Astronomy&Astrophysicsmanuscriptno.9027 (cid:13)c ESO2008 February4,2008 XMMU J134736.6+173403: an eclipsing LMXB in quiescence or a peculiar AGN? (ResearchNote) S.Carpano1,B.Altieri2,A.R.King3,A.Nucita1,andP.Leisy4 8 0 1 XMM-NewtonScienceOperationsCentre,ESAC,ESA,POBox50727,28080Madrid,Spain 0 2 HerschelScienceCentre,ESAC,ESA,POBox50727,28080Madrid,Spain 2 3 DepartmentofPhysicsandAstronomy,UniversityofLeicester,LeicesterLE17RH,UK 4 IsaacNewtonGroupofTelescopes,ApartadodeCorreos321,E-38700Sta.CruzdeLaPalma,Spain;InstitutodeAstrofsicade n Canarias,E-38205LaLaguna,Tenerife,Spain a J Submitted:8November2007;Accepted:8January2008 8 2 ABSTRACT ] Aims.WereportthediscoveryofapeculiarobjectobservedserendipitouslywithXMM-Newton.Wepresentitstimingandspectral h propertiesandinvestigateitsopticalcounterpart. p Methods.The light curve of the X-ray source, its spectrum, and the spectrum of the best optical counterpart are presented and - o analyzed. r Results.TheX-rayfluxdecreasesbyafactorof6.5within1handstaysinalowstateforatleast10h,therebysuggestingthepresence t ofaneclipse.Thespectrumisverysoft,apowerlawwithaslopeofΓ∼2.8,anddoesnotchangesignificantlybeforeandafterthe s a fluxdrop.Thesourceisspatiallycoincidentwithinfewarc-secondswithaSeyfert2galaxybelongingtoagalaxypair. [ Conclusions.AlthoughthebackgroundAGNseemsthebestcounterpart,neitherthetemporalnorthespectralpropertiesoftheX-ray sourcearecompatiblewithit.Weinvestigatethepossibilityofhavingaforegroundlow-massX-raybinaryinquiescence,wherethe 1 companionisnotdetectedintheopticalwavelength. v 6 Keywords.X-rays:general–X-rays:binaries–Galaxies:Seyfert 4 2 4 1. Introduction 1996). A hot quasi-spherical flow is expected in the inner re- . 1 gionsproducingX-rays(Narayanetal.1996). In this paper we report the discovery of an X-ray source for 0 8 whichthefluxdropsabruptlybyafactorof6.5withinonehour, The spectrum of NS-LMXBs in quiescence displays a 0 andstaysinthislowstateforatleast10hours.Thenatureofthe soft(kT∼0.1keV)thermalcomponent(McClintocketal.2004), : sourcedescribedinthispaperisveryambiguous.TheX-raylight probablyassociatedwiththestellarsurface.Indeed,theobserved v curvesuggeststhepresenceofaneclipseandhenceabinarysys- X-rayluminosities,temperatures,anddistanceofthesesystems i X tem. The detected opticalcounterpartis a pair of galaxies,one indicate that the thermal emission comes from a source with a r of which is a Seyfert2 AGN. The X-ray spectrum is also very radiusof∼10km.Ontheotherhand,forBH-LMXBsinquies- a softso as to be compatiblewith such an AGN. We suggestthe cence,nothermalemissionhasbeenreportedforthe15sources possibilitythatwehaveaforegroundlow-massX-raybinaryin reportedbyMcClintock&Remillard(2004),sincetheypossess quiescenceforwhichtheopticalcounterpartisbelowdetectabil- aneventhorizon.Theirspectraarewell-fittedbyasinglepower ity,butwedonotexcludethepresenceofapeculiarAGN.Inthis lawwithaphotonindex1.5<Γ <2.1(McClintock&Remillard section we introducethe generalX-ray propertiesboth of low- 2004). massX-raybinariesinquiescenceandofSeyfert2galaxies. Low-mass X-ray binaries (LMXBs) are composed of a The brightest and best-studied NS-LMXBs in quiescence compact object, either a neutron star (NS) or a black hole are Cen X-4 and Aql X-1. Spectral and temporal analysis (BH), accreting matter from a companion star with masses . of these sources during quiescence are reported, for exam- 1M⊙. These objects have typical X-ray luminosities of about ple, by Campanaetal. (2004) and Campana&Stella (2003), 1037–1038ergs−1 but can drop down to 1031–1033ergs−1 dur- respectively. Both sources display a thermal