Astronomy&Astrophysicsmanuscriptno.12555 (cid:13)c ESO2010 January15,2010 α XMM-Newton unveils the complex iron K region of Mrk 279 E.Costantini1,J.S.Kaastra1,2,K.Korista3,J.Ebrero1,N.Arav4,G.Kriss5,andK.C.Steenbrugge6 1 SRONNationalInstituteforSpaceResearch,Sorbonnelaan2,3584CAUtrecht,TheNetherlands 2 AstronomicalInstitute,UtrechtUniversity,POBox80000,3508TAUtrecht,TheNetherlands 3 DepartmentofPhysics,WesternMichiganUniversity,Kalamazoo,MI49008,USA 4 DepartmentofPhysics,VirginiaTech,Blacksburg,VA24061,USA 5 SpaceTelescopeScienceInstitute,3700SanMartinDrive,Baltimore,MD21218,USA 6 UniversityofOxford,StJohn’sCollegeResearchCentre,Oxford,OX13JP,UK 0 Received/Accepted 1 0 ABSTRACT 2 n Wepresenttheresultsofa∼160ks-longXMM-NewtonobservationoftheSeyfert1galaxyMrk279.Thespectrumshowsevidence a of both broad and narrow emission features. The FeKα line may be equally well explained by a single broad Gaussian (FWHM J ∼10000kms−1)orbytwocomponents:anunresolvedcoreplusaverybroadprofile(FWHM∼14000kms−1).Forthefirsttime 5 we quantified, via the “locally optimally emitting cloud” model, the contribution of the broad line region (BLR) to the absolute 1 luminosityofthebroadcomponentoftheFeKαat6.4keV.WefindthatthecontributionoftheBLRisonly∼3%.Inthetwo-line componentscenario,wealsoevaluatedthecontributionofthehighlyionizedgascomponent,whichproducestheFeXXVIlineinthe ] ironKregion.ThiscontributiontothenarrowcoreoftheFeKαlineismarginal<0.1%.Mostoftheluminosityoftheunresolved, O componentofFeKαmaycomefromtheobscuringtorus,whilethevery-broadassociatedcomponentmaycomefromtheaccretion C disk.However,modelsofreflectionbycoldgasaredifficulttotestbecauseofthelimitedenergyband.TheFeXXVIlineat6.9keVis . consistenttobeproducedinahighcolumndensity(NH ∼1023cm−2),extremelyionized(logξ ∼5.5−7)gas.Thisgasmaybea h highlyionizedouterlayerofthetorus. p Keywords.Galaxies:individual:Mrk279–Galaxies:Seyfert–quasars:absorptionlines–quasars:emissionlines–X-rays:galaxies - o r t s 1. Introduction nent,probablyoriginatingfarfromtheblackhole,hasbeendis- a entangledfromtheFeKαline(Yaqoob&Padmanabhan2004; [ The X-ray spectrum of active galactic nuclei (AGN) bears the Jime´nez-Bailo´netal.2005).Thiscomponentispredictedinthe 1 signature of different environments in the vicinity of the su- unification model (Antonucci&Miller 1985) as produced in a v permassive black hole. In particular, the emission features de- high-column density, cold region, about 1pc away from the 2 tected in an X-ray spectrum are believed to arise in different blackhole(e.g.Krolik&Kallman1987;Kroliketal.1994)and 1 environments, with dramatically distinct physical characteris- thenscatteredintoourlineofsight(e.g.Ghisellinietal.1994). 7 tics of temperature and density. Narrow emission line profiles An unresolved FeKα line and the associated reflection seems 2 (especially from C, N, O He-like and H-like ions), not sig- indeed to be ubiquitous in bright type 1 objects (Nandraetal. 1. nificantly variable on a short time-scale, may form in the far 2007). 0 narrow-lineregion(e.g.Poundsetal.2004).Thebroadsymmet- AstheFWHM ofthenarrowcoreiscompatiblewiththewidth 0 riclineprofiles,themoreandmoreoftendetectedinAGNspec- of the UV/optical broad lines (Yaqoob&Padmanabhan 2004), 1 tra (Kaastraetal. 2002; Ogleetal. 2004; Steenbruggeetal. acontributiontothebroadcomponentfromtheBLRisinprin- : 2005; Costantinietal. 2007, hereinafterC07),are consistentto v ciplepossible.However,consideringindividualsources,noev- i be produced, at least in one case, within the broad line re- ident correlation between the FWHM of neither the hydrogen X gion (C07), which is ≈ 5.6L142/2 light days away from the Hα or Hβ, supposed to be entirely formed in the BLR, has r central black hole (L is the luminosity of CIV in units of been found (Sulenticetal. 