehaveinvestigatedtheclusteringofthedetectedoutflowsby higher than for MHOs without source candidate. For the median meansofnearestneighbourdistance(NND)distributions.Hence, fluxesthisratio,however,islowerbyafactorofthree.Inafuture wecalculatedthedistancetotheNthnearestneighbourforallout- paperwewillinvestigateifthisisapureselectioneffect.Itcould flows in our sample and determined a histogram to analyse these simplybethatbrightMHOsareclose-byandhencetheirsources distancedistributions.The1st,2ndand3rdNNDsallshowasharp areeasiertodetect.Ontheotherhand,brightMHOscouldbein- peak at small separations, indicating that the flows are typically trinsicallyluminousandthusbedrivenbybrighter,easiertodetect foundincloseproximitytoeachother.Thispeakalmostdisappears sources. inthe4th NNDdistributionandiscertainlygoneinthe5th NND distribution,whereitisreplacedbyawiderpeakatabout20-30(cid:48) separation. 3.3 Apparentoutflowlengths Thus,wefindthattheoutflowstypicallyoccuringroupswith For all outflows with assigned source candidate(s) we have mea- afew(3-5)members.Thesizeofthesegroupsisabout6(cid:48)(atypical suredtheapparentlength(s).Ahistogramoftheresultinglengths valueforthe3rdNND),whichcorrespondstoabout5pcifweas- distribution is shown in Fig.4. The light grey bars represent all sumeallobjectsareatadistanceof3kpc.Thissizeisclearlylarger theoutflows(68),whilethedarkgreyareasrepresentthealready thanthetypicalembeddedcluster(about1pcorslightlysmaller; knownobjects(9).Notethatthelengthsarenotcorrectedforthe e.g.Lada&Lada(2003))andsmallerthantypicalnearbyGMCs unknowninclinationanglesorthepotentialdetectionofjustparts suchasTaurusandOrion.Thus,currentlyongoingstarformation oftheoutflow.Forsinglesidedflowsthelengthscorrespondtothe occursinthose5pcsizedregionswithinGMCsandisnotneces- separationofthesourceandthemostdistantH feature,whilefor 2 sarilyconfinedtoembeddedclusters. bipolarflowsthelengthscorrespondtothetotallengthoftheflow, Thegroupsofoutflowsareseparatedbyabouthalfadegree aprocedurealsoadoptedinothersurveys(Stankeetal.2002).The ontheskyfromeachother.Giventhenumberofmembersinthese knownflowsdonotoccupyaspecialpartofthediagram,butrather (cid:13)c 2011RAS,MNRAS000,1–13 6 Ioannidis&Froebrich Figure3.Histogramofthepositionsofthedetectedoutflowsalong(leftpanel)andacross(rightpanel)theGalacticPlane. 3.4 Outflowpositionangles Previousstudies(e.g.Mouschovias(1976))suggestedthatclouds collapsealongmagneticfieldlinestoformelongated,clumpyfila- mentsfromwhichchainsofprotostarsareborn.Furthermore,the associated outflows are aligned parallel with the local magnetic fieldandperpendiculartothechainsofcores(Banerjee&Pudritz 2006).Oursampleisidealtostudytherelationbetweencores,fil- amentsandoutflowsbecauseofthelargesampleofflowsthatare distributed over a considerable number of molecular clouds. We hencedeterminedtheoutflowpositionanglesandlisttheminTa- bleA1intheAppendix. AhistogramofthepositionanglesisshowninFig.5,usinga bin-sizeof30degrees.Theplotshowsthatalargefractionofout- flowshasahomogeneousdistributionofpositionangles,withfive of the six bins occupied by 11.2 objects on average. However, at anglesbetween120◦and150◦onecanidentifyanoverabundance ofoutflows.Thereare20outflowsinthisbin,whichcorrespondsto Figure4.Histogramoftheapparentoutflowlengths.Thelightgreyareas a2.6σdeviationfromtheaverageoftheotherbins.Weperformeda