ebook img

XMM-Newton unveils the complex iron K alpha region of Mrk 279 PDF

0.33 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview XMM-Newton unveils the complex iron K alpha region of Mrk 279

Astronomy&Astrophysicsmanuscriptno.12555 (cid:13)c ESO2010 January15,2010 α XMM-Newton unveils the complex iron K region of Mrk 279 E.Costantini1,J.S.Kaastra1,2,K.Korista3,J.Ebrero1,N.Arav4,G.Kriss5,andK.C.Steenbrugge6 1 SRONNationalInstituteforSpaceResearch,Sorbonnelaan2,3584CAUtrecht,TheNetherlands 2 AstronomicalInstitute,UtrechtUniversity,POBox80000,3508TAUtrecht,TheNetherlands 3 DepartmentofPhysics,WesternMichiganUniversity,Kalamazoo,MI49008,USA 4 DepartmentofPhysics,VirginiaTech,Blacksburg,VA24061,USA 5 SpaceTelescopeScienceInstitute,3700SanMartinDrive,Baltimore,MD21218,USA 6 UniversityofOxford,StJohn’sCollegeResearchCentre,Oxford,OX13JP,UK 0 Received/Accepted 1 0 ABSTRACT 2 n Wepresenttheresultsofa∼160ks-longXMM-NewtonobservationoftheSeyfert1galaxyMrk279.Thespectrumshowsevidence a of both broad and narrow emission features. The FeKα line may be equally well explained by a single broad Gaussian (FWHM J ∼10000kms−1)orbytwocomponents:anunresolvedcoreplusaverybroadprofile(FWHM∼14000kms−1).Forthefirsttime 5 we quantified, via the “locally optimally emitting cloud” model, the contribution of the broad line region (BLR) to the absolute 1 luminosityofthebroadcomponentoftheFeKαat6.4keV.WefindthatthecontributionoftheBLRisonly∼3%.Inthetwo-line componentscenario,wealsoevaluatedthecontributionofthehighlyionizedgascomponent,whichproducestheFeXXVIlineinthe ] ironKregion.ThiscontributiontothenarrowcoreoftheFeKαlineismarginal<0.1%.Mostoftheluminosityoftheunresolved, O componentofFeKαmaycomefromtheobscuringtorus,whilethevery-broadassociatedcomponentmaycomefromtheaccretion C disk.However,modelsofreflectionbycoldgasaredifficulttotestbecauseofthelimitedenergyband.TheFeXXVIlineat6.9keVis . consistenttobeproducedinahighcolumndensity(NH ∼1023cm−2),extremelyionized(logξ ∼5.5−7)gas.Thisgasmaybea h highlyionizedouterlayerofthetorus. p Keywords.Galaxies:individual:Mrk279–Galaxies:Seyfert–quasars:absorptionlines–quasars:emissionlines–X-rays:galaxies - o r t s 1. Introduction nent,probablyoriginatingfarfromtheblackhole,hasbeendis- a entangledfromtheFeKαline(Yaqoob&Padmanabhan2004; [ The X-ray spectrum of active galactic nuclei (AGN) bears the Jime´nez-Bailo´netal.2005).Thiscomponentispredictedinthe 1 signature of different environments in the vicinity of the su- unification model (Antonucci&Miller 1985) as produced in a v permassive black hole. In particular, the emission features de- high-column density, cold region, about 1pc away from the 2 tected in an X-ray spectrum are believed to arise in different blackhole(e.g.Krolik&Kallman1987;Kroliketal.1994)and 1 environments, with dramatically distinct physical characteris- thenscatteredintoourlineofsight(e.g.Ghisellinietal.1994). 7 tics of temperature and density. Narrow emission line profiles An unresolved FeKα line and the associated reflection seems 2 (especially from C, N, O He-like and H-like ions), not sig- indeed to be ubiquitous in bright type 1 objects (Nandraetal. 1. nificantly variable on a short time-scale, may form in the far 2007). 0 narrow-lineregion(e.g.Poundsetal.2004).Thebroadsymmet- AstheFWHM ofthenarrowcoreiscompatiblewiththewidth 0 riclineprofiles,themoreandmoreoftendetectedinAGNspec- of the UV/optical broad lines (Yaqoob&Padmanabhan 2004), 1 tra (Kaastraetal. 2002; Ogleetal. 2004; Steenbruggeetal. acontributiontothebroadcomponentfromtheBLRisinprin- : 2005; Costantinietal. 2007, hereinafterC07),are consistentto v ciplepossible.However,consideringindividualsources,noev- i be produced, at least in one case, within the broad line re- ident correlation between the FWHM of neither the hydrogen X gion (C07), which is ≈ 5.6L142/2 light days away from the Hα or Hβ, supposed to be entirely formed in the BLR, has r central black hole (L is the luminosity of CIV in units of been found (Sulenticetal. 1998; Nandra 2006). These results a 1042ergs−1, Peterson1993). Emissionfromtheaccretiondisk, are based on optical and X-ray data not simultaneously col- located in the proximity of the black hole, has been exten- lected.In NGC7213,usingsimultaneousobservations,the Hα sively studied via the iron Kα line at 6.4keV. For this line, andtheresolvedironlinesharedthesamevalueoftheFWHM relativistic effects result in a skewed and asymmetric line pro- (Bianchietal.2008). file (e.g. Tanakaetal. 1995; Youngetal. 2005; Wilmsetal. 2001). Recently, relativistic profiles have been reported also Mrk 279 is a bright Seyfert 1 galaxy (F ∼ 2.55 × for otherlines, in particularOVIII (Branduardi-Raymontetal. 10−11ergcm−2s−1, this study), extensively studied in X-rays 2001; Kaastraetal. 2002; Ogleetal. 2004; Steenbruggeetal. (C07andreferencestherein).C07,usingChandra-LETGSdata 2009). However,a contributionto the line emission from other ofthissource,forthefirsttimequantifiedthecontributionofthe AGN regions (NLR, BLR and molecular torus) add up to BLR tothe softX-rayspectrum.Indeed,thanksto thesimulta- these relativistic profiles. A narrow and not variable compo- neous observation of the broad lines in the UV band by HST- STIS and FUSE (Gabeletal. 2005) the ionization structure of Sendoffprintrequeststo:E.Costantini theBLRhasbeendeterminedusingthe“locallyoptimallyemit- Correspondenceto:[email protected] ting clouds” model (LOC, Baldwinetal. 