ebook img

Yanqi Lake Lectures on Algebra PDF

99 Pages·2019·1.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Yanqi Lake Lectures on Algebra

Y L ANQI AKE L ECTURES ON A LGEBRA / Wen-Wei Li Part 3 Commutative rings Completions Dimension theory Yanqi Lake Lectures on Algebra Part 3 Wen-Wei Li Chinese Academy of Sciences Version: 2019-06-14 The cover page uses the fonts Bebas Neue and League Gothique, both licensed undertheSILOpenFontLicense. ThisworkislicensedunderaCreativeCommonsAttribution-NonCommercial 4.0 International License. To view a copy of this license, visit http:// creativecommons.org/licenses/by-nc/4.0/. Contents Introduction 1 1 Warmingup 3 1.1 Reviewonringtheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Localizationofringsandmodules . . . . . . . . . . . . . . . . . . . . . . 5 1.3 RadicalsandNakayama’slemma . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 NoetherianandArtinianrings . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Whatiscommutativealgebra? . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Primarydecompositions 15 2.1 Thesupportofamodule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Associatedprimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Primaryandcoprimarymodules . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Primarydecomposition: themaintheorem . . . . . . . . . . . . . . . . . 19 2.5 Examplesandremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Integraldependence,Nullstellensatzandflatness 25 3.1 Integralextensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Nullstellensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Flatness: thefirstglance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Structureofflatmodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 Faithfulflatnessandsurjectivity . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Going-up,going-down,gradingsandfiltrations 39 4.1 Going-upandgoing-down . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Subsetsinthespectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Gradedringsandmodules . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5 TheoremsofArtin–ReesandKrull . . . . . . . . . . . . . . . . . . . . . . 48 5 Fromcompletionstodimensions 51 5.1 Completions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Furtherpropertiesofcompletion . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 Hilbert–Samuelpolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4 DefinitionofKrulldimension . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.5 Krull’stheoremsandregularity . . . . . . . . . . . . . . . . . . . . . . . . 63 ⋅ iv ⋅ CONTENTS 6 Dimensionoffinitelygeneratedalgebras 65 6.1 Dimensionsinfibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2 Calculationforpolynomialalgebras . . . . . . . . . . . . . . . . . . . . . 67 6.3 Noethernormalizationanditsconsequences . . . . . . . . . . . . . . . . 68 7 Serre’scriterionfornormalityanddepth 73 7.1 Reviewofdiscretevaluationrings . . . . . . . . . . . . . . . . . . . . . . 73 7.2 Auxiliaryresultsonthetotalfractionring . . . . . . . . . . . . . . . . . . 