showalloutflows,whilethedarkgreyareasrepresenttheknownobjects. Incasethereareseveralsourcecandidatesforoneflow,thelengthcorre- Kolmogorov-Smirnovtesttodeterminetheprobabilitythattheob- spondingtothemostlikelysourceisplotted.Notethatanapparentlength servedpositionangledistributionisidenticaltoahomogeneously of60(cid:48)(cid:48)correspondstoabout0.9pcfortheassumeddistanceof3kpc. distributed sample. For outflows with two potential sources, and hence two possible position angles, each angle was weighted by half;iftherearethreesourcestheweightforeachanglewasone third.Wefindaprobabilityofjust10%thatourobjectsaredrawn representarandomsub-sample.Notethatincasesofseveralsource fromahomogeneouslydistributedsample. candidatesforanoutflow,weplotthedistancecorrespondingtothe Wefurtherinvestigatedifthereisatrendofobjectswithapar- mostlikelysource.Thedistributionwillnotchangesignificantlyif ticularrangeofpositionangleswithskyposition.Nothingcouldbe weplotanyotherlengths. found.Theobjectsfallingintoaparticularbininthepositionangle Thereisalargerangeofapparentoutflowlengths(from4(cid:48)(cid:48)to histogramaredistributedcompletelyhomogeneouslyamongstthe 130(cid:48)(cid:48))andastrongdecreaseofthenumberofoutflowswithincreas- entiresample. inglength.Ofthe68outflows, morethan60%haveanapparent TheGalacticplanehasaninclinationofabout64degreeswith lengthoflessthan30(cid:48)(cid:48)(orlessthan0.4pcifweassumeadistance respecttotheeclipticinoursurveyarea.Thus,thepeakintheposi- of3kpc).Thisisinagreementwiththedistributionoflengthsfound tionanglehistogrambetween120◦and150◦indicatesthatthereis byDavisetal.(2009)andStankeetal.(2002)alongtheOrionA a2.6σoverabundanceofoutflowsorientatedalmost(PA=20◦with molecularridgeandDavisetal.(2008)inTaurus-Auriga-Perseus respecttoGalacticNorth)perpendiculartotheGalacticPlane.Itis (NGC1333, L1455, L1448 and B1). Only 10% of all outflows therefore possible that our measured flow position angles are in- have a length of more than 1pc (if they are at 3kpc). In PaperII fluencedbythelargescalecloudstructure.Previousstudiesofthe we will discuss the physical outflow length distribution in parsec OrionA molecular cloud by Davis et al. (2009) and Stanke et al. afterconsideringtheindividualdistancestotheobjects.Notethat (2002) and in Taurus-Auriga-Perseus by Davis et al. (2008) have theobserveddistributiondoesnotagreewitharandomlyorientated shownahomogeneousdistributionwithnosignificanttrendsinthe sampleofflowswhichallhavethesamelength. orientationofoutflows.However,studiesofDR21/W75byDavis (cid:13)c 2011RAS,MNRAS000,1–13 YSOjetsintheGalacticPlanefromUWISH2:I-MHOcatalogueforSerpensandAquila 7 Figure5.Histogramofthedistributionofpositionanglesfromthedetected Figure6.Histogramofintegrated1-0S(1)fluxes(inlogarithmicunits)for outflowsin30degreesbins.Thedistributionshowsa2.6sigmaoverabun- thedetectedoutflows.Thelightgreyareasincludealloutflowswhilethe danceofflowswithpositionanglesbetweenl=120◦ andl=150◦,oran darkgreyareasrepresentthealreadyknownMHOs.Ourcompletenesslimit orientationroughlyperpendiculartotheGalacticPlane. isabout3·10−18Wm−2. statisticallycorrectedluminositydistributionwillbediscussedina etal.(2007)haveshownthatflows(inparticularmassiveones)are forthcomingpaper(PaperII). orthogonaltosomedegreetothemolecularridge.InPaperIIIwe will analyse this distribution in more detail. We will measure, if possible,theorientationoftheoutflowswithrespecttoitsparental cloudfilament,toverifyordisprovetheabovefindings. 