1995). This allowed 2 E.Costantinietal.:XMM-NewtonobservationofMrk279 to infer the X-ray broadlines luminosities, thatwere then con- Table1.XMM-Newtonobservationlog. trastedwiththeLETGSdata.C07foundthatthebroadlinesob- servedinthesoftX-rayspectrum(wheretheOVIItripletwasthe Orbit Exp Expnet date Epic-PNrate mostprominentone)wereconsistenttobeentirelyformedinthe (ks) (ks) dd-mm-yy c/s(0.3–10keV) BLR.TheaveragepeakofproductionoftheX-raylinesispos- 1087 59.3 27.4 15−11−05 25.7 sibly∼10timescloserinwithrespecttotheUVlines,implying 1088 59.7 32.0 17−11−05 21.6 a largerKeplerianwidth forthe X-raylines.Unfortunately,the 1089 38.0 15.5 19−11−05 23.5 limitedLETGSenergybandpreventedC07tostudytheironKα Note: The orbit number, the nominal exposure, the net exposure, the region.HerewepresentadetailedstudyoftheX-rayspectrum dateandthe2–10keVEpic-PNbackground-subtracted countratesare ofMrk 279asobservedbyXMM-Newton,focusingmainlyon listed. theemissioncomponentsandthe6.4–7keVregion. The paperis organizedas follows.Sect. 2 is devotedto the spectral analysis of the data. In Sect. 3 we modelthe emission spectrumevaluating,foreachcomponent,thecontributiontothe FeKα line. In Sect. 4 we discuss our results and in Sect. 5 we presenttheconclusions.Thecosmologicalparametersusedare: H0=70 kms−1Mpc−1, Ωm=0.3, and ΩΛ=0.7. The abundances weresettosolarfollowingAnders&Grevesse(1989)prescrip- tions. The redshiftis 0.0305(Scottetal. 2004). The quoteder- rors are 68% confidence errors (∆χ2 = 1), unless otherwise stated. 2. Thedataanalysis The observation of Mrk 279 was spread over 3 orbits on November 15–19 2005. In Table 1 we report the observation log. The data were processed with the standard SAS pipeline (SAS 7.0)and filtered for any backgroundflares. The Epic-PN exposuretimeinsmall-windowmodereducedtheexposuretime fromtheoriginal160ksto110ks.Afterthebackgroundfiltering Fig.1. Epic-PN light curves in the 0.3–2 and 2–10keV band. weobtainedanetexposuretimeof∼75ks.Thelightcurveofthe Themaximalvariationisabout36%. threetimeintervalsisdisplayedinFig.1inthesoft(0.3–2keV) andhard(2–10keV)band.Themaximalvariationisabout36% inbothenergybands.Toincreasethestatistics,wecombinedthe χ2 is again unacceptable(χ2/ν ∼ 6). The residuals show that Epic-PNdataafterverifyingthatthephysicalparametersofthe a broad band component is still missing. We then substituted modeling were the same for the three separate data sets. Epic- the simple powerlaw model with a broken power law, obtain- MOS1camerawassetintimingmode.Duetostillexistingen- inganacceptabledescriptionofthecontinuum.Thereducedχ2, ergy gain uncertainties in this mode, we did not analyze these considering only the best-fit continuum, without narrow emis- data further. Epic-MOS2 were collected in imaging mode that sion/absorptionfeatures,isχ2/ν ∼ 2.5.Theparametersofthis resultedinabout61ksofnetobservation,afterfilteringoutshort phenomenologicalinterpretationof the continuum are listed in highbackgroundepisodes.ForbothEpic-PNandMOS2weim- Table 2 and the fit shown in Fig. 2. The parametersin Table 2 posedat least 20 countsper channelto allow the use of the χ2 andreducedχ2refertothetotalbestfit,includingemissionand minimization. absorptionfeatures,asdescribedbelow(Sect.2.2,2.3). TheRGStotalusefulexposuretimeisabout110ks.EachRGS For comparison,we analyzedalso MOS2 data, with the caveat datasethasbeenrebinnedbyafactor5whichresultedinabin that deviation from the Epic-PN best fit may occur, especially size of ∼0.07A˚ and signal-to-noise ratio of 10 for each set of atthelow(E<0.5keV)andhighenergy(E>8keV)endsofthe data that were simultaneously fitted. The spectral analysis was band,andattheinstrumentalgoldedgearound2keV2.Thefinal carriedoutusingthefittingpackageSPEX1(ver2.0). MOS2best-fitparametersareshowninTable2.Theparameters Inthefollowingwedescribefirsttheunderlyingcontinuum, agree well with the Epic-PN fit, albeit with some differences, then the emission line spectrum and finally the absorption whichweascribetothecrosscalibrationmismatchbetweenthe featureswhichfurrowthespectrum. MOSandPNcameras. 2.2. Theemissionlinespectrum 2.1. Thecontinuum We see evidence of a range of broad and narrow emission ThecontinuumhasbeenfirstdeterminedusingEpic-PN.Asin- lines both in the RGS and in the Epic spectra. Here we re- gle powerlaw fit, modified by Galactic absorption is unaccept- fer as narrow lines the ones which are unresolved by Epic- able(χ2/ν >34,whereν isthenumberofdegreesoffreedom). PN (i.e. FWHM<7000kms−1), but may be resolved by RGS. Thisfitproducessystematicresidualsbothatsoftandhardener- Then the broad lines (FWHM>7000kms−1) are instead re- gies,inadditiontonarrowfeaturesbothinabsorptionandemis- solved also by Epic. Finally, the very broad lines are the ones sion. We then addeda blackbodycomponent,modifiedbyco- withFWHM∼14000kms−1.Theonlyexampleofthelatterin herentComptonscattering(Kaastra&Barr1989).Thereduced 2 Several examples are provided at 1 http://www.sron.nl/divisions/hea/spex/version2.0/release/ http://xmm2.esac.esa.int/cgi-bin/ept/preview.pl E.Costantinietal.:XMM-NewtonobservationofMrk279 3 Fig.2.BestfitfortheEpic-PNdata.Themodelincludesamod- Fig.3. RGSspectrumintheOVIIregionintermsofratiofroma ifiedblackbody(dottedline),abrokenpowerlaw(dashedline), continuumfit.Fordisplaypurpose,onlytherebinneddatafrom bothabsorbedbyionizedgas,abroadFeKα(seeSect.2.2)line orbit1087and1088are shown. The measurementsreportedin andtwonarrowlinesat6.9and7.05keV(dash-dottedlines). thepaperarebasedonthefullRGSexposure.Thelabelsindicate someofthemainfeaturesofthewarmabsorber. Table2.Best-fitcontinuumparametersforaphenomenological model. frame)andabroademissionfeature,consistentwithablendof PN MOS2 FeXXVI and FeKβ at 6.90 ± 0.06keV and 7.05 ± 0.05keV Tmbb keV 0.16±0.02 0.12±0.02 respectively (Fig. 4, upper panel). Because the MOS2 spec- ΓΓ12 21..0785±±00..0011 21..0832±±00..0023 tral analysis deliver a slightly different powerlaw slope at en- E0 keV 2.31±0.04 2.0±0.1 ergies > 2keV (Table. 2), and the data are affected by lower χ2/ν 281/234 262/208 statistics, we restrict the iron line analysis to the Epic-PN data only. At first we modeled the FeKα line with a single unre- Note:Epic-PNandMOS2fittedseparately.Thereducedχ2 referhere solved Gaussian. Although the general fit improves (χ2/ν = tothefinalbestfit. 