74 7.3 Onnormality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4 Serre’scriterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5 Introductiontodepth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 8 SomeaspectsofKoszulcomplexes 83 8.1 Preparationsinhomologicalalgebra . . . . . . . . . . . . . . . . . . . . . 83 8.2 Auxiliaryresultsondepth . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.3 Koszulcomplexesanddepth . . . . . . . . . . . . . . . . . . . . . . . . . 86 Bibliography 91 Index 93 Introduction Inthebeginning,theselecturenoteswerepreparedforthegraduatecourseAlgebraIII (ID: 011M4002Y) in Spring 2016, University of the Chinese Academy of Sciences. For somereasons,ittookplaceintheYuquanlucampusinsteadoftheYanqiLakecampus asitshouldbe. ThecourseisasequeltoAlgebraI(fields,modulesandrepresentations)andII(ho- mologicalalgebra). ThetopicofthisPartIIIiscommutativealgebra,ormoreprecisely commutative ring theory. Each “Lecture” in these notes took roughly one week, say ap- proximately four hours of lecture, but the materials were only partially covered. My initial intention was to give a traditional course on commutative algebra as proposed by the syllabus prescribed by UCAS. For various reasons, my plan failed. For exam- ple, there are too few discussions on depth, regular sequences and Cohen–Macaulay modules, too few applications of completions, and the computational aspects haven’t beentouched. Moreover,thehomologicalaspectofcommutativealgebraisalmostnon- existent in these notes, namely the Auslander–Buchsbaum Formula, the properties of regularlocalrings,etc. Lastbutnotleast,theexerciseshereinarescarcelysufficient. These notes were also used for the Enhanced Program for Graduate Study held at the Beijing International Center of Mathematical Research, Peking University, during Spring2019(courseID:00102057). As the title suggests, some backgrounds from the Part I are presumed, namely the basic notions of rings, modules and their chain conditions, as well as familiarity with tensor products and some Galois theory. Weoccasionallypresume some basic knowl- 𝑖 edgeofhomologicalalgebra,suchasthefunctorsTor andExt . 𝑖 Sometimes I made free use of the language of derived categories. This was indeed coveredintheprecedingcourseAlgebraII,anditshouldbecommonsenseforthefuture generations. As the reader might have observed, these notes were prepared in a rush; certain paragraphs have not been proofread yet and many proofs are silly. I am very grateful tothestudentsforvariouscorrectionsandimprovements,andIwilltrytopolishthese notesinthefuture. Conventions Throughouttheselectures,weconsideronlyassociativeringswithunit1,andtherings andalgebrasareassumedtobecommutativeandnonzerounlessotherwisespecified. Theidealgeneratedbyelements𝑥 ,𝑥 ,…inaring𝑅isdenotedby(𝑥 ,𝑥 ,…)orsome- 1 2 1 2 times ⟨𝑥 ,𝑥 ,…⟩; the 𝑅-algebra of polynomials in variables 𝑋,𝑌,… with coefficients in 1 2 ⋅ 2 ⋅ Introduction 𝑅isdenotedby𝑅[𝑋,𝑌,…]. Wewrite𝑅×forthegroupofinvertibleelementsinaring𝑅. Aringwithoutzero-divisorsexcept0iscalledanintegraldomain,orsimplyadomain. The localization of a ring 𝑅 with respect to a multiplicative subset 𝑆 will