4 CONCLUSIONS Inordertoinvestigatethedynamicalcomponentofthestarforma- tionprocessweperformanunbiasedsearchforjetsandoutflows 3.5 Outflowfluxdistribution fromYSOsalongtheGalacticPlane.Ourdatahasbeentakenas Themeasuredintegrated1-0S(1)fluxesoftheoutflowsarelistedin partoftheUWISH2survey(F11).Itusesasatracerthe1-0S(1) TableA1intheAppendix.Figure6showsahistogramofthisflux emissionlineofH ,andherewefocusourattentiononacontinu- 2 distribution.Thelightgreyareasincludealltheoutflowswhilethe ous33squaredegreesizedregion(18◦<l<30◦;-1.5◦<b<+1.5◦) darkgreyareasarethealreadyknownobjects.Clearly,theknown inSerpensandAquila. outflowsdominatethebrightendofthedistributionandallbutone Weidentify131outflowsfromYSOsfromwhich94%(123 are brighter than 10−17Wm−2. In particular, about 60% of the objects)arenewdiscoveriesinourdataset.Therefore,oursurvey integrated flux in the 1-0S(1) line of molecular hydrogen can be hasincreasedthenumberofknownmolecularhydrogenoutflows attributed to already known MHOs. Thus, our survey just about byafactorof15intheareainvestigated. doublestheknownintegrated1-0S(1)fluxfromjetsandoutflows We find a flux completeness limit for our outflow detection inthesurveyarea,incontrasttothe15foldincreaseintotaloutflow of 3·10−18Wm−2, with 70% of the objects showing fluxes of numbers. 10−17Wm−2 or less. Typically, the already known outflows oc- IngeneralwefindasharpriseofthenumberofMHOswith cupy the bright end of the flux distribution. Our survey thus in- decreasingintegratedflux.Morethan70%oftheMHOshavean creases the known integrated 1-0S(1) H flux from jets and out- 2 integratedfluxoflessthan10−17Wm−2.Themaximumnumber flowsonlybyafactoroftwo,comparedtothelargeincreaseinthe of MHOs occurs at about 3·10−18Wm−2 which corresponds to totalnumberofflows. about10−3 solarluminositiesinthe1-0S(1)lineofH atouras- Theoverallspatialdistributionofthedetectedoutflowsshows 2 sumed distance of 3kpc. We hence conclude that this flux is the thattheyfollowtheGMCcomplexesintheGalacticPlane.Onlya completenesslimitforoutflowsdetectedinoursurvey.Thereare, smallnumberofobjectsisnotsituatedwithindenseclouds.How- however,anumberofobjectswithasignificantlysmallerintegrated ever,therearelargeareaswithhighextinctionwherenooutflows flux,indicatingthattheactualdetectionlimitfor1-0S(1)fluxesis havebeendetected.Overall,about2/3rdofthesurveyareaismore lower than even 10−18Wm−2 in some regions (most likely dark orlesscompletelydevoidofjetsandoutflows.Wefurtherfindthat cloudsdevoidoffore/backgroundstars).Thisisalsosupportedby the flows typically occur in groups of 3–5 members with a size factthatmanyoftheoutflowswithasmalloverallintegratedflux ofabout5pc(atourassumeddistanceof3kpc).Thesegroupsare consistofonlyoneemissionlinefeature, typicallyseparatedbyabouthalfadegreeonthesky. Foreachoftheintegratedfluxeswelistthephotometricuncer- ThedistributionofflowsperpendiculartotheGalacticPlane tainties in TableA1. Typical uncertainties of the measured fluxes showsaGaussianlikedistributionwithawidthofabout25–30pc are of the order of 10%. For bright objects they are significantly (atourassumeddistanceof3kpc),similartovaluesforyoungstel- smaller.Wherevertheintegratedfluxisverylowandthevariation