371/243 ∼ 1.5) This model does not provide a good fit for the line, as evident in Fig. 4 (lower panel). Next, we consid- eredthelineascomposedofanunresolvedGaussianandavery the present data is the broad, possibly relativistically smeared, broadcomponent,leadingtoasignificantimprovementofthefit componentoftheironlineat6.4keV. (∆χ2/∆ν = 32/3,Table 4). The verybroad componenthas a InourpreviousstudybroademissionfromablendoftheOVII FWHM of 0.29±0.04keV, correspondingto ∼14000kms−1. tripletlineswasverysignificantlydetected(at∼ 6σ,C07).We We tested thisverybroadcomponentofthe FeKα line against thereforelookedforsuchevidenceinthepresentRGSdata.We arelativisticallysmearedprofile(Laor 1991).Withthismodel, fix the wavelength of the line centroid (λ=21.9A˚) to the val- the line should be viewed at an angle of ∼ 15◦, with a radial ues found in C07. We also fix the FWHM of the broad fea- emissivity law r−q, with q ∼ 1.5 (Fig. 5, Table 4). These pa- ture, which could notbe resolved in the individualOVII lines, rameters mimic a regular, almost symmetric, line profile (e.g. tothepreviouslymeasuredvalue:1.4A˚,correspondingtoabout Reynolds&Nowak2003).Thestatisticalimprovementwithre- 19000kms−1fortheblend.Wefindthattheintrinsiclinelumi- specttoasimplevery-broadGaussianis:∆χ2/∆ν ∼ 5/1,cor- nositydecreasedwithrespecttothe2003observationgoingfrom respondingto∼2.2σ.FortheFeKαfeature,weconsideredalso 50±8 to 13±7 in units of 1040ergs−1. The same line lumi- asingleGaussianwiththewidthfreetovary(Table3).Theline nosityismeasuredalsousingthethreeRGSdatasetsseparately. centroidis 6.41±0.08 in the rest frameof the source,and the The inclusion of the line improvesthe fit by ∆χ2/∆ν ∼ 6/1, intrinsicluminosityis61±6×1040ergs−1.Thelineisresolved correspondingtoonly2.4σsignificance.Thebroadlineisalsoa byEpic-PN,withaFWHMof0.21±0.03keV(corresponding necessaryemissioncomponenttocorrectlyfitsomeunderlying to ∼ 10000±1000kms−1). The statistical improvementwith absorptionfeatures(e.g.OV, OVI and OVII), importantin the respecttoasingleunresolvedlineis∆χ2/∆ν =37/1. globalfittingoftheionizedabsorberparameters(Fig.3).Thein- The inclusion of other two narrow lines, at the energy of the clusionofthislow-ionizationabsorberaloneimprovesthefitof FeXXVI andtheFeKβ furtherimprovesthefitby∆χ2/∆ν = theRGSspectrumby∆χ2/∆ν ∼58/3. 31/2.Forconsistency,wetestedtheLaormodel,withthesame IntheRGSbandwedetectthenarrowOVIIforbiddenlinewitha line parameters, to the FeKβ, fixing the line ratio to 0.135 flux(9±6×10−15ergcm−2s−1),consistentwiththeChandra (Yaqoobetal. 2007; Palmerietal. 2003). As expected the flux measurement(C07). The line is marginally detected (Table 3), ofabroadFeKβ linehasanegligibleeffectonthefit,therefore probablybecauseofaneighboringbadpixel.Forotherrelevant weignorethisadditionalcomponentinsubsequentfits.Thisneg- narrowlines, suchas OVIII Lyα, NeIX andNeX, we onlyob- ligiblecontributionofabroadprofileoftheFeKβalsostrength- tainupperlimitsontheluminosity(Table3). ens our assumption that the bump seen in the 6.9–7.05 region Both the PN and MOS2 spectra show a complexstructurebe- isablendoftwonarrowlines(FeXXVI andFeKβ)ratherthan tween6.4and7keV:aprominentFeKαlineat∼6.4keV(rest- a broad FeKβ line arising from the accretion disk. This fit is 4 E.Costantinietal.:XMM-NewtonobservationofMrk279 Table 3. list of line luminosities as measured by Epic-PN (inst.1)andRGS(inst.2). ion Rest Lum F-test inst. obs wavelength (A˚) (1040ergs−1) % narrowlines FeKβ 1.75 6.6±2.8 89.0 1 FeXXVILyα 1.77 10.0±2.7 99.98 1 FeXXVf. 1.85 <4.7 ... 1 FeKα1 1.93 12.0±7.0 >99.99 1 NeX 12.14 <1.2 ... 2 NeIXf. 13.69 <1.25 ... 2 OVIIILyα 18.97 <1.0 ... 2 OVIIf. 22.10 3.1±2.0 89.0 2 NVIILyα 24.78 <3.1 ... 2 NVIf. 29.53 <1.18 ... 2 broadlines OVIItriplet2 21.9 13±7 95.0 2 Fig.4.Upperpanel:residuals,intermsofσtothecontinuumin FeKα3 1.93±0.03 61±6 >99.99 1 theironlineregionasobservedbyEpic-PN.Threefeaturesare evident: a prominentFeKα line and weaker lines identified as Notes:Welisttheion,therest-framewavelength,theintrinsicluminos- FeXXVI andFeKβ.Lowerpanel:residuals,intermsofσ after ityandtheirsignificance,fornarrowandbroadlines. theinclusionofa narrowline at6.4keV. TheEpic-PNdataare 1Onlynarrow,unresolvedcomponentinatwo-linesmodel. identifiedbysimplecrosses,andtheMOS2databydiamonds. 2BlendoftheOVIItripletlines. 3SingleGaussianwithfreeline-widthmodel. Table4. ParametersfortheverybroadcomponentoftheFeKα lineinatwo-componentsmodel. Gauss1 Laor2 E keV 6.41±0.01 6.47±0.03 FWHM eV 0.29±0.04 ... Lum 1041ergs−1 4.64±0.16 5.0±0.7 q ... 1.5±0.5 i deg ... 15±7 χ2/ν 339/240 334/239 Notes: Third column: one Gaussian with free width. Fourth column: Profileincludingrelativisticeffects.Thereducedχ2 referstoaninter- mediatefit(seeSect.2.2) 1 Welisttheenergyofthecentroid,theluminosityofthelineandthe FWHM. 2Welisttheenergyofthecentroid,theluminosityoftheline,theemis- Fig.5.Spectrumandbestfitintheironlineregionasobserved sivitylaw,qandtheinclinationangle,i. byEpic-PN.Thesolidlinesdisplaythebroadandnarrowcom- ponents added to fit the emission features: a prominent FeKα lineandweakerlinesidentifiedasFeXXVIandFeKβ. withNH ∼3.6×1019cm−2andtemperatureT ∼7.2eV(C07, Williamsetal. 2006). Further, we detect other two, photoion- ized,gascomponentsintrinsictothesource.Wereporttheaver- showninFig.5. agephysicalparametersofthewarmabsorbersasmeasuredby Thereducedχ2 ofafitwithallemissionlinesincluded,butno absorption, is 308/238. With this final component(see below), the χ2/ν = 281/234 ∼ 1.2. The lines’ parameters and their Table5. Bestfitparametersfortheabsorbedspectrumasmea- significancearelistedinTable3.Inallthelinesfitting,wealso suredbyRGSandEpic-PN. letthenormalizationfreeto varytowardsnegativevalues.This allowedustouse the F-testasan indicationofthe significance comp. Param. RGS PN ofthelines(Protassovetal.2002). 1 NH 0.7±0.2 1.5±0.5 logξ 0.8±0.3 1.1±0.3 vout −300±150 –300fix. 2.3. Theunderlyingabsorption 2 NH 3±1 4±1 logξ 2.6±0.1 1.8±0.1 Mrk 279 shows a complex absorption spectrum (C07), whose vout −400±150 –400fix. characteristicsarebeststudiedusingRGS.InanalogywithC07, wemodeledtheabsorptionwithtwoGalacticcomponents,that Note:Foreachcomponentwelistthecolumndensities(NH)inunitsof is a neutral gas (NH = 1.64 × 1020, Elvisetal. 