component and ingquiescence.Athighluminosities,the diskisopticallythick a power law, as well as short-timescale temporal variability and geometrically thin, while a hot optically thin, advection- (Campana&Stella2003;Rutledgeetal.2002).TheX-rayNova dominatedaccretiondisk isexpectedforlowerluminosities.In V404Cygniis,ontheotherhand,thebrighteststellar-massBH theadvection-dominatedaccretionflow (ADAF)model,thera- in quiescence. A recent review of its properties is reported by diativeefficiencyisverylow(∼10−4–10−3)andmostofthegrav- Bradleyetal. (2007): the spectrum in quiescence is typically a itationalenergyisstoredasinternalenergyandadvectedtowards powerlaw witha Γ ∼ 2,consistentwith with whatis expected the compact object with little X-ray emission (Narayanetal. fortheadvection-dominatedaccretionflow.Inthelowstate,the sourceisalsovariableonashorttimescaleuptoafactorof&20 Sendoffprintrequeststo:S.Carpano,e-mail:[email protected] duringa60ksobservation(Hynesetal.2004). 2 S.Carpanoetal.:XMMUJ134736.6+173403:aneclipsingLMXBinquiescenceorapeculiarAGN?(RN) We review in this paragraph some of the X-ray properties Table 1. Results of the spectral fits for ofSeyfert2galaxies.IntheunifiedmodelforAGN(Antonucci XMMU J134736.6+173403, using an absorbed power law 1993), Seyfert2 galaxiesare identicalto the Seyfert1, but ob- model(phabs*power,inXSPEC). servedathighinclinationangle.ThenucleusofSeyfert2galax- iesisthereforenotdirectlyvisible,andshowsmuchhighercol- HighState Lowstate umn densities than in Seyfert 1 objects, blocking the soft X- NH(×1020cm−2) 4.73−+00..8930 3.13−+12..7152 rayfluxbelow2keV.Risalitietal.(1999)showthatallsources Γ 2.81+0.07 2.72+0.19 aonfdth7e5ir%saNmple≥o1f0S23eycfmer−t2.2TghaeliarxisepsechtaravearNeHre≥lati1v0el2y2chma−rd2,. F0.2−10keV×10−12(cgs) 1.33−+−000..00.0557 0.24−+−000..00.1235 H Moranetal.(2001)showacompositespectrumfor29Seyfert2 galaxiesobserved withASCA. The continuumis described by usingtheLONGpackage.Wefirstperformedthestandardreduc- adoublepowerlawcomponent:anunabsorbedcomponent(en- tions,i.e.abiassubstraction,aflat-fielding,andacosmicrejec- ergyindexα=0.84)dominatesbelow3keV,andathigherener- tion.Thenweextractedthearcsattheobjectposition,summed gies the spectrum is dominated by a heavily absorbed compo- themifmorethanone,andfromthemweidentifiedsomelines nent(N = 3×1023cm−2,α=0.46).AnFeKαlineispresentat H and automatically performed a wavelength calibration. All the 6.4keV, with an equivalent width of 420eV. Small-amplitude, objectswerecalibratedinwavelength,correctedfromthemean short-timescalevariabilityisobservedforSeyfert2galaxies,as extinction,andcalibratedin fluxeswith 3 standardsstarstaken Awakietal. (2006). These authors report variation of a factor during the night. This instrumental response is very stable in less than two for 13 Seyfert 2 galaxies observed with XMM- time, regular checks are done monthly. Finally, from these 2D Newton,onatimescaleofafewthousandseconds. imagesweextractedtheobjectswithanoptimizedspectrumex- The paper is organized at follows. Section 2 describes the traction batch and a line-fitting to measure the line intensities XMM-Newton and optical observation and data reduction. In andtheredshift. Sect. 3, we present timing and spectral analysis of the source, reservingdiscussionforSect.5. 3. Timingandspectralanalysisof XMMUJ134736.6+173403 2. Observationanddatareduction The combined EPIC-MOS and pn background-subtractedlight 2.1.XMM-Newtondata curve is shown in Fig. 1 (top), with a time bin size of 500sec. XMMU J134736.6+173403 was observed serendipitously by Thecorrespondinghardness-ratiolightcurveisgivenatthebot- XMM-Newton on 2003 June 24 for 64ksec, the target being tom, with a time bin size of 2000sec. Hard and soft bands are Tau Boo. The EPIC-MOS (Turneretal. 