ebook img

Yangian-invariant spin models and Fibonacci numbers PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Yangian-invariant spin models and Fibonacci numbers

Yangian-invariant spin models and Fibonacci numbers FedericoFinkel,ArtemioGonza´lez-Lo´pez DepartamentodeF´ısicaTeo´ricaII,UniversidadComplutensedeMadrid,28040Madrid,Spain 5 Abstract 1 0 We study a wide class of finite-dimensional su(m|n)-supersymmetric models closely related to 2 therepresentationsoftheYangianY(gl(m|n))labeledbyborderstrips. Wequantitativelyanalyze g the degree of degeneracy of these models arising from their Yangian invariance, measured by u the average degeneracy of the spectrum. We compute in closed form the minimum average A degeneracyofanysuchmodel,andshowthatinthenon-supersymmetriccaseitcanbeexpressed 0 intermsofgeneralizedFibonaccinumbers. Usingseveralpropertiesofthesenumbers,weshow 1 that(exceptinthesimplersu(1|1)case)theminimumaveragedegeneracygrowsexponentially withthenumberofspins. Weapplyourresultstoseveralwell-knownspinchainsofHaldane– ] h Shastrytype,quantitativelyshowingthattheirdegreeofdegeneracyismuchhigherthanexpected p foragenericYangian-invariantspinmodel. Finally, weshowthatthesetofdistinctlevelsofa - Yangian-invariant spin model is described by an effective model of quasi-particles. We study h t this effective model, discussing its connections to one-dimensional anyons and properties of a generalizedFibonaccinumbers. m [ Keywords: Yangiansymmetry,integrablespinchains,Fibonaccinumbers,anyons 2 v 3 2 1. Introduction 2 5 Inthispaperweshallconsiderageneralclassoffinite-dimensionalquantummodelswhich 0 by construction are invariant under the Yangian algebra Y(gl(m|n)). The key to the Yangian . 1 invariance of these models is their connection to certain finite-dimensional representations of 0 Y(gl(m|n))labeledbyatypeofskewYoungdiagrams, thesocalledborderstrips[1,2]. These 5 representationsplayafundamentalroleinthestudyoftheintegrabletwo-dimensionalconformal 1 field theory related to the latter models, namely the su(m|n) WZNW model at level 1 [3–5]. : v Themodelsweshallbeinterestedin,whichweshallrefertoasYangian-invariantsu(m|n)spin i X models, are characterized by the fact that their Hilbert space is a direct sum of the irreducible representations of Y(gl(m|n)) labeled by border strips with exactly N boxes, where N is the r a numberofspins. Thesimplestexamplesofthesemodelsarecertainintegrablespinchainswith long range interactions invariant under the Yangian for a finite number of spins, namely the su(m|n) supersymmetric versions of the Haldane–Shastry [6–8] and Polychronakos–Frahm [9– 11]chains;see,e.g.,[1,3,5,12,13]. Emailaddresses:[email protected](FedericoFinkel),[email protected](ArtemioGonza´lez-Lo´pez) Asiswellknown,theHaldane–Shastry(HS)spinchainisacircular(translationallyinvariant) chainwithequallyspacedsites,theinteractionsbetweenanytwospinsbeinginverselypropor- tionaltothesquareoftheirchorddistance.Thismodelappearsinconnectionwithawidevariety oftopicsintheoreticalandmathematicalphysics,includingone-dimensionalanyons[3,5,8,14], conformalfieldtheory[15–18],quantumchaos[19–22],quantuminformationtheory[23],and quantumintegrability[12,24,25]. AdistinctivefeatureoftheHSchainisthefactthatitcanbe