larclustersandOBstars. ofthelocalbackgroundlevelishighweonlydetermineanupper Weareabletoassignpossibledrivingsourcestoabout50% fluxlimit. oftheoutflows.BrighterMHOsaremorelikelytohaveasource Howthemeasuredintegratedfluxdistributionconvertsintoa candidateassignedtothem. (cid:13)c 2011RAS,MNRAS000,1–13 8 Ioannidis&Froebrich Wemeasuretheapparentoutflowlengthforoutflowswithas- Froebrich D., Davis C. J., Ioannidis G., Gledhill T. M., Takami signeddrivingsources.Thereisawiderangeoflengthsfrom4(cid:48)(cid:48) M.,ChrysostomouA.,DrewJ.,Eislo¨ffelJ.,etal.2011,MNRAS, to130(cid:48)(cid:48)andastrongdecreaseofthenumberofflowswithincreas- 413,480 inglength.Morethan60%oftheoutflowshaveanapparentlength FroebrichD.,ScholzA.,2003,A&A,407,207 of less than 30(cid:48)(cid:48) (or less than 0.4pc if we assume a distance of HillT.,BurtonM.G.,MinierV.,ThompsonM.A.,WalshA.J., 3kpc)whileparsec-scaleoutflowsarenotcommon.Only10%of Hunt-CunninghamM.,GarayG.,2005,MNRAS,363,405 alloutflowswouldhavealengthofgreaterthan1pcatourassumed HodgkinS.T.,IrwinM.J.,HewettP.C.,WarrenS.J.,2009,MN- distance. RAS,394,675 Thepositionangledistributionofflowswithassignedsource IshiharaD.,OnakaT.,KatazaH.,SalamaA.,AlfagemeC.,etal showsan2.6σover-abundanceatanglesbetween120◦and150◦. 2010,A&A,514,A1+ LadaC.J.,LadaE.A.,2003,ARA&A,41,57 LucasP.W.,HoareM.G.,LongmoreA.,Schro¨derA.C.,Davis C.J.,AdamsonA.,BandyopadhyayR.M.,etal.2008,MNRAS, ACKNOWLEDGEMENTS 391,136 GI acknowledges a University of Kent scholarship. The United MarshallD.J.,RobinA.C.,Reyle´ C.,SchultheisM.,PicaudS., Kingdom Infrared Telescope is operated by the Joint Astronomy 2006,A&A,453,635 Centre on behalf of the Science and Technology Facilities Coun- MoshirM.,1989,IRASFaintSourceSurvey,Explanatorysupple- cil of the U.K. The data reported here were obtained as part of mentversion1andtape.CaliforniaInstituteofTechnology the UKIRT Service Program. This research has made use of the MoshirM.,1991,JournaloftheBritishInterplanetarySociety,44, WEBDAdatabase,operatedattheInstituteforAstronomyofthe 495 UniversityofVienna. MouschoviasT.C.,1976,ApJ,207,141 ReedB.C.,2000,AJ,120,314 RobitailleT.P.,MeadeM.R.,BablerB.L.,WhitneyB.A.,John- stonK.G.,IndebetouwR.,CohenM.,PovichM.S.,etal.2008, REFERENCES AJ,136,2413 AguirreJ.E.,GinsburgA.G.,DunhamM.K.,DrosbackM.M., RowlesJ.,FroebrichD.,2009,MNRAS,395,1640 BallyJ.,BattersbyC.,BradleyE.T.,CyganowskiC.,etal.2011, SkrutskieM.F.,CutriR.M.,StieningR.,WeinbergM.D.,Schnei- ApJS,192,4 derS.,CarpenterJ.M.,etal.2006,AJ,131,1163 AnathpindikaS.,WhitworthA.P.,2008,A&A,487,605 StankeT.,McCaughreanM.J.,ZinneckerH.,2002,A&A,392, AntoniucciS.,NisiniB.,GianniniT.,LorenzettiD.,2008,A&A, 239 479,503 ToddS.P.,RamsayHowatS.K.,2006,MNRAS,367,238 BallyJ.,DevineD.,FesenR.A.,LaneA.P.,1995,ApJ,454,345 VarricattW.P.,DavisC.J.,RamsayS.,ToddS.P.,2010,MNRAS, BanerjeeR.,PudritzR.E.,2006,ApJ,641,949 404,661 BeckT.L.,2007,AJ,133,1673 Yamamura I., Makiuti S., Ikeda N., Fukuda Y., Yamauchi C., CarattioGarattiA.,GianniniT.,NisiniB.,LorenzettiD.,2006, Hasegawa S., Nakagawa T., Narumi H., Baba H., et al. 2009, A&A,449,1077 inT.Usuda,M.Tamura,&M.Ishiied.,AmericanInstituteof CasaliM.,AdamsonA.,AlvesdeOliveiraC.,AlmainiO.,Burch Physics Conference Series Vol. 1158 of American Institute of K.,etal2007,A&A,467,777 PhysicsConferenceSeries,TheFirstreleaseoftheAKARI-FIS