be written as 𝑅[𝑆−1]. Foranysets𝐸,𝐹,let𝐸∖𝐹 ∶= {𝑥 ∈ 𝐸 ∶ 𝑥 ∉ 𝐹}. Thecardinalityof𝐸isdenotedby|𝐸|. The usual logical connectives such as ∃, ∀, ∧, ∨ and so forth will occasionally be used. Writing𝐴 ∶= 𝐵meansthattheexpression𝐴isdefinedtobe𝐵. We will use the standard notations ℤ,ℚ,ℝ,ℂ to denote the set of integers, of ra- tional numbers, etc. Sans serif fonts are reserved for categories, such as Ab (abelian groups)and Ring. When denoting morphisms in a category by arrows, monomorphisms (resp. epi- ∼ morphisms,isomorphisms)willbeindicated↪(resp.↠,→). Possible references The reader is expected to have basic familiarity with groups, rings and modules, as coveredinmylecturenotesonAlgebraI.Wewillmakeuseofsomereallyelementary homologicalalgebraasourcourseproceeds—sokeepcalm. Ourmainreferenceswillbe[11]and[8]. TheBourbakivolumes[5,3]serveasour ultimate source. The readers are also encouraged to consult the relevant materials in StacksProject. 《教授生涯》,李桦,木刻版画,(cid:62295)(cid:62303)(cid:62298)(cid:62302)年. Lecture 1 Warming up Thereadermightbefamiliarwithmostofthematerialsinthislecture. Ourgoalistofix notation and present the basic structural results on Noetherian and Artinian rings or modules,includingthecelebratedNakayama’sLemmawhichwillbeusedrepeatedly. 1.1 Review on ring theory Let𝑅bearing,supposedtobecommutativewithunit1 ≠ 0ascustomary. Recallthat anideal 𝐼 ⊊ 𝑅iscalled ⋄ prime,if𝑎𝑏 ∈ 𝐼 ⟺ (𝑎 ∈ 𝐼)∨(𝑏 ∈ 𝐼); ⋄ maximal,if 𝐼 ismaximalamongtheproperidealsof𝑅withrespecttoinclusion. Recallthefollowingstandardfacts ⋄ 𝐼 isprimeifandonlyif𝑅/𝐼 isanintegraldomain,i.e. hasnozerodivisorsexcept 0; ⋄ 𝐼 ismaximalifandonlyif𝑅/𝐼 isafield;inparticular,maximalidealsareprime; ⋄ every proper ideal 𝐼 is contained in a maximal ideal (an application of Zorn’s Lemma). Definition1.1.1(Localrings). Thering𝑅iscalledlocalifithasauniquemaximalideal, semi-localifithasonlyfinitelymanymaximalideals. Let 𝔪 be the maximal ideal of a local ring 𝑅. We call 𝑅/𝔪 the residue field of 𝑅. A local homomorphism between local rings 𝜑 ∶ 𝑅 → 𝑅 is a ring homomorphism such 1 2 that 𝜑(𝔪 ) ⊂ 𝔪 . Consequently, local homomorphisms induce embeddings on the 1 2 levelofresiduefields. Sometimeswedenotealocalringbythepair(𝑅,𝔪). Remark1.1.2. Let𝑅bealocalringwithmaximalideal𝔪,then𝑅× = 𝑅∖𝔪. Theiseasily seenasfollows. Anelement𝑥 ∈ 𝑅isinvertibleifandonlyif𝑅𝑥 = 𝑅. Notethat𝑅𝑥 = 𝑅 is equivalent to that 𝑥 is not contained in any maximal ideal, and the only maximal idealis 𝔪. ⋅ 4 ⋅ Warmingup Throughouttheselectures,weshallwrite Spec(𝑅) ∶= {primeidealsof𝑅}, MaxSpec(𝑅) ∶= {maximalidealsof𝑅}. Theyarecalledthespectrumandthemaximalspectrumof𝑅,respectively. Theupshotis that Spec(𝑅)comeswithanaturaltopology. Definition 1.1.3 (Zariski topology). For any ideal 𝔞 ⊂ 𝑅, set 𝑉(𝔞) ∶= {𝔭 ∈ Spec(𝑅) ∶ 𝔭 ⊃ 𝔞}. Then there is a topology on Spec(𝑅), called the Zariski topology, whose closed subsetareprecisely𝑉(𝔞),forvariousideals 𝔞. Indeed, we only have to prove the family of subsets {𝑉(𝔞) ∶ 𝔞 ⊂ 𝑅} is closed un- der finite union and arbitrary intersections. It boils down to the easy observation that 𝑉(𝔞) ∪ 𝑉(𝔟) = 𝑉(𝔞𝔟) (check this!) and ⋂ 𝑉(𝔞) = 𝑉(∑ 𝔞), where 𝒜 is any 𝔞∈𝒜 𝔞∈𝒜 