obtained from a dynamical model, namely the spin Sutherland (trigonometric) model [26–28], in the strong coupling limit [9]. By applying the same procedure to the spin Calogero (ratio- nal) [29, 30] and Inozemtsev (hyperbolic) [31] models, one obtains the Polychronakos–Frahm (PF)andFrahm–Inozemtsev(FI)[32]spinchains, whichsharemanypropertieswiththeorigi- nal HS chain. In fact, although the Yangian symmetry of the FI chain has not been rigorously established,weshallseeinSection2thatitisisospectraltoaYangian-invariantspinmodel. ItisclearbyitsverydefinitionthattheclassofYangian-invariantspinmodelsencompasses awiderangeofquantumsystems. Forinstance,apartfromtheintegrablespinchainsmentioned above, it includes the family of one-dimensional vertex models studied in Refs. [13, 33]. A common feature shared by all Yangian-invariant spin models is the high degeneracy of their spectrum,stemmingfromtheYangiansymmetry. Thisstatement,however,isfarfromprecise, and does not shed any light on whether a certain model in this class has additional degeneracy due to its particular form. The main aim of this paper is precisely to perform a quantitative analysis of the degeneracy inherentto all Yangian-invariant spin models. Tothis end, we shall useasaconcretemeasureofthedegreeofdegeneracyofafinite-dimensionalquantumsystemits averagedegeneracy,definedasthequotientofthedimensionofitsHilbertspacebythenumber of distinct energy levels. We shall derive closed-form expressions for the average degeneracy ofa“generic”Yangian-invariantsu(m|n)spinmodel,bothinthesupersymmetric(mn (cid:44) 0)and non-supersymmetric cases. In fact, these expressions provide a lower bound for the average degeneracy of any Yangian-invariant spin model, and thus can be used as a practical test for rulingoutthataparticularquantumsystembelongstothisclass. As it turns out, the behavior of this lower bound (which we have termed “minimum aver- age degeneracy”) is rather different in the supersymmetric and non-supersymmetric cases. In the former case, the minimum average degeneracy is given by a simple power law in terms of the dimension m+n of the one-particle Hilbert space (cf. Eq. (17)). Far more interestingly, in thenon-supersymmetriccasetheminimumaveragedegeneracyisexpressedintermsofgener- alizedFibonaccinumbers[34],whichreducetothestandardonesforspin1/2(mornequalto 2). Using standard properties of the generalized Fibonacci numbers, we derive the asymptotic behavior as the number of spins tends to infinity of the minimum average degeneracy in the non-supersymmetriccase. Wefindthattheleadingbehaviorisagainapowerlawinvolvingthe largestroot(inmodule)ofthecharacteristicpolynomialofthegeneralizedFibonaccinumbers. Anothergoalofthisworkistoascertaintowhatdegreetheaveragedegeneracyofthethree spin chains of Haldane–Shastry type (i.e., the HS, PF and FI chains) behaves as expected for a generic Yangian-invariant spin model. Contrary to popular belief, we find out that this is actuallynotthecase. Moreprecisely,weshowthatthenumberofdistinctlevelsofthesechains growspolynomiallywiththenumberofspins,whereasforgenericYangian-invariantspinmodels this growth is exponential. As explained in detail in Section 5, the ultimate reason for this differentbehavioristhefactthatspinchainsofHStypepossessapolynomialdispersionrelation. As a matter of fact, our results apply as well to the whole family of vertex models studied in Refs.