2001) were operated givenbyH=2–10keVandS=0.2–2keV,respectively.Timesare in large window mode and EPIC-pn (Stru¨deretal. 2001) cam- giveninhoursfromthestartoftheobservation.Periodsofhigh erasin fullframemodewiththe thickfilter forallinstruments. background at the end of the observation were excluded from The optical monitor was blocked throughout the full observa- the data. The straight lines show the average of the respective tion.AfterscreeningtheMOSdataforprotonflaresusingstan- portionof the curves.In the firstcurvethe flux dropsby a fac- dard procedures1, a total of 60 and 56ksec of low-background torof6.5within1hr.Wesearchedforperiodicitiesbetween10s emissionremainedfortheMOSandpn,respectively. and6hrinthelightcurvebeforethedipwherethefluxisvisibly Using theXMM-NewtonSoftware AnalysisSystem (SAS) variable. We found a significant modulation at 1.8h, but more edetect chain task, which performs maximum-likelihood data are needed to confirm the periodicity. On the other hand, sourcedetection,XMMUJ134736.6+173403,observedat∼ 8′ no periodic signal was found in the low state. The fractional off-axis, was detected with a maximum likelihood of 3 ×104. root mean-squarevariability amplitude,defined for example in Thebest-fitcoordinateswereα = 13h47m36s.6andδ = Vaughanetal. (2003), F , is 13.7±1.2% before the flux drop J2000 J2000 var +17◦34′02′.′8 with a statistical errorof 0′.′1. Since the sourceis and 13.2±3.8%after it, showing that the short-term variability off-axis, however, the uncertainty on the statistical error might is roughly constant during the observation. The hardness-ratio be much greater than what is provided by edetect chain. lightcurvedoesnotvaryafterthefluxdeclineeither. Combiningthiserrortothesystematicalshiftexpectedbetween Figure2showsthe pnand MOSspectraof the source.The X-raydataandopticalcounterpart(typicallyfewarcsec),theto- dataarebinnedtohaveatleast25countsineachenergybin.The talestimatederrorisabout3′.′ sourceisdescribedwellbyapowerlawmodel,yieldingχ2/ν= ν 1.18inthehighstateandχ2/ν=0.85inthelow.Addinganother ν componentdoesnotimprovethefit.Thebest-fittingparameters 2.2.Opticalcounterpartspectra of the absorbed power law model are shown in Table 1. Here, Low-resolution spectroscopy was performed with ISIS at the NH is theequivalentcolumndensityof neutralhydrogenandΓ WilliamHerschelTelescope(ING,LaPalma)inthenight2007 the photonindex.Thecorresponding0.2–10keV flux is shown June 14 in service mode. The slit was aligned east-west to get inthelastrow.Uncertaintiesaregivenata90%confidencelevel. thespectraofthegalaxyandtheAGNinthesameframes.The WesearchedforX-raydataforthesourcefromotherX-ray blue and red spectra were acquired simultaneously on two dif- satellites:noobservationhasbeenperformedwithChandra,and ferentCCDs, thanksto adichroicsystem.Two shortexposures thesourceisdetectedinneithertheall-skysurveynorinashort of10mneachweremadetoavoidcosmicrays. (600s) PSPC observationfromtheROSATsatellite, wherethe Thedatareductionwasperformedinastandardwayforboth upperlimitfluxwasof3×10−13and8×10−13ergs−1cm−2,re- theblueandredspectrumparts.Wewroteadedicatedandsemi- spectively.Thesourcewas,however,visibleina∼80ksASCA automaticMIDASbatchesforISISlong-slitspectraessentially observation and reported in the catalogue of ASCA sources (Uedaetal.2005).Theirfluxandhardness-ratiosarecompatible 1 http://xmm.esac.esa.int/external/xmm user support/documtoenthteatmioeann/svaasluuesmg/eUaSsGu/redbyXMM-Newton.Weextractedthe S.Carpanoetal.:XMMUJ134736.6+173403:aneclipsingLMXBinquiescenceorapeculiarAGN?