ChurchwellE.,BablerB.L.,MeadeM.R.,WhitneyB.A.,Ben- BrightSourceCatalogue.pp169–170 jaminR.,IndebetouwR.,CyganowskiC.,RobitailleT.P.,etal. 2009,PASP,121,213 Davis C. J., Froebrich D., Stanke T., Megeath S. T., Kumar M.S.N.,AdamsonA.,Eislo¨ffelJ.,GredelR.,etal.2009,A&A, 496,153 Davis C. J., Gell R., Khanzadyan T., Smith M. D., Jenness T., 2010,A&A,511,A24+ Davis C. J., Kumar M. S. N., Sandell G., Froebrich D., Smith M.D.,CurrieM.J.,2007,MNRAS,374,29 DavisC.J.,ScholzP.,LucasP.,SmithM.D.,AdamsonA.,2008, MNRAS,387,954 DavisC.J.,VarricattW.P.,ToddS.P.,RamsayHowatS.K.,2004, A&A,425,981 DiFrancescoJ.,JohnstoneD.,KirkH.,MacKenzieT.,Ledwosin- skaE.,2008,ApJS,175,277 Drimmel R., Cabrera-Lavers A., Lo´pez-Corredoira M., 2003, A&A,409,205 DyeS.,WarrenS.J.,HamblyN.C.,CrossN.J.G.,HodgkinS.T., IrwinM.J.,etal.2006,MNRAS,372,1227 Eislo¨ffelJ.,2000,A&A,354,236 Eislo¨ffelJ.,MundtR.,BohmK.-H.,1994,AJ,108,1042 EliasF.,AlfaroE.J.,Cabrera-Can˜oJ.,2006,AJ,132,1052 FrielE.D.,1995,ARA&A,33,381 (cid:13)c 2011RAS,MNRAS000,1–13 YSOjetsintheGalacticPlanefromUWISH2:I-MHOcatalogueforSerpensandAquila 9 C e DE0)0044 2 62 4458128260 0148pag source(J200-12:07:2-12:07:2-11:50:2-11:50:2--05:59:4**-05:59:4-05:59:4--12:22:3-11:50:2-11:50:2-11:31:5-11:47:5-11:55:4-11:56:2-11:39:5-11:40:3-12:55:0--10:33:2-10:18:1-10:18:2-10:18:4onnext d e ourceRA(J2000)8:17:57.98:17:57.98:29:14.78:29:14.7 8:34:20.9 8:34:20.08:34:20.9 8:25:44.78:29:14.78:29:13.38:26:57.68:29:13.28:30:11.18:30:06.98:28:19.98:28:18.98:25:22.7 8:27:15.28:29:10.28:29:09.38:29:08.6Continu s 1111-1**11-1111111111-1111 TableA1:SummarytableoftheMHOproperties.ThetableliststheMHOnum-ber,RightAscensionandDeclination(J2000),theintegrated1-0S(1)fluxanditsuncertainty,theapparentlength,thepositionangle,thesourcecandidate(s)anditsposition(s).IncaseswhereseveralMHOsbelongtothesameoutflow,theMHOnumberislabelledwithanasterisk.Ifthefluxisanupperlimit,nofluxerrorsaregiven.Onlyforobjectswithasourcecandidate,wedeterminedtheapparentlengthandthepositionangle.Flowlengthsareend-to-endforbipolaroutflowsorsource-to-endforsinglesidedflows.Sourcenamescorrespondtothecatalogueentriesthesourcewastakenfrom.Theseareeithercoordinatebased,SIMBADnames,UKIDSSGPSIDs(12digitnumbers),orAKARIIDs(7digitnumbers).Sourceslabelled’Noname’areobjectswhereitisassumedthatthereisadrivingsourceatthelistedposition,however,nonofthecataloguesusedshowsadetectionoftheobject.Pleaseseethemaintextfordetailsonthevaluesinthetable. F[1-0S(1)]Fluxerrorlengthpositionanglepossible2210E-18W/m][10E-18W/m](arcsec)(degrees)source379.11937.88573132IRAS18151-120877.4815.6322132IRAS18151-1208278.89319.5864267G019.884-00.535509.65942.89250116G019.884-00.53558.4293.918-29-286.00018.60793131IRAS18316-06029.6641.027***8.7200.609***25.3401.9822613743864913020320.1501.26040168IRAS18316-060226.3631.926---3.0050.21735160332925212.5870.733187G019.884-00.5357.5881.3851055G019.8810-00.530019.7729.5327045G019.896+00.1033.8002.06526884385219406683.6690.2139595G019.9122-00.77996414533186248.2880.53929133G019.9357-00.25583.0330.42741304385218182142.4060.2298.519334980810.4970.640---9.4630.543544430547561.0580.2791066G021.2369+00.19403.4350.277968Noname4.8620.751189G021.2248+00.1953 [ 90764987522681734 89297744 EC000)07:107:350:150:149:559:559:359:059:200:106:422:450:050:331:447:555:3 39:240:354:501:533:518:018:218:5 DJ22:2:1:1:1:5:5:5:5:6:2:2:1:1:1:1:1: 1:1:2:2:0:0:0:0: (11111000001111111 11111111 ----------------- -------- 72609754834887936 91876935 0)7.7.6.3.6.2.0.8.8.1.5.4.4.2.8.2.4. 