[13,33], whichalsohavethisproperty. Moreover, whenthecoefficientsofapolynomial dispersionrelationarerationalnumbers(asisthecasefortheHSandPFchains,andfortheFI 2 chainwhenitsparameterisrational)weshowthatthenumberofdistinctlevelsbehavesasNk+1, wherekisthetotaldegreeofthedispersionrelation. AnotheraspectofYangian-invariantspinmodelsthatweshallanalyzeinthispaperistheir connection with one-dimensional anyons. In fact, it is well known that spin chains of HS type provide one of the simplest realizations of anyons in one dimension via Haldane’s fractional statistics[14]. Forinstance,asshowninthelatterreference,thespectrumofthesu(2)HSchain isthesameasthatofasystemofspin1/2anyonswithexclusionparameterg=1/2. Thisresult wasessentiallyextendedtothesu(m)casein[5],withg = 1/m. Inthispaperwefocusinstead onthesetofdistinctenergylevelsofansu(m)Yangian-invariantspinmodel,andshowthatitcan beobtainedfromthespectrumofaneffectivemodelofquasi-particlescorrespondingtothe1’s inaHaldanemotif[3]. Inparticular,inthesu(2)casethiseffectivemodelissimplyasystemof anyonswithg = 2. Inthegeneralsu(m)casewecomputeinclosedformthestatisticalweights oftheseeffectivemodels,andusethemtoderiveinanovelwayseveralcombinatorialidentities forgeneralizedFibonaccinumbers. This paper is organized as follows. In Section 2 we review the description of the repre- sentations of the Yangian Y(gl(m|n)) labeled by border strips, and give a precise definition of Yangian-invariantsu(m|n)spinmodels. Wealsorecallthedefinitionsofthesu(m|n)spinchains ofHStype,anddiscusstheirspectraanddispersionrelations. Section3isdevotedtothecom- putation of the minimum average degeneracy of an arbitrary Yangian-invariant spin model, in both the supersymmetric and non-supersymmetric cases. We apply our results to the su(m|n) supersymmetricversionofInozemtsev’sellipticchain[35],showingthatinthesu(2),su(3)and su(2|1)(orequivalentlysu(1|2))casesitisnotaYangianinvariantspinmodelforawiderangeof valuesof N. UsingseveralpropertiesofthegeneralizedFibonaccinumbers,wealsodetermine theasymptoticbehavioroftheminimumaveragedegeneracyofaYangian-invariantspinmodel. In Section 4 we study the average degeneracy of Yangian-invariant spin models that are also translationallyinvariant,liketheHaldane–Shastrychain.Asanexample,weconsiderthesu(1|1) Inozemtsevchain,whichisknowntobe(isospectralto)aYangian-andtranslationally-invariant spinmodel[36]. Asmentionedabove,inSection5wepresentadetailedanalysisoftheaverage degeneracyofspinchainsofHStypeand,moregenerally,ofYangian-invariantspinmodelswith apolynomialdispersionrelation. InSection6weintroducetheeffectivemodelsdescribingthe set of distinct levels of a non-supersymmetric Yangian-invariant spin model, and discuss their interpretationintermsofanyonsandtheirconnectionwithseveralidentitiessatisfiedbygener- alizedFibonaccinumbers. Thepaperendswithabriefsectioninwhichwesummarizeourmain results. 