1989) and a 1020cm−2,ionizationparameter(logξ)andoutflowvelocities(vout,in ionized gas, highlighted by the OVII absorption line at 21.6A˚, kms−1). E.Costantinietal.:XMM-NewtonobservationofMrk279 5 However,theionizingcontinuum,andasaconsequencethe lineluminosities,mayhavechanged.InFig.6theSEDusedfor thepresentobservation(2005)isdisplayed(solidline).Theop- ticalpointsaremeasuredbyOMusingtheU(344nm),UVW1 (291nm), UVM2 (231nm) and UVW2 (212nm) filters. The unabsorbed X-ray continuum is evaluated using the Epic-PN data.Forenergieshigherthan10keV,thepowerlawcontinuum was extended and artificially cut off at ∼150keV. On the very lowenergyendoftheSED(farinfraredtoradioband),theshape was takenfroma standardAGN SED template used in Cloudy (Ferland 2004). We used Cloudy (version 07.02.02) to obtain a line luminositygrid overa large range of r and n values. As inC07,r rangedbetween1014.7−18cm.Thevalueofnranged between 108−12.5cm−3. For both parameters the spacing of the valueswas 0.125inlog. Forcomparison,we show also the SED used for the 2003 observation. The overall optical flux is higherforthepresentdata,whiletheX-raycontinuumremained almostunchangedinfluxandsoftX-rayspectrum. Fig.6.TheSEDofMrk279in2005measuredbyXMM-Newton (solid line). The optical data are measured by OM, while the InordertoinfertheBLRcontributiontotheFeKαline,we broadbandX-raycontinuumismeasuredbyEpic-PN.Thedot- havetorelyontheOVII tripletintheX-rayband,whoselumi- tedlineshowstheSEDofthe2003dataforcomparison(C07). nositycouldbetotallyaccountedforbytheLOCmodel(C07). Therefore we assume that all the emission from the broad line of the OVII triplet comes from the BLR. The OVII line lumi- RGS and the Epic-PN in Table 5. The absorbersare character- nosity (LOVII = 13± 7 × 1040ergcm−2s−1) from the RGS ized by a low NH. Thereforeabsorptionlines, well detected in data can be explained by the LOC model using the new 2005 the high-resolutionspectrum(Fig. 3), rather thanedges(which SED,withthevaluesofγ andC setbythepreviousanalysis, V are in this case shallow features in the Epic spectrum), are the withintheerrors.Giventheseconstraints,theresultingvaluefor signature of the absorbers. The inclusion of a lower ionization γ =1.17±0.03,whichisheretheonlyfreeparameter,isfound gasalonealreadyimprovestheEpic-PNfitby∆χ2/∆ν =17/2. tobeconsistentwithpreviousresults.Oncethisconstraintisset, The inclusion of a two-component gas, with column densities we can predictalso the contributionof the FeKα and otherX- andionizationparametersfreetovaryleadstoanimprovement raylines. of the fit of ∆χ2/∆ν = 27/4, bringing the reduced χ2/ν to In Sect. 2.2 we have provided two statistically acceptable de- ∼ 1.20. A detailed analysis of the complex absorption and a scriptions of the FeKα line: a narrow+very-broadcomponent comparison with previous results will be presented in a forth- modelandasingle,resolved,Gaussian.Onlyforthelattercase comingpaper(Ebreroetal.,inprep.). the FWHM is similar to the one directly measured from the UVdata(FWHM =8500–9500kms−1,Gabeletal. 2005).In UV Fig.7weshowtheBLRlineluminositiespredictedbytheLOC 3. ModelingoftheFeKα line region model in the X-ray band. Along with the OVII observed lu- minosity we also plot the observed value for the FeKα line in Inthissectionweevaluatethecontributionofdifferentregionin the case of a single Gaussian model (Table 3). The predicted theproximityoftheAGNtothespectrumabove6keV. OVII/FeKα luminosity ratio is about 6.3 within the narrow 1.14-1.20 range for γ. Therefore, the BLR contribution to the 3.1. TheLOCmodelforthebroademissionlines FeKαlineisthenLBLR(FeKα)=2±1×1040ergs−1,about30 times smaller than the broadFeKα componentmeasuredfrom HereweinvestigateapossiblephysicallinkbetweentheFeKα thedata.Forcomparisonwealsomadeapredictionontheiron line and the optical BLR. In order to quantitatively evaluate line flux based on the 2003 SED and the BLR parameters de- the contributionof the BLR to any X-ray broadlines, we used rivedinC07.InthatcasetheFeKαluminosityofironfromthe the “locally optimally emitting clouds” model (Baldwinetal. BLRis10±5×1040ergs−1. 1995). This model considers the observed line luminosity as a sum of lines emitted at different density n and distances r, 3.2. Variability ofthecontinuumandironlinecomplex weightedbyapowerlawdistributionfornandr:n−β andr−γ respectively (see e.g. C07, Koristaetal. 1997, for details). For Lines emitted at a few gravitational radii from the black hole thepresentobservationwecanbenefitfromtheresultsobtained may show significant short term variability. We examined the inC07:theyevaluatedthe“structure”oftheBLR(i.e.thedistri- FeKαline parametersin the threetime segmentsof ourobser- butionofrandthecoveringfactor)fitting11UVlinesobserved vationusingasimpleGaussianmodel.Wefindthattheflux,the byHST-STISandFUSEsimultaneouslytotheChandra-LETGS FWHM,centroidenergyandtheunderlyingpowerlawslopeare data.Theyfoundaslopeforr,γ = −1.02±0.14andacover- nearly the same in response to the central-source variation. In ing factor C = 34 ± 26%, keeping the slope for n fixed to ordertofurthertestavariabilityoftheFeKαfluxweanalyzed V –1(Korista&Goad 2000).ThegeneralstructureoftheBLRis bothanarchivalXMM-Newton-pndatasetwith anetexposure notexpectedtohavechangedsignificantlyin the2.5yearsthat time of ∼26ks, collected in May 2002 and Chandra HETGS have elapsed since the Chandra observation. Thereforewe ap- data, collected about 10 days later in May 2002 (Scottetal. ply those value also to the present spectral energy distribution 2004; Yaqoob&Padmanabhan 2004). In Table 6 we show the (SED). comparisonofthelineparametersofallobservationssince2002, 6 E.Costantinietal.:XMM-NewtonobservationofMrk279 Fig.7.Thesolidthickline showsthe predictedBLRlinelumi- Fig.8. Emission line contribution to the high ionization lines nositiesintheX-raybandinunitsof1040ergs−1usingtheLOC (FeXXVI, FeXXV, NeX, OVIII). Triangles:data. Lightshaded model,usingasconstraintsC =34±26%andtheobservedlu- line:rangeofmodelsviabletofitthedata. V minosityofthebroadOVIIline.Thevalueofγisconsistentwith