8.9.2.4.2.0.9.8. ABLE RA(J2008:17:58:17:58:29:18:29:18:29:18:34:28:34:28:34:18:34:18:34:28:17:58:25:48:29:18:29:18:26:58:29:18:30:0 8:28:18:28:18:25:28:25:58:27:18:29:18:29:08:29:0 T 11111111111111111 11111111 O H * *** * M O 201202203204205206207208209210212244245246247248249 250251252253254255256257 A: MH O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2 O2O2O2O2O2O2O2O2 X HHHHHHHHHHHHHHHHH HHHHHHHH I MMMMMMMMMMMMMMMMM MMMMMMMM D N E P P A (cid:13)c 2011RAS,MNRAS000,1–13 10 Ioannidis&Froebrich C e DE0) 92230820 66 0 2 32 11101110 524pag source(J200---09:34:4-09:34:5-07:55:3-08:18:1-08:18:2-10:06:1-10:06:1-09:34:4---08:42:4-08:51:3--08:41:1--07:39:0----06:49:5-06:51:0----07:31:4-07:31:5-07:31:4-07:31:4-07:31:5-07:31:4-07:31:5-07:31:4-----07:11:3-07:20:2-06:12:4onnext d e ourceRA(J2000) 8:30:33.58:30:34.08:33:19.48:34:21.18:34:22.78:33:12.78:33:11.48:30:41.6 8:34:31.48:35:28.3 8:35:51.4 8:36:40.9 8:36:09.98:38:52.1 8:37:22.78:37:20.78:37:22.78:37:23.38:37:20.78:37:22.78:37:20.78:37:23.3 8:37:19.48:39:11.88:38:59.6Continu s --11111111--11-1-1---11---11111111----111 0 5 2 4 8 0 possiblesource 96153729615655006008-00.014770725505172549830535+00.1980 SEJ183431.5-me 4319-00.5212 1042387 995913239 80164386280-00.31758016438635-00.3256280-00.317580164386280-00.3175635-00.325 926-00.1576899733me --438374383730585G023.305744385143851G022.--JCMTNona-G023.-43851---3338943874---43836G024.43836G024.G024.43836G024.G024.----G024.43836Nona e uspageonanglgrees)--7829142166401001360--77158-45-0--13436117---39103170121031413925126---140147147 evioositi(de rp p m ohc) nuedfrlengt(arcse--257218231818528--608-4-66---205---2034182034333338----271126 onti 2] TableA1–cFluxerror10E-18W/m0.4280.8671.7687.425UpperLimit1.0591.0730.469 0.5090.246UpperLimit5.2790.0990.4650.2390.3382.0882.2640.1651.8470.9360.2151.0730.6200.2330.242 0.674 0.183 1.0880.1920.6220.1821.1973.4320.622 [ ] 2 F[1-0S(1)]0E-18W/m4.0447.42422.33962.58815.4956.43915.1853.983 5.9763.2360.11132.4771.1486.5783.8222.53517.82917.1812.77724.14413.8233.0236.7706.3503.5612.511 3.745 2.482 13.0933.23910.0873.03612.73538.8327.950 1 [ 93574175 814837370073717546 8 4 8686494 EC000)34:144:134:435:055:417:518:006:1 34:557:533:242:451:452:141:105:439:242:419:106:150:051:052:353:148:231:5 31:5 32:1 37:011:211:311:411:420:012:4 DJ20:9:9:9:7:8:8:0: 9:8:8:8:8:8:8:8:7:7:7:7:6:6:6:6:6:7: 7: 7: 7:7:7:7:7:7:6: (10000001 000000000000000000 0 0 0000000 -------- ------------------ - - ------- 17041746 733057301090294369 9 1 4367836 0)7.3.5.3.0.0.3.1. 1.1.1.1.8.1.1.7.1.3.2.1.9.1.5.7.6.1. 2. 2. 2.2.1.1.9.1.9. RA20032:129:030:330:333:234:234:233:1 30:434:534:234:335:235:335:535:036:436:135:233:536:038:538:538:536:537:2 37:2 37:2 37:237:137:237:237:139:138:5 (J8:8:8:8:8:8:8:8: 8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8: 8: 8: 8:8:8:8:8:8:8: 11111111 111111111111111111 1 1 1111111 89012345 678901234567890123 4 5 6789012 O 2525262626262626 262626262727272727272727272728282828 28 28 28282828292929 H 22222222 222222222222222222 2 2 2222222 M OOOOOOOO OOOOOOOOOOOOOOOOOO O O OOOOOOO HHHHHHHH HHHHHHHHHHHHHHHHHH H H HHHHHHH MMMMMMMM MMMMMMMMMMMMMMMMMM M M MMMMMMM (cid:13)c 2011RAS,MNRAS000,1–13

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.