2. Yangian-invariantspinmodels InthissectionweshallprovideaprecisedefinitionoftheclassofYangian-invariantmodels onwhichweshallfocusinthispaper. Forthereader’sconvenience,weshallbeginbyrecalling theprecisedefinitionoftheYangianY(gl(m|n)). Followingtheoriginalpaper[37]andRef.[38], we first give an explicit matrix realization of the Lie superalgebra gl(m|n). To this end, let us introduce a Z grading p in the vector space Cm+n by setting p(v) = 0 if v ∈ Cm × {0} and 2 p(v)=1ifv∈{0}×Cn. ThisinducesanaturalgradinginthespaceMm+n(C)of(m+n)×(m+n) complexmatricesgivenby deg(Eαβ)= p(α)+p(β), where p(α) ≡ p(eα),{e1,...,em+n}beingthecanonicalbasisofCm+n,and Eαβ denotesthema- trix whose only nonzero entry is a 1 in the α-th row and β-th column. By definition, the Lie 3 superalgebragl(m|n)isthevectorspaceMm+n(C)withthethegradedcommutatordefinedbythe customaryformula [A,B] = AB−(−1)degA+degBBA ± on matrices with well-defined degree, and extended by linearity to the whole space. The Yan- gianY(gl(m|n))isthendefinedbymeansofthesolutionoftheYang–Baxterequationgivenby theR-matrix R(u)=u−hP, (1) whereuisthespectralparameter,h∈CandPisthegradedpermutationoperatordefinedby P(e ⊗e )=(−1)p(α)p(β)e ⊗e . α β β α Moreprecisely,Y(gl(m|n))istheassociative(complex)superalgebrawithgenerators T(k), α,β=1,... ,m+n, k=1,2,... , αβ definedasfollows. Let (cid:88)m+n T(u)= Tαβ(u)Eαβ ∈ Mm+n(cid:0)Y(gl(m|n))(cid:1), α,β=1 wherethematrixelementsT (u)aredefinedby αβ (cid:88)∞ T (u)=δ + T(k)u−k. (2) αβ αβ αβ k=1 WealsointroduceaZ gradinginY(gl(m|n))bysetting 2 deg(cid:0)T(k)(cid:1)= p(α)+p(β), αβ so that the matrix T(u) and the identity matrix 1I = (cid:80)m+nEαα are both even. Given two even α=1 (m+n)×(m+n)matricesA,BwithmatrixelementsinY(gl(m|n)),wedefinetheirgradedtensor productby (A⊗B)ij,kl =(−1)(pi+pk)pjAikBkl. ThedefiningrelationforthegeneratorsT(k)arethengivenbytheequation αβ R(u−v)1T(u)2T(v)=2T(v)1T(u)R(u−v), wherethematrixRisdefinedbyEq.(1)andwehaveusedthestandardnotation1T(u)=T(u)⊗1I, 2T(u) = 1I ⊗ T(u). Using the above definition of graded tensor product, it is easy to check thatthelatterequationisequivalenttothefollowingsystemforthecurrentsT (u)oftheYan- αβ gianY(gl(m|n)): (u−v)(cid:2)Tαβ(u),Tγδ(v)(cid:3)± =(−1)pαpγ+pβpγ+pαpβh·(cid:16)Tγβ(u)Tαδ(v)−Tγβ(v)Tαδ(u)(cid:17); α,β,γ,δ=1,...,m+n. This system obviously determines the defining relations of the generators T(k) of the Yangian αβ superalgebra Y(gl(m|n)) through Eq. (2). In fact, it is well known that this algebra is actually generatedbyitslowesttwogeneratorsT(0)andT(1). αβ αβ 4 AsmentionedintheIntroduction,themodelsweshalldealwithinthispaperareassociated to finite-dimensional representations of the Yangian Y(gl(m|n)) labeled by a particular class of skew Young diagrams, namely border strips, that we shall describe next. We shall start with a fewpreliminarydefinitions, followingforthemostpartthenotationinRef.