familyofideals. Givenaringhomomorphism𝜑 ∶ 𝑅 → 𝑅 ,if𝐼 ⊂ 𝑅 isanideal,then𝜑−1(𝐼) ⊂ 𝑅 is 1 2 2 1 alsoanideal. Proposition1.1.4. Given𝜑asabove,itinducesacontinuousmap 𝜑♯ ∶ Spec(𝑅 ) ⟶ Spec(𝑅 ) 2 1 𝔭 ⟼ 𝜑−1(𝔭) withrespecttotheZariskitopologiesonspectra. Proof. Clearly, 𝑎𝑏 ∈ 𝜑−1(𝔭) is equivalent to 𝜑(𝑎)𝜑(𝑏) ∈ 𝔭, which is in turn equivalent to(𝜑(𝑎) ∈ 𝔭)∨(𝜑(𝑏) ∈ 𝔭)when𝔭isprime. To show the continuity of 𝜑♯, observe that for any ideal 𝔞 ⊂ 𝑅 and 𝔭 ∈ Spec(𝑅 ), 1 2 wehave𝜑−1(𝔭) ⊃ 𝔞 ifandonlyif𝔭 ⊃ 𝜑(𝔞),i.e. 𝔭 ∈ 𝑉(𝜑(𝔞)𝑅 ). Hencethepreimageof 2 closedsubsetsarestillclosed. Moreoperationsonspectra: ⋄ Take𝑅 tobeasubringof𝑅 and𝜑betheinclusionmap,themapabovebecomes 1 2 𝔭 ↦ 𝔭∩𝑅 . 1 ⋄ Take𝜑 ∶ 𝑅 ↠ 𝑅/𝐼 tobeaquotienthomomorphism,then𝜑−1 istheusualbijection fromSpec(𝑅/𝐼)onto𝑉(𝐼). ⋄ In general, 𝜑−1 does not induce MaxSpec(𝑅 ) → MaxSpec(𝑅 ), as illustrated in 2 1 thecase 𝜑 ∶ ℤ ↪ ℚ. Atthisstage,wecanproveahandyresultconcerningprimeideals. Proposition 1.1.5 (Prime avoidance). Let 𝐼 and 𝔭 ,…,𝔭 be ideals of 𝑅 such that 𝐼 ⊂ 1 𝑛 𝑛 ⋃ 𝔭 . Supposethat 𝑖=1 𝑖 ⋄ either𝑅containsaninfinitefield,or ⋄ atmosttwooftheideals𝔭 ,…,𝔭 arenon-prime, 1 𝑛 thenthereexists1 ≤ 𝑖 ≤ 𝑛suchthat𝐼 ⊂ 𝔭 . 𝑖 §1.2 Localizationofringsandmodules ⋅ 5 ⋅ Proof. If 𝑅 contains an infinite field 𝐹, the ideals are automatically 𝐹-vector subspaces 𝑟 of 𝑅. Since 𝐼 = ⋃ 𝐼 ∩ 𝔭 whereas an 𝐹-vector space cannot be covered by finitely 𝑖=1 𝑖 manypropersubspaces,theremustexistsome𝑖 with 𝐼 ∩𝔭 = 𝐼. 𝑖 Underthesecondassumption,letusarguebyinductionon𝑛that∀𝑖 𝐼 ⊄ 𝔭 implies 𝑖 𝑛 𝐼 ⊄ ⋃ 𝔭 . The case 𝑛 = 1 is trivial. When 𝑛 ≥ 2, by induction we may choose, for 𝑖=1 𝑖 𝑛 each 𝑖, an element 𝑥 ∈ 𝐼 ∖⋃ 𝔭 . Suppose on the contrary that 𝐼 ⊂ ⋃ 𝔭 , then we 𝑖 𝑗≠𝑖 𝑗 𝑗=1 𝑗 wouldhave𝑥 ∈ 𝔭 ,forall 𝑖 = 1,…,𝑛. 𝑖 𝑖 When𝑛 = 2wehave𝑥 +𝑥 ∉ 𝔭 ∪𝔭 and𝑥 +𝑥 ∈ 𝐼,acontradiction. When𝑛 > 2, 1 2 1 2 1 2 wemayassume𝔭 isprime,therefore 1 𝑛 𝑛 𝑥 +∏𝑥 ∉ ⋃ 𝔭 , 1 𝑗 𝑖 𝑗=2 𝑖=1 againacontradiction. Exercise 1.1.6. The following construction from [8, Exercise 3.17] shows that the as- sumptions of Proposition 1.1.5 cannot be weakened. Take 𝑅 = (ℤ/2ℤ)[𝑋,𝑌]/(𝑋,𝑌)2, which has a basis {1,𝑋,𝑌} (modulo (𝑋,𝑌)2) as a ℤ/2ℤ-vector space. Show that the image 𝔪 of (𝑋,𝑌) in 𝑅 is the unique prime ideal, and can be expressed as a union of threeidealsproperlycontainedin𝔪. 1.2 Localization of rings and modules Let 𝑆 be a multiplicative subset of 𝑅, which means that (a) 1 ∈ 𝑆, (b) 𝑆 is closed under multiplication, and (c) 0 ∉ 𝑆. The localization of 𝑅 with respect to 𝑆 is the ring 𝑅[𝑆−1] formedbyclasses [𝑟,𝑠]with𝑟 ∈ 𝑅,𝑠 ∈ 𝑆,modulotheequivalencerelation [𝑟,𝑠] = [𝑟′,𝑠′] ⟺ ∃𝑡 ∈ 𝑆, (𝑟𝑠′ −𝑟′𝑠)𝑡 = 0. You should regard [𝑟,𝑠] as a token for 𝑟/𝑠; the ring structure of 𝑅[𝑆−1] is therefore evident. Inbrief,localizationamountstoformallyinvertingtheelementsof𝑆,whence thenotation𝑅[𝑆−1]. Notethatcondition(c)guarantees𝑅[𝑆−1] ≠ {0}. Exercise 1.2.1. Given 𝑅 and 𝑆, show that 𝑟 ↦ 𝑟/1 yields a natural homomorphism 𝑅 → 𝑅[𝑆−1]andshowthatitskernelequals{𝑟 ∶ ∃𝑠 ∈ 𝑆, 𝑠𝑟 = 0}. The universal property of 𝑅 → 𝑅[𝑆−1] can be stated using commutative diagrams asfollows. ⎧ 𝑅 𝑅[𝑆−1] { 𝜑 ∶ 𝑅 → 𝑅′ ∶ ringhomomorphism ∀ , ⎨ ∃! { s.t. 𝜑(𝑆) ⊂ (𝑅′)× 𝜑 ⎩ 𝑅′

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.