(RN) 3 0.10 c e s s/ nt u o C 0.01 0 5 10 15 −0.6 ) S + H −0.8 ( )/ S − H −1.0 ( Fig.3. Color-composite image of the optical counterpart from theSloanDigitalSkySurvey(SDSS).Theredcolorisassociated −1.2 with theRband,thegreencolorwith theG band,andtheblue 0 5 10 15 colorwiththeUband.ThecircleiscenteredontheX-raysource Time (hours) andtheradiusis3′′. Fig.1. Mean XMM-Newton EPIC-MOS and pn background- subtracted light curve of XMMU J134736.6+173403 (top), OIII and the correspondinghardness-ratiolightcurve(bottom).The 400 straight lines show the average of the respective portion of the curves. 300 normalized counts/sec/keV 100.010.1−3 Flux120000 Hβ 10−4 0 2 4000 5000 6000 7000 8000 9000 10000 wavelength (A) 0 χ −2 Fig.4. Optical spectrum of the best optical counterpart of −4 XMMU J134736.6+173403.The width of the H line, and the β 0.5 1 2 5 ratiobetweenO overH (<3)isconsistentwiththespectrum channel energy (keV) III β ofaSeyfert2galaxy. Fig.2. XMM-Newton EPIC-pn and MOS spectra of XMMU J134736.6+173403 in the high state, fitted with Fig.4).Atthisdistancethesourcesareseparatedby10kpc(cor- anabsorbedpowerlaw.Bottom:residualsexpressedinσ. responding to 10′′), suggesting that they form a pair of galax- ies,maybeininteraction.TheSeyfert2galaxyisalsoassociated ASCAlightcurve,andtheredoesnotseemtobeanyfluxdrop with a radio source with an intensity of 17.91 mJy at 1.4Ghz like the one observed in the XMM-Newtondata, although the (Beckeretal.2003). countrateisverylow(5ctsks−1). 5. Discussion 4. Theopticalcounterparts WereportedthediscoveryofanX-raysourcethatpresentsaflux Figure 3 shows the optical counterpart image of the X-ray dropofa factorof6.5within1handstaysina lowstate forat source.ThecircleiscenteredonthepositionoftheX-raysource least10h,suggestinganeclipse.Fromopticalarchivedimages, andtheradiusis3′′.Bothsourcesareextra-galacticobjectswith there are two counterparts:the first an extendednormalgalaxy a redshift of z=0.045. From the image and the spectrum, the andthesecondapointsource.Aradiosourceisalsoassociated source on the left is a normalgalaxywith some emission lines to this last one.We gotthe opticalspectrumof the two objects (notshowninthispaper).Theobjectontherighthasaspectrum from the ING Telescope in La Palma. The extended object is typicalofaSeyfert2galaxy(narrowH lineandO /H <3,see indeedaredshiftedobjectwithemissionlinesconsistentwitha β III β 4 S.Carpanoetal.:XMMUJ134736.6+173403:aneclipsingLMXBinquiescenceorapeculiarAGN?(RN) normalorslightlyactivegalaxy.Surprisingly,thesecondobject University of Portsmouth, Princeton University, the United States Naval appearedatthesameredshift(z=0.045)andhasaspectrumtyp- Observatory,andtheUniversityofWashington. icalfora Seyfert2 galaxy.Atthatdistancetheobjectsaresep- arated by 10kpc, suggesting that they form a pair of galaxies, References maybeininteraction. Within this context, the X-ray source would be associated Antonucci,R.1993,ARA&A,31,473 withtheSeyfert2galaxy(generallystrongX-raysources)rather Awaki,H.,Murakami,H.,Ogawa,Y.&Leighly,K.M.2006,ApJ,645,928 Becker,R.H.,Helfand,D.J.,White,R.L.,Gregg,M.D.&Laurent-Muehleisen, thanthenormalgalaxy.Atthisdistance,theobservedluminosity S.A.2003,VizieROnlineDataCatalog,8071 in the0.2-10keV bandis 6.5×1042ergs−1 inthe highstate and Bradley,C.K.,Hynes,R.I.,Kong,A.K.H.,Haswell,C.A.etal.2007,ApJ, 1×1042ergs−1inthelowstate.Thiskindofluminosityistypical 667,427 ofSeyfert2galaxies.Thetemporalandspectralpropertiesofthe Campana,S.