[1]. AskewYoung diagramλ/µisthesetofboxesobtainedbysubtractingaYoungdiagramµfromalargerYoung diagramλ ⊃ µ. Suchadiagramλ/µisconnectedifforanypairofboxesa,b ∈ λ/µthereisa sequenceofadjacentboxesstartingwithaandendingwithb.Aborderstripisaconnectedskew Youngdiagramnotcontainingany2×2blockofboxes.Inotherwords,aborderstripisacollec- tionofboxesarrangedincolumns,suchthatthetopboxineachcolumnisadjacenttothebottom box in the column to its right. Thus a border strip is determined by a vector k ≡ (k ,...,k ), 1 r where k is the number of boxes in the i-th column, counting from right to left; cf. Fig. 1. For i thisreason,fromnowonweshallusuallyidentifyaborderstripwithitscorrespondingvectorof columnlengthsk. Ansu(m|n)semi-standardtableau(SST)isaparticularfillingoftheboxesin Figure1:Borderstrip(k1,k2,...,kr). aborderstripkwithintegersintherange−n,−n+1,...,m−1accordingtothefollowingtwo rules: 1. The integers in each column (read from top to bottom) and each row (read from left to right)formanondecreasingsequence. 2. The nonnegative (respectively negative) integers in each row (resp. column) form an in- creasingsequence. Remark1. Theuseofthetermsu(m|n)inthepreviousdefinitionismotivatedbythefactthat, asweshallexplainindetailbelow,thesetableauxappearinanaturalwayinthedescriptionof thespectrumofseveralwellknownspinchainspossessingsu(m|n)supersymmetrylike,e.g.,the Haldane–Shastrychain. Wecanobviouslyidentifyansu(m|n)SSTwiththesequence s≡(s ,...,s ), s ∈{−n,−n+1,...,m−1}, 1 N i ofitsintegersreadfromtoptobottomandfromrighttoleft; weshallcallsuchasequencethe tableau’sspinconfiguration. Forinstance,thetableauinFig.2isansu(2|3)(ormoregenerally 5 su(m|n), with m (cid:62) 2 and n (cid:62) 3) SST with spin configuration s = (−3,1,1,0,−2,−1,−1), associatedtotheborderstripk = (3,1,2,1). Weshallwrites ∈ ktoindicatethatsisthespin configurationofansu(m|n)SSTwhoseunderlyingborderstripisk. Weshallalsosaythattwo spinconfigurationss,s(cid:48) areequivalent,andusethenotations ∼ s(cid:48),providedthats,s(cid:48) ∈ kfora certainborderstripk. −3 1 −2 0 1 −1−1 Figure2:su(2|3)SSTwithspinconfigurations=(−3,1,1,0,−2,−1,−1). As is well-known, the set of all border strips is in one-to-one correspondence with an im- portant class of finite-dimensional irreducible representations of the Yangian Y(gl(m|n)) whose carrier spaces (the so called tame modules) are irreducible under the action of a distinguished maximal abelian subalgebra of Y(gl(m|n)) [1, 2]. Given a border strip k, the dimension of the corresponding irreducible representation is the number of all possible su(m|n) SST associated withk. Itisclearthatanyvectors ∈ {−n,−n+1,...,m−1}N canberegardedasthespincon- figurationofthesu(m|n)tableauconstructedbyplacingthefirstcomponent s atthetopofthe 1 first(rightmost)column, andthenplacingeachcomponent s intheboxbelow(respectivelyto i theleft)ofthe(i−1)-thboxif s > s ,or s = s (cid:62) 0(resp. s < s ,or s = s < 0). It i i−1 i i−1 i i−1 i i−1 immediatelyfollowsthatthenumberofallsu(m|n)SSTwithNboxescoincideswiththenumber (m+n)N ofallspinconfigurationss∈{−n,−n+1,...,m−1}N. Thisimpliesthat (cid:77) dim V (m|n)=(m+n)N, k k∈PN whereV (m|n)denotesanirreducibleY(gl(m|n))-moduleassociatedwiththeborderstripkand k P isthesetofallpartitionsoftheintegerN(withordertakenintoaccount).Thusthedirectsum (cid:76)N V (m|n)hasthesamedimensionastheHilbertspaceofaspinchainwithNsitesandtwo k∈PN k speciesofparticles,onewithmandtheotherwithninternaldegreesoffreedom. Infact,there isanimportantclassofYangian-invariantmodelswhoseHilbertspacedecomposesasthedirect (cid:76) sum V (m|n),namelythesu(m|n)-supersymmetricHaldane–ShastryandPolychronakos– k∈PN k