ebook img

Yangians of Lie Superalgebras PDF

98 Pages·2007·1.256 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Yangians of Lie Superalgebras

Yangians of Lie Superalgebras Lucy Gow Athesissubmittedinfulfillment oftherequirementsfor thedegreeof DoctorofPhilosophy SchoolofMathematicsandStatistics TheUniversityofSydney November 25, 2007 ii Abstract This thesis is concerned with extending some well-known results about the Yan- giansY(gl )andY(sl )tothecaseofsuper-Yangians. N N FirstweproduceanewpresentationoftheYangianY(gl ),usingtheGauss m|n decomposition of a matrix with non-commuting entries. Then, by writing the quantum Berezinian in terms of generators from the new presentation we prove thatitscoefficientsgeneratethecentreZ ofY(gl ). WeshowthattheYangian m|n m|n Y(sl )isisomorphictoasubalgebraoftheYangianY(gl ),andinparticularif m|n m|n m 6= n,then ∼ Y(gl ) = Z ⊗Y(sl ). m|n m|n m|n Finally, we show that a Yangian Y(psl ) associated with the projective special n|n linearLiesuperalgebramaybeobtainedfromY(sl )byquotientingouttheideal n|n generatedbythecoefficientsofthequantumBerezinian. iii iv Acknowledgements IgratefullyacknowledgethehelpofmysupervisorAlexMolev,whoprovidedthe original plan for this thesis project and has been helpful and supportive through- outitscompletion. IalsoacknowledgethehelpofmyassociatesupervisorRuibin Zhang,whomadehimselfavailabletoexplainsomemathematicstomeonanum- berofoccasions. The School of Mathematics and Statistics at the University of Sydney pro- vided a friendly community in which to carry out this research. I would partic- ularly like to thank my office-mates James Parkinson and Stephen Ward, as well as fellow student Ben Wilson, for many interesting mathematical discussions and adviceontheuseofLaTeX.DavidEasdownandAndrewMathas,aspostgraduate coordinators,alsogaveveryusefuladvicethathelpedmetocompletethisthesis. Thanks also to Mark Fisher for providing me with a space in his office while I added the finishing touches in Melbourne, and to my brother Ian who read my draft and corrected various typographical errors. Finally, I’d like to thank two mathematicians from faraway places, Jon Brundan and Vladimir Stukopin, who kindlyexplaineddetailsoftheirworktomeviaemail. This thesis was supported financially by an Australian Postgraduate Award, a supplementary top-up scholarship from the School of Mathematics and Statis- tics, funds from the Postgraduate Student Support Scheme, and additional funds forconferenceexpensesfromtheUniversityofSydneyAlgebraGroupandAMSI. I declare this thesis to be wholly my own work, unless stated otherwise. No part ofthisthesishasbeenusedinthefulfilmentofanyotherdegree. 30/06/2007 LucyGow UniversityofSydney v vi Contents Abstract iii Acknowledgements v 1 Introduction 1 1.1 YangiansofClassicalLieAlgebras . . . . . . . . . . . . . . . . . . . 1 1.2 YangiansofLiesuperalgebras . . . . . . . . . . . . . . . . . . . . . . 3 1.3 SummaryofThesisResults . . . . . . . . . . . . . . . . . . . . . . . 4 2 TheYangianofgl 7 m|n 2.1 DefinitionofY(gl ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 m|n 2.2 HopfSuperalgebraStructure . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 RelationshipwithU(gl ) . . . . . . . . . . . . . . . . . . . . . . . . 14 m|n 2.5 ThePoincare´-Birkhoff-WittTheorem . . . . . . . . . . . . . . . . . . 15 3 TheGaussDecomposition 19 3.1 Quasideterminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 QuasideterminantsintheYangian . . . . . . . . . . . . . . . 20 3.2 GaussDecompositioninY(gl ) . . . . . . . . . . . . . . . . . . . . 20 m|n 3.3 Relationsbetweenquasideterminants . . . . . . . . . . . . . . . . . 22 3.3.1 TwomapsbetweenYangians . . . . . . . . . . . . . . . . . . 22 vii 3.3.2 RelationsintheYangianY(gl ) . . . . . . . . . . . . . . . . . 26 N 3.3.3 RelationsintheYangianY(gl ) . . . . . . . . . . . . . . . . 27 1|1 3.3.4 RelationsintheYangianY(gl ) . . . . . . . . . . . . . . . . 28 2|1 3.3.5 RelationsintheYangianY(gl ) . . . . . . . . . . . . . . . . 31 m|n 3.4 NewPresentationofY(gl ) . . . . . . . . . . . . . . . . . . . . . . 32 m|n 4 TheCentreofY(gl ) 39 m|n 4.1 TheQuantumBerezinian . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Stukopin’sPresentationofY(sl ) 45 m|n 5.1 QuantizationofSuperLieBialgebras . . . . . . . . . . . . . . . . . . 45 5.1.1 SuperLieBialgebras . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.2 Co-PoissonHopfSuperalgebras . . . . . . . . . . . . . . . . 46 5.1.3 Theh-adictopology . . . . . . . . . . . . . . . . . . . . . . . 47 5.1.4 DefinitionofQuantization . . . . . . . . . . . . . . . . . . . . 48 5.2 Stukopin’sPresentation . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 NewPresentationofY(sl ) 53 m|n 6.1 NewpresentationofY(sl ) . . . . . . . . . . . . . . . . . . . . . . 53 m|n 6.2 IsomorphismBetweentheTwoPresentations . . . . . . . . . . . . . 55 6.3 TheYangianY(psl ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 n|n 6.3.1 TheHopfstructureonY(psl ) . . . . . . . . . . . . . . . . . 60 n|n 7 Conclusion 65 A Superalgebras 67 A.1 Basicdefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A.2 TheRuleofSigns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A.3 TheLieSuperalgebragl . . . . . . . . . . . . . . . . . . . . . . . . 69 m|n viii A.4 TheLieSuperalgebrassl andpsl . . . . . . . . . . . . . . . . . 70 m|n n|n A.5 RootSpaceDecomposition . . . . . . . . . . . . . . . . . . . . . . . . 71 A.6 CartanMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.7 TheKillingForm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.8 UniversalEnvelopingAlgebras . . . . . . . . . . . . . . . . . . . . . 74 A.9 CasimirElements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 A.10 TheSymmetricGroupActsonCm|n ⊗...⊗Cm|n . . . . . . . . . . . 76 B Proofthatφisahomomorphism 77 ix x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.