whatpreviouslyfoundforMrk279.Theasterisksarethevalue oftheobservedbroadlineluminositiesbyXMM(Table3).The dashed line shows the LOC modeling based on the 2003 SED andobservedOVIIlineluminosity.Thefilledtriangleshowsthe OVIIbroadlineluminosityobservedbyChandra. Table6. ParametersoftheFeKαatdifferentepochs. year E L FWHM (keV) (1040ergs−1) (keV) 2002a 6.43±0.03 46±11 0.26±0.12 2002b 6.42±0.04 41±15 <0.20 2005obs1 6.42±0.01 56±8 0.19±0.05 2005obs2 6.40±0.02 53±8 0.17±0.05 2005obs3 6.42±0.03 86±17 0.3±0.1 Note:Welisttheenergy,intrinsicluminosityandFWHMforasingle- Fig.9.Parameterspaceofparametersviabletoproducetheob- line fit to the FeKα profile for the spectra obtained in 2005 in three servedhigh-ionizationemissionspectrum.Upperpanel:Logof separateorbitsandforobservationscollectedin2002byXMM-Newton (2002a)andChandra-HETGS(2002b). the ionizationparameteras a functionof the logof thecolumn density. Lower panel: Covering factor of the FeXXVI line as a functionofthelogofthecolumndensity. 3.3. TheFeXXVI lineat6.9keV forasingle-linemodel. Priorto1994,Mrk279showedasignificant2–10keVfluxvari- TherearenodetectablechangesintheFeXXVIlineina3-years ation,rangingfrom1−5×10−11ergcm−2s−1 (Weaveretal. timescale.Theabsenceofanyofthelines(orablendoflines) 2001).The2002Chandra-HETGSobservation,revealedavery of the FeXXV triplet is also peculiar (Table 4, Fig. 5). In or- low-flux state of the source (∼ 1.2 × 10−11ergcm−2s−1, dertounderstandthepropertiesofthegasemittingFeXXVI,we Scottetal. 2004), a factor of two lower than what measured created a grid of column density, logNH= 22.0–24.5, and ion- by XMM-Newton, shortly before. In the last XMM-Newton ization parameter, logξ=3–7, using Cloudy. For lower-column- observation the source shows a 2–10keV flux of ∼ 2.5 × density,lower-ionizationparametergas, the predictedemission 10−11ergcm−2s−1.Weseethat,despitethechangeinthecon- linewouldbetooweak,orabsent.Foraneasyscalingofthelu- tinuum flux (a factor two), the FeKα line parameters did not minosity,weinitiallyconsideredthecoveringfactor(C )equal V dramaticallychangeinthreeyearstime,withintheerrors. to unity.This is the fractionof lightthat is occultedby the ab- In the Chandra data the decline of the HETGS effective area sorber3.Acoveringfactorofoneisofcourseunrealistic,because andthe low signal-to-noiseratiohamperedthe detectionof the inthiscaseabsorptionlinesofthesameionsshouldbeobserved. FeXXVI andFe Kβ lines.On the contrary,inthe 2002XMM- ThereforeC mustbelessthanone.We also simplisticallyas- V Newton spectrum, bothlines, althoughblended,are detectedat about95and90%confidencelevelforFeXXVIandFeKβ,re- 3 This is different from the global covering factor, the fraction of spectively.Thelineluminositiesarethesameweobtainin2005, emission intercepted by the absorber averaged over all lines of sight, withintheerrors. whichishasbeenestimatedtobeabout0.5(e.g.Crenshawetal.2003). E.Costantinietal.:XMM-NewtonobservationofMrk279 7 sumethatasinglegascomponentisresponsibleforallFeXXVI Table7. Alternativefitofthecontinuum,includingreflection. emission.Therefore,wetookthemeasuredintrinsicluminosity ofFeXXVI asthereferencelinetoestimatethecoveringfactor. Tmbb keV 0.21±0.3 Weonlyhaveupperlimitsonotherhighlyionizedlines(namely Γ 2.5±0.1 NVII,OVIII,NeXandFeXXV,Table4),thereforeaformalχ2 blurred fitcannotbeperformed.However,thoselimitscontaininforma- normpow 1051phs−1keV−1 4.1±0.3 tionthatcanbe usedto constrainttheparameters.In Fig.8 the Γ 1.73±0.08 set of parameters which are consistent with the measurements α >1.7 i deg <30 aredisplayed. s 0.8±0.3 In Fig. 9, we show the parameter space of the possible solu- unblurred tions.Weseethattheionizationparametersufficienttoproduce normpow 1051phs−1keV−1 8.0±2.5 FeXXVI, but not FeXXV has to be larger that ∼5.3. The ion- Γ 1.73±0.08 izationparameterlinearlycorrelateswiththecolumndensity,as i deg 60fixed forthehighestvaluesoflogξtheemissionlinesarevisibleonly s 1.1+1.3 −0.2 if there issufficientemittingmaterial.For the same reason,for χ2/ν 322/230 thesamecolumndensity,logξandC correlatelinearly.Onthe V otherhand,thecoveringfactoranti-correlateswithNH (Fig.9). Note:Themodelincludesablackbody,apowerlaw,blurredreflection Indeed, for a high column density less material on the line of fromtheaccretiondiskandreflectionfromunblurredcoldanddistant sightisneededtoproducetheobservedemission. material.Thevalueofχ2 referstofullmodeling,includingabsorption red (Sect.2.3)andemissionlines(Sect.2.2). 4. Discussion The two reflection component cannot fit simultaneously the 4.1. Acomplexcontinuum broad band continuum, as the soft energy portion of the spec- The continuumspectrum of Mrk 279needs at least three com- trumissignificantlyunderestimated.Toreachanacceptablefit, ponenttobecorrectlyinterpreted:amodifiedblackbodyanda this region has to be modeled again by a modified black body broken powerlaw (Table 2). In principle, reflection from both andasinglepowerlaw(Table7).Residualsmainlyatthecross- the accretion disk and from distant matter should be present ing points of the continuum components determine the value (Nandraetal. 2007; Krolik&Kriss 1995; Mattetal. 1991; of the reduced χ2 (Table 7). Therefore a broad band modeling George&Fabian 1991). The only difference would be that if only in terms of reflection is not straightforward. In addition, arisingfromtheaccretiondisk,thereflectionandtheassociated hardX-rayscoverageisnotavailableandthisfitisbasedonthe iron line should be modified by relativistic effects. The harder 0.3–10keVcontinuumshapeandanironlinewithtwoblended tailwithΓ∼1.75andthedoublecomponentoftheironlinepro- components.Thislimitedknowledgeonthebroadbandbehavior file(Sect.2.2)maybereminiscentofareflectionemissioncom- makesthefitparametersveryuncertain. ponent. We therefore tested this scenario, in comparison with ourphenomenologicalmodelforthecontinuum,includingboth 4.2. ThecontributionoftheBLRtotheFeKαline types of reflection in the model (model REFL in SPEX). This model simultaneously considers the Compton reflected contin- We have quantitatively evaluated the BLR contribution to the uum(Magdziarz&Zdziarski1995)andthefluorescentemission emissionoftheprominentFeKαlineat6.4keV.Thehighlyion- from FeKα (Zycki&Czerny 1994; Zyckietal. 1999) from a izedspecieofFeXXVIhasanegligibleroleintheBLR,therefore Schwarzschildblackhole.Generalrelativityeffectsandconvo- theemissionweseeatthoseenergiesintheX-rayspectrummust lution with an accretion disk effectscan be easily switched off comefromsomeotherlocation(Sect.4.4).Webasedthisanaly- in this model. Free parameters are the normalizationof the re- sisonpreviousresultsfortheBLRstructureandonthepresent flectedpowerlaw anditsspectralindexΓ, thereflectionscale4 detection of the OVII broad line in the RGS spectrum. From s,theemissivityscaleα(Zyckietal.1999),theinclinationangle the extensive experience of broad lines studies in optical spec- iofthediskoftheironlineemission.Intheunblurredreflection, tra of AGN, it is known that measurements of broad and shal- wefixedtheinclinationangleto60◦,basedontheaveragefound lowemissionfeaturescanbeaffectedbylargeuncertaintiesand foralargesampleofSeyferts(Nandraetal.2007). should be cautiously treated. The limitation is due for instance We findthatthe energyrangeE > 3keV canbe wellfittedby to the signal-to-noise ratio of the continuum level. Resolution, acombinationofareflectorwithrelativisticpropertiesandbya effectiveareaandcalibrationoftheinstrumentarealsorelevant distantreflector. The formeraccountsfor the broadcomponent effects.However,known,possiblynotcompletelycalibrated,in- oftheFeKαline,whilethelattermodelsthenarrowcomponent strumentalnarrowfeatures(23.05,23.35A˚,deVriesetal.2003) of the line (Table 7) in a similar way as obtained in the two- fall at the border of the OVII emission region. Observation- componentfit(Fig.5). specificbadpixels(flaggedasbadchannelsinthespectrum)are The basic parameters of the disk (e.g. the inclination angle, automaticallytakenintoaccountwhencomputingtheinstrument Table7)areinagreementwithwhatwasfoundfromtheFeKα response, but they may certainly cause additional uncertainty linefitusingtheLaor (1991)model.Wenotehoweverthathere whenfittingnarrowfeatures.TheOVIIbroadlineis1.4A˚ wide acomparisonisnotstraightforwardasinZycki&Czerny(1994) and the determination of its flux is not significantly influenced adisklinefromaSchwarzschild(ratherthanKerr)blackholeis by bad pixels. Considering also the very significant, indepen- included. dent,detectionintheChandra-LETGSdata,wetreatthisfeature 4 The parameter s is a scaling factor for the reflected luminosity: asanintrinsically-low-fluxOVIIline.Thelinefluxmeasuredin Ltot = Lpow +sLrefl.Foranisotropicsourceabovethedisks = 1, 2005isindeedweakerthanin2003(Sect.2.2),eventhoughthe correspondingtoanequalcontributionfromdirectandreflectedspec- SEDof2005showsanincreasedavailabilityofopticalandUV trum. photons(Fig.6).Suchabehaviorofthelineintensityishowever 8 E.Costantinietal.:XMM-NewtonobservationofMrk279 notunexpected,asthesinglelineluminositiesarealsosensitive (e.g. Sulenticetal. 1998; Nandra 2006). In at least one case, tothelongtermfluxhistoryandtheshapeoftheSEDbothinthe (the LINER galaxy NGC 7213, Bianchietal. 2008) a simulta- UVandX-rayband(atleastoftheprevioustwomonths,given neousoptical–X-rayobservationrevealedthesamewidthforthe thetypicalsize ofthe BLR).TheX-raycontinuumofMrk279 Hα and FeKα lines, suggesting a common origin in the BLR. has beenobservedto changein a monthtime-scale (Sect. 3.2), Howeverthe UV andX-raylinesmightcomein regionscloser howevertheinformationonthelightcurveofMrk279issparse, totheblackholewithrespecttothelowerionizationlinesinthe asthemostrecentobservationpriortotheXMM-Newtonpoint- optical,implyingalargerFWHM.MoreoverNGC7213canbe inghasbeendonein2003(C07).Thereforeareconstructionof consideredanoutsiderobject,ashasbeenproventototallylack the SED priorto the presentXMM-Newtonobservationcannot the reflection component (Bianchietal. 2003). Therefore a di- beperformed.Inthisstudywefindthatonlyasmallfractionof rectcomparisonwithclassicalSeyfert1galaxies(asisMrk279) thebroadFeKαlinecanbeproducedintheBLR.FromtheLOC maynotbepossible. modelingwe find that the FeKα line luminosity,coming from theBLR,shouldbeaboutsixtimessmallerthantheOVIItriplet. ThistranslatesinacontributiontotheFeKαlinewhichisabout 4.3. TheoriginoftheFeKαline 30 times smaller than that observed, implying a 3% contribu- Anyvariabilityoftheironlinewouldeasilysuggestaclosein- tion. However, the elemental abundance close to a black hole, teraction between the central source and the region producing especiallyofiron,mightbedifferentfromSolar.Abundancesup theironline,e.g.theaccretiondisk.Thelinedoesnotneedtobe to 7 times Solar have been suggested (e.g. Fabianetal. 2002). relativisticallysmeared,asalsoGaussian-shapedlinesmayarise The same BLR model, but with the Fe abundance enhanced fromtheaccretiondisk(Yaqoobetal.2003).UsingASCAdata by a factor seven only reduces the OVII/FeKα luminosity ra- Weaveretal. (2001)foundvariabilityinthelinecentroidatthe tiotoabout4.5.However,suchanoverabundanceimpliesmuch 1.6σlevel(90%confidence).Thevariabilitywasobservedona strongerX-rayironlinesfromtheL–Mshells,whicharenotob- timescaleofabout20ksfollowinga2–10keVcentral-fluxvari- served.IfweartificiallyconsidertheluminosityoftheFeKαas ation of ∼15%. The average EW and FWHM as measured by entirelyproducedin the BLR, we shouldobservean OVII line withaluminosityaslargeas3×1042ergs−1,whichisclearly ASCAwerehoweverconsistentwiththepresentXMM-Newton data.Overatimescaleofatleast3years,theFeKαlineare,in inconsistent with both the present and archival measurements firstapproximation,stableinluminosity,widthandcentroiden- (C07). Moreover the NeIX and OVIII broad lines (with pre- dictedluminosityofabout60×1040ergs−1)wouldbeclearly ergywithintheerrors(Table6).Towhichextentthelineisstable isdifficulttoassess,assomemeasurementsareaffectedbylarge visibleinthespectrum,againsttheobservationalevidence.The uncertainties.Formally,thelinecouldhavechangedofasmuch same discrepancyapplies if we consider the very broad profile as a factor of two or more in luminosity. In a scenario where of the FeKα line as arising from the BLR (Sect. 2.2). In that a dominantcomponentof the line doesnotrespondto the cen- case,theBLRcontributionwouldbe23timessmallerthanob- tral source variation, an origin of the iron line in the accretion served.Theunresolvedcomponentofthe FeKα wouldinstead disk can be justified by light-bending (e.g. Fabian&Vaughan beabout6timessmaller.Ifthiswerethecase,thecontribution 2003;Galloetal.2007).Inthatcasetheapparentfluxisallowed oftheBLRtotheFeKαlinewouldnotbenegligible(∼ 16%). tochangeevenofa largefactor(upto four)while theline-flux However,theFWHMofthecoreoftheFeKαline,asmeasured byChandra-HETGSis4200+3350kms−1(Nandra2006),which change is marginal (Miniuttietal. 