Frahmchains[1,4,11,12,20,39]thatweshallnowbrieflydescribe. Tobeginwith,theHilbertspaceofthesechainsisspannedbythecanonicalspinbasis |s (cid:105)⊗···⊗|s (cid:105)≡|s ,...,s (cid:105)≡|s(cid:105), s ∈{−n,−n+1,...,m−1}, 1 N 1 N i wherethembosonic(resp.nfermionic)internaldegreesoffreedomofthei-thspincorrespond to nonnegative (resp. negative) values of s. The action of the su(m|n)-supersymmetric spin i permutationoperatorsS(m|n)(withi< j)onthecanonicalspinbasisisthendefinedby ij S(m|n)|s ,...,s,...,s ,...,s (cid:105)=σ (s)|s ,...,s ,...,s,...,s (cid:105), ij 1 i j N ij 1 j i N withσ (s)=−1whens ands arebothfermionic,orwhens ands areofoppositetypeandthe ij i j i j numberoffermionicspinsoccupyingthesitesi+1,..., j−1isodd. Intermsoftheseoperators, theHamiltoniansofthesu(m|n)HSandPFchainscanbetakenas[20,40] (cid:88) (cid:16) (cid:17) H = J 1−S(m|n) , (3) ij ij 1(cid:54)i<j(cid:54)N 6 where J =12sin−2(cid:0)π(i− j)/N(cid:1), fortheHSchain, (4) ij (ξ −ξ )−2, forthePFchain, i j andξ <···<ξ arethezerosoftheHermitepolynomialofdegreeN. 1 N FortheHSandPFchains,thereisasimpleexplicitformulafortheenergyassociatedwiththe irreduciblerepresentationlabeledbyaborderstripk∈P thatweshallnowrecall. Tothisend, N itisconvenienttointroduceanalternativenotationfortheborderstripsintermsoftheso-called motifs [3, 15]. More precisely, to a given a border strip k ∈ P we shall associate the vector N δ∈{0,1}N−1withcomponents  δ =1, i=k1, k1+k2, ... , k1+···+kr−1, i 0, otherwise. Weshallcallthisvectorδthemotif1 representingtheborderstripk,andshallrefertotheposi- tionsK ≡k +k ···+k ofitsnonzerocomponentsasitsrapidities. Forinstance,fortheborder i 1 2 i stripk = (3,1,2,1) ∈ P inFig.2therapiditiesare3,4,6,andthusthecorrespondingmotifis 7 (0,0,1,1,0,1). Foragivensu(m|n)SSTwithspinconfigurations,wedefineδ(s)asthemotifδ oftheborderstripdeterminedbys. Itisimmediatetoconvinceoneselfthat  δ(s)=1, ifsi+1 < si orsi = si+1 <0, i 0, otherwise. With these definitions, the spectrum of the su(m|n) HS and PF chains with N sites (with the correctdegeneracyforeachlevel)canbeshowntobethesetofnumbers[11,13] (cid:88)N−1 E (s)= ε (j)δ (s), (5) N N j j=1 withdispersionrelation  ε (j)=j(N− j), fortheHSchain, (6) N j, forthePFchain. Infact,asimilarresultholdsforthe(purelybosonicorfermionic)su(m)Frahm–Inozemtsev(FI) chain[32],whoseHamiltonianisoftheform(3)withcouplings 1 J = sinh−2(ζ −ζ ). ij i j 2 Heree2ζk denotesthek-throotofthegeneralizedLaguerrepolynomialLα−1,andα > 0isafree N parameter. InthiscasethespectrumisalsogivenbyEq.(5),withdispersionrelation[41] ε (j)= j(α+ j−1). (7) N 1IntheoriginaldefinitionofHaldane,themotifisthesequenceofthecomponentsofδwithazeroaddedatboth ends. 7 Itcanbeshownthatthisformulaforthespectrumholdsaswellinthesu(m|n)case. Inviewof thesefacts,itisnaturaltoconjecturethatthesu(m|n)FIchainisalsoinvariantundertheYangian Y(gl(m|n)),althoughtothebestofourknowledgethisresulthasnotbeenrigorouslyproved. We shall study in this paper the degeneracy of the spectrum of the class of Y(gl(m|n))- invariantquantumsystemswhoseHilbertspaceH decomposesasthedirectsum N (cid:77) H = V (m|n) (8) N k k∈PN of the irreducible representations of Y(gl(m|n)) labeled by border strips with exactly N