&Stella,L.2003,ApJ,597,474 X-rayobjectareunexpected,however,forsuchanAGN.Aflux Campana,S.,Israel,G.L.,Stella,L.,Gastaldello,F.&Mereghetti,S.2004,ApJ, 601,474 dropofafactorof6.5within1hhasneverbeenreportedsofar, Cox,A.N.2000,Allen’sastrophysicalquantities,4thed.Publisher:NewYork: especially for Seyfert 2 galaxies where the galaxy is observed AIPPress;Springer edge-on.Thespectrum,furthermore,is extremelysoftforsuch Fabbiano,G.,King,A.R.,Zezas,A.,Ponman,T.J.,Rots,A.&Schweizer,F. agalaxyanddoesnotpresentanyKαlineat6.4keV. 2003,ApJ,591,843 Hynes,R.I.,Charles,P.A.,Garcia,M.R.,Robinson,E.L.etal.2004,ApJ,611, Wethusbelievethatthesourceisaforegroundobjectwithin L125 the line-of-sightof this pair of galaxies. The detection limit of McClintock,J.E.,Narayan,R.&Rybicki,G.B.2004,ApJ,615,402 the Sloan Digital Sky survey is 23.3 mag and 23.1 mag in the McClintock,J.E.&Remillard,R.A.2004,inCompactStellarX-RaySources, green and red bands, respectively (Willmanetal. 2002). Since ed.W.H.G.Lewin&M.vanderKlis(cambridge:CambridgeUniv.Press), astro-ph/0306213 thesizeoftheGalaxytowardsthesourceisabout5kpc,thecom- Moran,E.C.,Kay,L.E.,Davis,M.,Filippenko,A.V.&Barth,A.J.2001,ApJ, panionmustbetypeM2,M =9.9(Cox2000)orlatertoexplain V 556,L75 thenon-detectability.Assumingtheobjectisat5kpc,thelumi- Narayan,R.,McClintock,J.E.&Yi,I.1996,ApJ,457,821 nosityis4×1033ergs−1andbecomes6×1032ergs−1ifthesource Risaliti,G.,Maiolino,R.&Salvati,M.1999,ApJ,522,157 isatonly2kpc(implyingthereforeaM4/M5dwarfcompanion). Rutledge,R.E.,Bildsten,L.,Brown,E.F.,Pavlov,G.G.&Zavlin,V.E.2002, ApJ,577,346 This is well within the rangeof whatis expectedfor low-mass Stru¨der,L.,Briel,U.,Dennerl,K.,etal.2001,A&A,365,L18 X-raybinariesinquiescenceandisconsistentwiththeseobjects Turner,M.J.L.,Abbey,A.,Arnaud,M.,etal.2001,A&A,365,L27 having K or M companionstars. We excludethe presence of a Ueda,Y.,Ishisaki,Y.,Takahashi,T.,Makishima,K.&Ohashi,T.2005,ApJS, cataclysmic variable, since their orbital periods are only a few 161,185 Vaughan,S.andEdelson,R.andWarwick,R.S.andUttley,P.2003,MNRAS, hours,whilehere,ifthefluxdropisassociatedwithaneclipse, 345,1271 itmustbeatleast∼1day.Wenotethatthespectrumisabittoo Willman,B.,Dalcanton,J.,Ivezic´,Zˇ.,Jackson,T.,Lupton,R.,Brinkmann,J., soft(Γ∼ 2.8)foranBH-LMXBinquiescenceandthatapower Hennessy,G.&Hindsley,R.2002,AJ,123,848 lawcontinuuminunexpectedforathermalemissionfromaneu- tronstarsurface. IftheX-raysourceisaforegroundobject,thentheX-rayflux of the background AGN should also be detected and both are probablyconfused. A deepChandraobservation of the system might represent the only solution for disentangling the LMXB picture or the peculiar AGN scenario. Thanksto its better spa- tialresolution,wemightbeabletoresolve2hypotheticalpoint sourcesinthefirstscenario,whileonesinglesource,associated withtheAGN,shouldbeobservedinthesecondcase. Acknowledgements. ThispaperisbasedonobservationsobtainedwithXMM- Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, and on observations made with the WHTtelescope operated on the island ofLaPalma bythe Isaac Newton GroupintheSpanishObservatoriodelRoquedelosMuchachosoftheInstituto deAstrofisica de Canarias. Weacknowledge the following persons (inalpha- betic order) fortheir helpinthe interpretation ofthesource nature: L.Ballo, A.-L.Longinotti,M.Guainazzi,A.Pollock,A.Read,R.Saxton,M.D.Trigo. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation,theU.S.DepartmentofEnergy,theNationalAeronauticsandSpace Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University ofCambridge, CaseWesternReserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh,