ebook img

Ýokary matematika boýunça meseleler we gönükmeler PDF

576 Pages·7.858 MB·Uzbek
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ýokary matematika boýunça meseleler we gönükmeler

TürkmenisTanyň PrezidenTi GurbanGuly berdimuhamedow TürkmenisTanyň dÖwleT TuGrasy TürkmenisTanyň dÖwleT baÝdaGy TürkmenisTanyň dÖwleT senasy Janym gurban saňa, erkana ýurdum, Mert pederleň ruhy bardyr köňülde. Bitarap, garaşsyz topragyň nurdur, Baýdagyň belentdir dünýäň öňünde. Gaýtalama: Halkyň guran Baky beýik binasy, Berkarar döwletim, jigerim-janym. Başlaryň täji sen, diller senasy, Dünýä dursun, sen dur, Türkmenistanym! Gardaşdyr tireler, amandyr iller, Owal-ahyr birdir biziň ganymyz. Harasatlar almaz, syndyrmaz siller, Nesiller döş gerip gorar şanymyz. Gaýtalama: Halkyň guran Baky beýik binasy, Berkarar döwletim, jigerim-janym. Başlaryň täji sen, diller senasy, Dünýä dursun, sen dur, Türkmenistanym! kakajan körpäýew, alladurdy ataýew, allaberdi aşyrow, orazmämmet annaorazow Ýokary maTemaTika boÝunÇa meseleler we GÖnükmeler Ýokary okuw mekdepleri üçin okuw gollanmasy Türkmenistanyň Bilim ministrligi tarapyndan hödürlenildi Aşgabat “Ylym” neşirýaty 2012 UOK 510:378 K 76 körpäýew k. we başg. K76 Ýokary matematika boýunça meseleler we gönükmeler. Ýokary okuw mekdepleri üçin okuw gollanmasy. – A.: Ylym, 2012. – 576 sah. TDKP № 222 KBK 22.11 ýa 73 © Körpäýew K. we başg., 2012 © «Ylym» neşirýaty, 2012 I ÁÜËÞÌ ÒÅÊÈÇËÈÊÄÅ ÀÍÀËÈÒÈÊ ÃÅÎÌÅÒÐÈÉÀ ¸ 1. Òåêèçëèêäå ãüíþáóð÷ëû äåêàðò êîîðäèíàòàëàð sistemasy Òåêèçëèêäå àëíàí åðêèí íîêàäûÿ îðíónû êåñãèòëåìúãå ìþìêèí÷èëèê áåðéúí sistema êîîðäèíàòàëàð sistemasy äèéèëéúð. Øîë sisteìaëàðûÿ èÿ éüíåêåéè ãüíþáóð÷ëû äåêàðò êîîðäèíàòàëàð sistemasydyr. Ãîé, òåêèçëèêäå èêè ñàíû üçàðà ïåðïåíäèêóëéàð óãðóêäûðûëàí ãüíè ÷ûçûêëàð áåðëåí áîëñóí. Áó ãüíè ÷ûçûêëàðûÿ áèðèíè êåñå (ãîðèçîíòàë), áåéëåêèñèíè äèê (âåðòèêàë) éåðëåøäèðåëèÿ. Îëàðûÿ êåñèøìå O íîêàäûíà êîîðäèíàòàëàð áàøëàíãûùû äèéèëéúð. Êåñå ãüíè ÷ûçûãà àáñèññàëàð îêû (Ox îêy), äèê ãüíè ÷ûçûãà áîëñà îðäèíàòàëàð îêû (Oy îêy) äèéèëéúð. Àáñèññàëàð îêóíûÿ položitel ugry àäàò÷à êîîðäèíàòàëàðûÿ áàøëàíãûùûíäàí ñàã òàðàïà, otrisatel óãðû áîëñà ÷åï òàðàïà óãðóêäûðûëàíäûð. Îðäèíàòàëàð îêóíûÿ položitel óãðû êîîðäèíàòàëàðûÿ áàøëàíãûùûíäàí éîêàðûê, otrisatel óãðû áîëñà àøàê óãðóêäûðûëàíäûð. Ýðêèí M íîêàäûÿ òåêèçëèêäúêè îðíóíû îíóÿ àáñèññàëàð âå îðäèíàòàëàð îêëàðûíà áîëàí ïðîéýêñèéàëàðû àðêàëû êåñãèòëåìåê áîëàð. A íîêàäûÿ àáñèññàñû 2, îðäèíàòàñû 3 äèéèï éàçìàãûÿ äåðåãèíå A(2,3) ãüðíþøäå áåëãèëåíéúð, îêàëàíäà áîëñà A íîêàäûÿ êîîðäèíàòàëàðû 2 âå 3 äèéèï îêàëéàð. Óìóìàí åðêèí M íîêàäûÿ àáñèññàñû x, îðäèíàòàñû y áîëñà, îë øåéëå éàçûëéàð: M(x, y). Åãåð A(x , y ) we B(x , y ) òåêèçëèãèÿ åðêèí íîêàòëàðû áîëñà, îíäà 1 1 2 2 îëàðûÿ àðàñûíäàêû d óçàêëûê àøàêäàêû ôîðìóëà áèëåí êåñãèòëåíéúð: d = (x −x )2 +(у − у )2 . (1) 2 1 2 1 ( ) ( ) ( ) Åãåð A x , y , B x , y we C x ,y íîêàòëàð þ÷áóð÷ëóãûÿ äåïåëåðè 1 1 2 2 3 3 áîëñà, îíäà îíóÿ ìåéäàíû àøàêäàêû ôîðìóëà áèëåí õàñàïëàíûëéàð: 1 S = x (y − y )+x (y − y )+x (y − y ) = 2 1 2 3 2 3 1 3 1 2 1 1 x −x y − y = (x −x )(y − y )−(x −x )(y − y ) =+ 2 1 2 1 (2) 2 2 1 3 1 3 1 2 1 2 x −x y − y 3 1 3 1 1. Åãåð A(6,0), B(5,2), C(0,3), D(−7,1) we E(−4,−6) íîêàòëàð áúø- áóð÷ëóãûÿ äåïåëåðè áîëñà, îë áúøáóð÷ëóãû ãóðìàëû. 7 2. Ýãåð A(5,3), B(2,−1), C(−1,4) íîêàòëàð þ÷áóð÷ëóãûÿ äåïåëåðè áîëñà, îíóÿ òàðàïëàðûíûÿ óçûíëûêëàðûíû òàïìàëû. ×üçþëèøè. Èêè íîêàäûÿ àðàsûíäàêû óçàêëûãû tàïìàãûÿ (1) ôîðìóëàñûíû óëàíûï àëàðûñ: АВ = (5−2)2 +(3+1)2 = 9+16 =5; BC = (2+1)2 +(−1−4)2 = 9+25 = 34; АC = (5+1)2 +(3−4)2 = 36+1= 37.  3. ÄåïåëåðèA(−2,−4), B(2,8) we C(10,2) íîêàòëàð áîëàí þ÷áóð÷ëóãûÿ ìåéäàíûíû hàñàïëàìàëû. ×üçþëèøè. (2) ôîðìóëàíû óëàíûï àëàðûñ: 1 1 S = (2+2)(2+4)−(10+2)(8+4) = 24−144 =60kw.bir. 2 2 4. Μ (7,4) we M (3,−5) íîêàòëàðûÿ àðàsûíäàêû óçàêëûãû òàïìàëû. 1 2 5. Àøàêäàêû íîêàòëàðûÿ àðàsûíäàêû óçàêëûãû òàïìàëy: 1) A(2,3) we B(−10,2); ( ) ( ) 2) C 2,−7 we D 2 2,0 ; 3) A (3,−4) we B (6,−8); 1 1 4) A (10,0) we B (2,−6); 2 2 5) A(−11,−4) we B (1,−9); 3 3 6) A (8,−4) we B (−2,1). 4 4 6. Äåïåëåðè Î (0, 0), À (1, 1), Á (2, –2) íîêàòëàð áîëàí þ÷áóð÷ëóãûÿ ãüíüáóð÷ëû þ÷áóð÷ëóêäûãûíû ñóáóò ýòìåëè. 7. Äåïåëåðè À (1, 5), Á (2, 7) âý C (4, 11) íîêàòëàð áîëàí þ÷áóð÷ëóãûÿ ìåéäàíûíû õàñàïëàìàëû. 8. À (–1, 2), Á (5, 6), C (1, 3) íîêàòëàð þ÷áóð÷ëóãûÿ äåïåëåðè áîëñà, C äåïåäåí èíäåðèëåí áåéèêëèãèÿ óçûíëûãûíû õàñàïëàìàëû. 