boxes. WeshallcallanysuchsystemaYangian-invariantsu(m|n)spinmodelwithN sites. Aswehave justseen,thisclassincludesthesu(m|n)-supersymmetricHSandPFlong-rangespinchains. The Yangianinvarianceofthesespinmodelsandthedecomposition(8)implythattheirspectrumis oftheform E (s), s∈{−n,−n+1,...,m−1}N, N whereE isareal-valuedfunctionsatisfying N s∼s(cid:48) =⇒ E (s)=E (s(cid:48)). N N Indeed,twospinconfigurationsareequivalentifandonlyiftheydeterminethesameborderstrip k,whichlabelsauniqueirreduciblerepresentationV (m|n)oftheYangian. Sinceobviously k s∼s(cid:48) ⇐⇒ δ(s)=δ(s(cid:48)), wemusthave E (s)= E (cid:0)δ(s)(cid:1). N N ThusthespectrumofaYangian-invariantspinmodelcanbeequivalentlydescribedbythefunc- tionE :{0,1}N−1 →Rasthesetofnumbers N E (cid:0)δ(s)(cid:1), s∈{−n,−n+1,...,m−1}N. (9) N WeshallcallE theenergyfunctionofthesystem. ItfollowsfromEq.(9)thattheHamiltonian N ofaYangian-invariantspinmodelcanbeexpressedas (cid:88) (cid:88) H = E (δ) |s(cid:105)(cid:104)s|, N k∈PN s∈k (cid:8) (cid:9) where |s(cid:105)|s ∈ k is any orthonormal basis of the subspace V (m|n) and δ denotes the motif k correspondingtotheborderstripk. Forinstance, forthesu(m|n)HSandPFchainstheenergy functionisthelinearfunctional (cid:88)N−1 E (δ)= ε (j)δ . (10) N N j j=1 with ε given by Eq. (6). In fact, more general Yangian-invariant spin models having a linear N energy function (10) with polynomial dispersion relation ε (j) have recently been studied in N Refs.[13,33]. WeshalltakeEq.(9)asthebasisofouranalysisofthespectrumofaYangian-invariantspin model. For this reason, our results will also apply to models like the FI chain, whose Yangian invariance has not been established but which is known to possess a spectrum of the form (9) (withE givenby(7)-(10)). N 8 3. AveragedegeneracyandgeneralizedFibonaccinumbers 3.1. Minimumaveragedegeneracy Themaingoalofthissectionistocomputealowerboundfortheaveragedegeneracyofthe spectrum(9)ofaYangian-invariantspinmodelwithN sites,definedby (m+n)N d = , (11) N (cid:96) N where (cid:96) is the number of distinct energies. This is of course equivalent to finding an upper N bound on (cid:96) , a problem which we shall now address. The key observation in this respect is to N notethat,byEq.(9),(cid:96) isobviouslyequaltothenumberofdistinctvaluestakenbytheenergy N functionE (δ),whereδrangesovertheset N ∆ (m|n)=(cid:8)δ(s)|s∈{−n,−n+1,...,m−1}N(cid:9). (12) N ofallvalidsu(m|n)motifswithN−1components. Thus (cid:96) (cid:54)ν (m|n), (13) N N whereν (m|n)denotesthecardinaloftheset∆ (m|n),andtherefore N N d (cid:62)d , (14) N N,min wheretheminimumaveragedegeneracyd isgivenby N,min (m+n)N d = . (15) N,min ν (m|n) N Infact,theminimumaveragedegeneracyisstrictlylessthantheaveragedegeneracyifandonly iftheenergyfunctionE isnotinjective;weshallsayinthiscasethattheYangian-invariantspin N modelexhibitsaccidentaldegeneracy. WeshallalsosaythataYangian-invariantspinmodelis genericifithasnoaccidentaldegeneracy. As we have just seen, in order to evaluate d in closed form we only need to compute N,min the cardinal of the set (12). To this end, we shall next recall a simple characterization of all allowedsu(m|n)motifswhichshallbeoffundamentalimportanceinwhatfollows. Consider,to beginwith,thegenuinelysupersymmetriccasemn (cid:44) 0. Itiseasytorealizethatinthiscaseany sequenceδ∈{0,1}N−1isavalidmotif,sothat ν (m|n)=2N−1, mn(cid:44)0. (16) N Indeed, if δ ∈ {0,1}N−1 let K ,...,K be the positions of the nonzero components of δ, and 1 r−1 definek = K −K (withK ≡0andK ≡ N). Thenthevector i i i−1 0 r s=(0,...,0,−1,0,...,0,...,−1,0,...,0) (cid:32)(cid:32) (cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124)(cid:123)(cid:122)(cid:125) (cid:124) (cid:123)(cid:122) (cid:125) (cid:124) (cid:123)(cid:122) (cid:125) k1 k2 kr isthespinconfigurationofansu(m|n)SSTwhosecorrespondingmotifisδ. Thusinthiscasewe justhave (cid:18)m+n(cid:19)N d =2 , mn(cid:44)0. (17) N,min 2 9 Considernextthepurelybosonicsu(m|0)case. Itisclearthatansu(m|0)motifcannotcon- tainasequenceofmormoreconsecutive1’s, sincethespinconfigurationofanytableauasso- ciatedtosuchamotifwouldcontainasequenceofm+1ormoredistinctintegersintherange 0,1,...,m−1. Conversely,supposethatthevectorδ ∈ {0,1}N−1 containsnosequenceofmor more consecutive 1’s. Such a δ can be written as a succession of sequences of consecutive 0’s and1’softheform δ=(0,...,0,1,...,1,0,...) (cid:32)(cid:32) (cid:32)(cid:32) (cid:32)(cid:32) (cid:32)(cid:32) (cid:124)(cid:123)(cid:122)(cid:125) (cid:124)(cid:123)(cid:122)(cid:125) l1 n1 withn (cid:54)m−1. Itisimmediatetocheckthatthespinconfiguration i s=(m−1,...,m−1,m−2,...,m−n ,m−n −1,m−1,...), (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) 1 1 (cid:124) (cid:123)(cid:122) (cid:125) l1+1 whereeachentryisintherange0,1,...,m−1onaccountoftheconditionn (cid:54)m−1,determines i ansu(m)SSTwhosecorrespondingmotifisδ. Thisshowsthat∆ (m|0)isthesetofallvectors N δ∈{0,1}N−1containingnosequencesofmormoreconsecutive1’s. Inexactlythesamewayitis provedthatinthepurelyfermioniccase∆ (0|n)isthesetofallvectorsδ∈{0,1}N−1 containing N nosequencesofnormoreconsecutive0’s. Itimmediatelyfollowsfromthesetwofactsthatthe sets∆ (m|0)and∆ (0|m)aremappedbijectivelyintoeachotherbythedualitytransformation N N δ=(δ ,...,δ )∈∆ (m|0)(cid:55)→δ(cid:48) =(1−δ ,...,1−δ )∈∆ (0|m). (18) 1 N−1 N 1 N−1 N Hence ν (m|0)=ν (0|m), (19) N N sothatfromnowonweshallrestrictourselveswithoutlossofgeneralitytothepurelybosonic case. Remark2. Thedualitytransformation(18)actuallyarisesfromamappingdefinedonspincon- figurations[38],validalsointhegeneralsupersymmetriccase. Moreprecisely,givenansu(m|n) spinconfigurationsdefinethevectors(cid:48) ≡(s(cid:48),...,s(cid:48) )by 1 N s(cid:48) =−s −1, i=1,...,N. i i Itisimmediatetocheckthats(cid:48)isavalidsu(n|m)spinconfiguration,andthat δ(s(cid:48))=δ(s)(cid:48), (20) where δ(cid:48) is defined by Eq. (18). Consider two su(m|n) and su(n|m) spin models with the same energyfunctionE . Itisstraightforwardtoshowthatthespectraofbothmodelsaremappedin N aone-to-onewaybythedualitytransformation E (δ)(cid:55)→ E (δ(cid:48)). (21) N N Indeed, it is obvious from Eq. (9) for the spectrum that the energies of both models are in a one-to-one correspondence under the transformation (21). Their respective degeneracies also coincide,sinceforagivensu(m|n)motifδwehave (cid:8)s∈{−n,−n+1,,...,m−1}|δ(s)=δ(cid:9)=(cid:8)s(cid:48) ∈{−m,−m+1,...,n−1}|δ(s(cid:48))=δ(cid:48)(cid:9), 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.