2003). A number of factors −2950 mayinfluencetheironlinebehavior.Thelimitedknowledgeof is inconsistent with the FWHM of the UV lines (Gabeletal. the exact nature of the emission components (both FeKα line 2005).Moreover,BLRlinearesubjectedtosignificantvariabil- andcontinuum)inthissourcedoesnotallowustomakepredic- ity both in the UV (e.g., Goad&Koratkar1998) and in the X- tions on the variation of the line in response to the continuum rays(Steenbruggeetal.2009,andpresentwork),whilewecould changesoneithershortorlongtimescales. notdetectanysignificantchangeintheironlineflux,measured A symmetric line profile, possibly constant over a long time inafewoccasionsbydifferentinstruments(Sect.3.2).Thisalso scale, may also suggest a relatively unperturbed environment, supportstheideathattheBLRcontributionshouldbeminimal. likeforexamplethemoleculartorus,∼1pcawayfromthecen- AnimportantnoteisthattheBLRparametersofMrk279were tral source. In the framework of the unification model (e.g. determinedfirstusingUVdataonly(seeC07andSect.3.1)and Antonucci 1993), the iron line is a natural consequence of the then applied to the X-ray data. With this approach, any X-ray obscuringtorus.Intype1objects,theexpectedequivalentwidth lineonlyprovidesusefulupperlimits,withintherangeimposed would be of the order of 100eV. However geometrical effects alreadybytheC value,onthenormalizationoftheLOCmodel V would easily reduce it of a factor of two (Nandraetal. 2007; (Fig.7).Therefore,inprinciple,givenaBLRmodelandanSED, Krolik&Kallman1987).InthecaseofMrk279,theEWofthe thecontributionoftheBLRtotheFeKαlinecanbecalculated narrowironlineis70±15eV,inagreementwiththetheoretical withoutthesupportofotherX-raylines.Asatest,wealsopre- prediction. The presence of FeKβ, insures that the ionization dicted the iron line luminosity considering the SED and BLR parametersderivedforthe2003dataset.Inthatcase,reminding stateofironislessthanFeXVII (Yaqoobetal.2007).Afurther constraintontheionizationstateofironwouldbebasedonthe thatwedonothaveanysimultaneousmeasurementoftheFeKα line in 2003, the contribution of the BLR to the line would be FeKα/FeKβ branching ratio, which rangesfrom 0.12 for FeI roughly17%. upto0.17forFeIX(Palmerietal.2003).Unfortunately,consid- eringtheassociatederrorsontheobservedlinefluxes,we only Here for the first time we have tested the connection be- obtainalowerlimitof0.1tothatratio. tween the optical BLR and the FeKα line, using the intrinsic luminosity of the lines (rather than the FWHM) and relying on a possible physical model for the BLR (The LOC model, 4.4. ThenatureoftheFeXXVIline Baldwinetal. 1995). The idea of a non-relation between the BLRandtheFeKαlinehasbeenalreadytestedcomparingthe He-like,sometimesassociatedwithH-like,ironlineshavebeen width of the optical broad lines with the width of FeKα line detectedinanumberofAGNspectra.Theselinescanbeassoci- E.Costantinietal.:XMM-NewtonobservationofMrk279 9 atedtohighcolumndensity,photoionizedgas(Longinottietal. The very broad componentof the FeKα line may be modeled 2007;Bianchietal.2005,andreferencestherein).Thespectrum by a line arising from an accretion disk, associated with ofMrk279doesexhibitanarrowemissionlineat∼6.9keV,con- relativistically smeared reflection. However, a formal fit using sistent with emission from FeXXVI, but interestingly FeXXV broad-band reflection models is affected by large uncertainties is not detected, showing the presence of extremely highly ion- and degeneracy of the parameters, as we cannot access the ized gas. Interpreting this emission as a product of photoion- region above 10keV and we only have to rely on the FeKα ization,wefindthatahighcolumn-density(NH ∼ 1023cm−2) profile,whichisinturnformedbytwoline-components. with a very-highionization parameter(logξ ∼ 6) is necessary. A rangeof NH andlogξ andcoveringfactorsis allowed to ex- We also detected emission from FeXXVI, but not from plain the FeXXVI emission and at the same time be consistent FeXXV. This implies an extremely highly ionized medium. withthemeasuredupperlimitsontheotherhighionizationlines: Usingtheavailableconstraintsonotherhighlyionizedions(e.g. FeXXV, NeX andOVIII (see Sect. 3.3and Fig. 9). Thecover- NeX, OVIII and NVII) we could limit the column density of ing factor is on average 0.65. As we do not see any associated such gas 1022 < NH < 5 ×1023cm−2 with an increasingly absorption, this gas must be out of our line of sight. The EW higher ionization parameter 5.3 < logξ < 7. The covering of the FeXXVI line (12±5eV) is consistent with an origin in factor of the gas is 0.65 on average. Such a gas is predicted photoionizedcircumnucleargasatthedistanceoftheobscuring by the AGN unification model, and it could be associated torus(Bianchi&Matt2002).Thetorusitselfwouldproducethe with a highly ionized outer layer of the obscuring torus (e.g. bulkoftheneutral-weaklyionizedironemission,whileahighly Krolik&Kallman1987). ionizedouterlayerofphotoionizedgaswouldberesponsiblefor H-likeandHe-likeiron.Inourcasethegasissoionizedtosup- pressevenFeXXV. Acknowledgements. The Space Research Organization of the Netherlands is Another possibility is that the FeXXVI line is formed in a hot supported financially by NWO, the Netherlands Organization for Scientific galactic wind, driven by starburst activity (Chevalier&Clegg Research. 