9. Äåïåëåðè À (–3, 3), Á (1, 3), C (1, –1) íîêàòëàð áîëàí þ÷áóð÷ëóãûÿ ãüíþáóð÷ëû þ÷áóð÷ëóêäûãûíû ãüðêåçìåëè. ×üçþëèøè. ÀÁ, ÀC âå ÁC êåñèìëåðèÿ óçûíëûêëàðûíû òàïàëûÿ: АВ = (1+3)2 +(3−3)2 =4; АС = (1+3)2 +(−1−3)2 =4 2 ; ВС = (1−1)2 +(−1−3)2 =4. Îíäà АВ2 + ВС2 = АС2 äåÿëèãèÿ éåðèíå éåòéúíëèãè þ÷èí Ïèôàãîðûÿ òåîðåìàñûíûÿ ýñàñûíäà þ÷áóð÷ëóê ãüíþáóð÷ëûäûð. 8 ¸ 2. Êåñèìè áåðëåí ãàòíàøûêäà áüëìåê M (x ,y ) we M (x ,y ) íîêàòëàðû áèðëåøäèðéúí êåñèìèÿ þñòþíäå 1 1 1 2 2 2 М М éàòéàí âå 1 =λ äåÿëèãè êàíàãàòëàíäûðéàí M íîêàäûÿ ММ 2 êîîðäèíàòàëàðû àøàêäàêû ôîðìóëàëàð áèëåí êåñãèòëåíéúð: x +λx y +λy x = 1 2 , y = 1 2 . (1) 1+λ 1+λ Ýãåð M(x,y) íîêàò M M êåñèìè äåÿ èêè áüëåãå áüëéúí áîëñà, 1 2 îíäà λ=1 we (1) formula x +x y + y x = 1 2 , y = 1 2 (2) 2 2 gürnþøi alar. 10a.  Äåïåëåðè A(5,3) âå B(2,−1) íîêàòëàðäà áîëàí ABC þ÷áóð÷ëóãûÿ ìåäèàíàëàðû M(2,2) íîêàòäà êåñèøéúí áîëñàlar îíóÿ C(x,y) þ÷þíùè äåïåñèíèÿ êîîðäèíàòàëàðûíû òàïìàëû (1-nji a ÷yzgy). ×üçþëþøè. (2) ôîðìóëàíû óëàíûï, AB êåñèìè äåÿ èêè áüëåãå áüëéúí N íîêàäûÿ x y êîîðäèíàòàëàðûíû òàïàëûÿ: 0, 0 5+2 7 3−1 x = = , y = =1.  0 2 2 0 2 Þ÷áóð÷ëóãûÿ þ÷þíùè C äåïåñè AB êåñèìè äåÿ èêè áüëåãå áüëéúí N íîêàò áèëåí, ìåäèàíàëàðûÿ êåñèøìå M íîêàäûíäàí ãå÷éúí MN ãüíþäå éàòéàíäûð. Ìåäèàíànûÿ õúñèéåòèíå ãüðú MN êåñèìèÿ óçûíëûãû NC 1 ìåäèàíàíûÿ óçûíëûãûía äåÿäèð. Øîíóÿ þ÷èí MN êåñèìèÿ äàøûíäà 3 NC 3 éàòéàí C íîêàò, êåñèìè λ= =− ãàòíàøûêäà áüëéúð. Îíäà (1) âå CM 2 7 3 (2) ôîðìóëàëàðäà x = , y =1, x =2, y =2, λ=− ãîéóï, C 1 2 1 2 2 2 íîêàäûÿ x,y êîîðäèíàòàëàðûíû òàïàðûñ.: 7 ⎛ 3⎞ ⎛ 3⎞ +⎜− ⎟⋅2 1+⎜− ⎟⋅2 2 ⎝ 2⎠ ⎝ 2⎠ x = = −1, y = = 4. ⎛ 3⎞ ⎛ 3⎞ 1+⎜− ⎟ 1+⎜− ⎟ ⎝ 2⎠ ⎝ 2⎠ Øóíëóêäà, C(−1,4). 9 1-nji a ÷yzgy 10 b. M (7,5) âå M (−2,3) íîêàòëàðû áèðëåøäèðéúí êåñèìäå M 1 2 1 íîêàäà, M íîêàòäàí 3 ýññå ãîëàé éåðëåøåí M(x,y) íîêàäû òàïìàëû. 2 М М 1 1 ×üçþëèøè. Ìåñåëúíèÿ øåðòèíå ãüðú 1 = , îíäà λ= . (1) ММ 3 3 2 ôîðìóëàëàðû óëàíûï àëéàðûñ: 1 ( ) 7+ −2 x +λx 3 x = 1 2 = =4,75; 1+λ 1 1+ 3 1 5+ ⋅3 y +λy 3 y= 1 2 = =4,5. 1+λ 1 1+ 3 Äèéìåê, M(4,75, 4,5) bolar. 11. Äåïåëåðè A(−5,3), B(−2,−1), C(5,3) íîêàòëàðäà áîëàí þ÷áóð÷ëóãûÿ A äåïåñèíèÿ è÷êè áóð÷óíûÿ áèññåêòðèñàñûíûÿ óçûíëûãûíû òàïìàëû (1-nji á çyzgy). ×üçþëèøè. Ãîé, A áóð÷óÿ áèññåêòðèñàñû AK áîëñóí. Áåëëè áîëøû éàëû BK AB K íîêàò BC êåñèìè = =λ áîëàí ãàòíàøûêäà áüëéúð. KC AC 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.