1985).However,averyhot(logE∼9–10keV)plasmawouldbe neededtoproducetheobservedFeXXVIlineluminosityviacol- lisionalionization.Suchhightemperatureshavebeenproposed References for exampleforthe diffuseemission of the Galactic ridge (e.g. Anders,E.,&Grevesse,N.1989,Geochim.Cosmochim.Acta,53,197 Tanaka 2002). However,this interpretationis problematic with Antonucci,R.R.J.,&Miller,J.S.1985,ApJ,297,621 respecttotheconfinementoftheplasmawithinthehostgalaxy, Antonucci,R.1993,ARA&A,31,473 thesourceofsuchheat(e.g.Masaietal.2002)andthecontam- Baldwin,J.,Ferland,G.,Korista,K.,&Verner,D.1995,ApJ,455,L119 inationbypoint-like,hardsourcesinthediffuseemissionspec- Bianchi,S.,&Matt,G.2002,A&A,387,76 Bianchi,S.,Matt,G.,Balestra,I.,&Perola,G.C.2003,A&A,407,L21 trum(e.g.inNGC253,Stricklandetal. 2002).Anotherwayto Bianchi,S.,Matt,G.,Nicastro,F.,Porquet,D.,&Dubau,J.2005,MNRAS,357, modelthehighionizationspectrumintermsofagalacticwind, 599 is to invokequasi-thermalacceleration of electronswhich then Bianchi, S., La Franca, F., Matt, G., Guainazzi, M., Jimenez Bailo´n, E., wouldproduceX-rayswiththermalphotons.Ironlineswouldbe Longinotti,A.L.,Nicastro,F.,&Pentericci,L.2008,MNRAS,389,L52 Branduardi-Raymont,G.,Sako,M.,Kahn,S.M.,etal.,2001,A&A365,L140 producedbyrecombinationofbackgroundironionsrecapturing Chevalier,R.A.,&Clegg,A.W.1985,Nature,317,44 electrons, as proposed by Masaietal. (2002) for the Galactic Costantini,E.,etal.2007,A&A,461,121(C07) ridgeemission. Crenshaw,D.M.,Kraemer,S.B.,&George,I.M.2003,ARA&A,41,117 deVries,C.P.,denHerder,J.W.,Kaastra,J.S.,Paerels,F.B.,denBoggende, A.J.,&Rasmussen,A.P.2003,A&A,404,959 5. Conclusions Elvis,M.,Wilkes,B.J.,&Lockman,F.J.1989,AJ,97,777 Fabian, A. C., Ballantyne, D. R., Merloni, A., Vaughan, S., Iwasawa, K., & We have performed a detailed modeling of the spectrum of Boller,T.2002,MNRAS,331,L35 Mrk 279, observed for ∼ 160ks by XMM-Newton. Thanks to Fabian,A.C.,&Vaughan,S.2003,MNRAS,340,L28 Ferland,G.J.2004,AmericanAstronomicalSocietyMeetingAbstracts,205, thebroadbandcoveragewehadtheopportunitytostudyinde- Gallo, L. C., Brandt, W. N., Costantini, E., Fabian, A. C., Iwasawa, K., & tailboththe low-energyemissionlines(observedbyRGS)and Papadakis,I.E.2007,MNRAS,377,391 theironKcomplexataround6.4keV(observedbyEpic). Gabel,J.R.,etal.2005,ApJ,623,85 We have extended the “locally optimally emitting cloud” George,I.M.,&Fabian,A.C.1991,MNRAS,249,352 model,which hasbeenconceivedto modelthe UV broadlines Ghisellini,G.,Haardt,F.,&Matt,G.1994,MNRAS,267,743 Goad,M.,&Koratkar,A.1998,ApJ,495,718 coming from the BLR (Baldwinetal. 1995), first to the soft Jime´nez-Bailo´n, E., Piconcelli, E., Guainazzi, M., Schartel, N., Rodr´ıguez- X-ray band (C07) and, in the present paper, to the FeKα line. Pascual,P.M.,&Santos-Lleo´,M.2005,A&A,435,449 TheBLRcaneasilyaccountfortheOVIIbroademission(C07), Kaastra,J.S.,&Barr,P.1989,A&A,226,59 while it contributes marginally to the luminosity of the broad Kaastra, J. S., Steenbrugge, K. C., Raassen, A. J. J., van der Meer, R. L. J., Brinkman,A.C.,Liedahl,D.A.,Behar,E.,&deRosa,A.2002,A&A,386, iron line at 6.4keV (about 3%, this work). This is the first 427 attempt to evaluate the BLR contribution to the luminosity of Kaastra,J.S.,etal.2004,A&A,428,57 theironlineusingaglobalmodeling(ratherthanrelyingonthe Korista,K.,Baldwin,J.,Ferland,G.,&Verner,D.1997,ApJS,108,401 lineFWHMonly).Furtherinvestigationonhighqualitydataof Korista,K.T.,&Goad,M.R.2000,ApJ,536,284 similarsourcesareofcoursenecessarytotesttherobustnessof Krolik,J.H.,&Kallman,T.R.1987,ApJ,320,L5 Krolik,J.H.,Madau,P.,&Zycki,P.T.1994,ApJ,420,L57 ourresults. Krolik,J.H.,&Kriss,G.A.1995,ApJ,447,512 Laor,A.,1991,ApJ376,90 The bulk of the FeKα narrow emission line shows no Longinotti, A. L., Bianchi, S., Santos-Lleo, M., Rodr´ıguez-Pascual, P., remarkablevariability,influxandshapeoveratleastthreeyears Guainazzi,M.,Cardaci,M.,&Pollock,A.M.T.2007,A&A,470,73 Masai,K.,Dogiel,V.A.,Inoue,H.,Scho¨nfelder,V.,&Strong,A.W.2002,ApJ, (Sect. 3.2) and it may be produced by reflection from distant 581,1071 andcoldmatter.TheEWoftheline(∼70eV)isalsoconsistent Magdziarz,P.,&Zdziarski,A.A.1995,MNRAS,273,837 withthispicture. Matt,G.,Perola,G.C.,&Piro,L.1991,A&A,247,25 10 E.Costantinietal.:XMM-NewtonobservationofMrk279 Miniutti,G.,Fabian,A.C.,Goyder,R.,&Lasenby,A.N.2003,MNRAS,344, L22 Nandra,K.2006,MNRAS,368,L62 Nandra,K.,O’Neill,P.M.,George,I.M.,&Reeves,J.N.2007,MNRAS,382, 194 Ogle,P.M.,Mason,K.O.,Page,M.J.,Salvi,N.J.,Cordova,F.A.,McHardy, I.M.,&Priedhorsky,W.C.2004,ApJ,606,151 Palmeri,P.,Mendoza,C.,Kallman,T.R.,Bautista,M.A.,&Mele´ndez,M.2003, A&A,410,359 Peterson,B.M.1993,PASP,105,247 Pounds,K.A.,Reeves,J.N.,King,A.R.,&Page,K.L.2004,MNRAS,350,10 Protassov,R.,vanDyk,D.A.,Connors,A.,Kashyap,V.L.,&Siemiginowska, A.2002,ApJ,571,545 Reynolds,C.S.,&Nowak,M.A.2003,Phys.Rep.,377,389 Scott,J.E.,etal.2004,ApJS,152,1 Steenbrugge,K.C.,etal.2005,A&A,434,569 Steenbrugge,K.C.,Fenovcˇ´ık,M.,Kaastra,J.S.,Costantini,E.,&Verbunt,F. 2009,A&A,496,107 Strickland,D.K.,Heckman,T.M.,Weaver,K.A.,Hoopes,C.G.,&Dahlem, M.2002,ApJ,568,689 Sulentic, J. W., Marziani, P., Zwitter, T., Calvani, M., & Dultzin-Hacyan, D. 1998,ApJ,501,54 Tanaka,Y.,etal.1995,Nature,375,659 Tanaka,Y.2002,A&A,382,1052 Weaver,K.A.,Gelbord,J.,&Yaqoob,T.2001,ApJ,550,261 Williams,R.J.,Mathur,S.,&Nicastro,F.2006,ApJ,645,179 Wilms,J.,Reynolds,C.S.,Begelman,M.C.,Reeves,J.,Molendi,S.,Staubert, R.,&Kendziorra,E.2001,MNRAS,328,L27 Yaqoob,T.,&Padmanabhan,U.2004,ApJ,604,63 Yaqoob,T.,George,I.M.,Kallman,T.R.,Padmanabhan,U.,Weaver,K.A.,& Turner,T.J.2003,ApJ,596,85 Yaqoob,T.,etal.2007,PASJ,59,283 Young, A. J., Lee, J. C., Fabian, A. C., Reynolds, C. S., Gibson, R. R., & Canizares,C.R.2005,ApJ,631,733 Zycki,P.T.,Done,C.,&Smith,D.A.1999,MNRAS,305,231 Zycki,P.T.,&Czerny,B.1994,MNRAS,266,653

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.