1998; Nandra 2006). These results a 1042ergs−1, Peterson1993). Emissionfromtheaccretiondisk, are based on optical and X-ray data not simultaneously col- located in the proximity of the black hole, has been exten- lected.In NGC7213,usingsimultaneousobservations,the Hα sively studied via the iron Kα line at 6.4keV. For this line, andtheresolvedironlinesharedthesamevalueoftheFWHM relativistic effects result in a skewed and asymmetric line pro- (Bianchietal.2008). file (e.g. Tanakaetal. 1995; Youngetal. 2005; Wilmsetal. 2001). Recently, relativistic profiles have been reported also Mrk 279 is a bright Seyfert 1 galaxy (F ∼ 2.55 × for otherlines, in particularOVIII (Branduardi-Raymontetal. 10−11ergcm−2s−1, this study), extensively studied in X-rays 2001; Kaastraetal. 2002; Ogleetal. 2004; Steenbruggeetal. (C07andreferencestherein).C07,usingChandra-LETGSdata 2009). However,a contributionto the line emission from other ofthissource,forthefirsttimequantifiedthecontributionofthe AGN regions (NLR, BLR and molecular torus) add up to BLR tothe softX-rayspectrum.Indeed,thanksto thesimulta- these relativistic profiles. A narrow and not variable compo- neous observation of the broad lines in the UV band by HST- STIS and FUSE (Gabeletal. 2005) the ionization structure of Sendoffprintrequeststo:E.Costantini theBLRhasbeendeterminedusingthe“locallyoptimallyemit- Correspondenceto:[email protected] ting clouds” model (LOC, Baldwinetal. 1995). This allowed 2 E.Costantinietal.:XMM-NewtonobservationofMrk279 to infer the X-ray broadlines luminosities, thatwere then con- Table1.XMM-Newtonobservationlog. trastedwiththeLETGSdata.C07foundthatthebroadlinesob- servedinthesoftX-rayspectrum(wheretheOVIItripletwasthe Orbit Exp Expnet date Epic-PNrate mostprominentone)wereconsistenttobeentirelyformedinthe (ks) (ks) dd-mm-yy c/s(0.3–10keV) BLR.TheaveragepeakofproductionoftheX-raylinesispos- 1087 59.3 27.4 15−11−05 25.7 sibly∼10timescloserinwithrespecttotheUVlines,implying 1088 59.7 32.0 17−11−05 21.6 a largerKeplerianwidth forthe X-raylines.Unfortunately,the 1089 38.0 15.5 19−11−05 23.5 limitedLETGSenergybandpreventedC07tostudytheironKα Note: The orbit number, the nominal exposure, the net exposure, the region.HerewepresentadetailedstudyoftheX-rayspectrum dateandthe2–10keVEpic-PNbackground-subtracted countratesare ofMrk 279asobservedbyXMM-Newton,focusingmainlyon listed. theemissioncomponentsandthe6.4–7keVregion. The paperis organizedas follows.Sect. 2 is devotedto the spectral analysis of the data. In Sect. 3 we modelthe emission spectrumevaluating,foreachcomponent,thecontributiontothe FeKα line. In Sect. 4 we discuss our results and in Sect. 5 we presenttheconclusions.Thecosmologicalparametersusedare: H0=70 kms−1Mpc−1, Ωm=0.3, and ΩΛ=0.7. The abundances weresettosolarfollowingAnders&Grevesse(1989)prescrip- tions. The redshiftis 0.0305(Scottetal. 2004). The quoteder- rors are 68% confidence errors (∆χ2 = 1), unless otherwise stated. 2. Thedataanalysis The observation of Mrk 279 was spread over 3 orbits on November 15–19 2005. In Table 1 we report the observation log. The data were processed with the standard SAS pipeline (SAS 7.0)and filtered for any backgroundflares. The Epic-PN exposuretimeinsmall-windowmodereducedtheexposuretime fromtheoriginal160ksto110ks.Afterthebackgroundfiltering Fig.1. Epic-PN light curves in the 0.3–2 and 2–10keV band. weobtainedanetexposuretimeof∼75ks.Thelightcurveofthe Themaximalvariationisabout36%. threetimeintervalsisdisplayedinFig.1inthesoft(0.3–2keV) andhard(2–10keV)band.Themaximalvariationisabout36% inbothenergybands.Toincreasethestatistics,wecombinedthe χ2 is again unacceptable(χ2/ν ∼ 6). The residuals show that Epic-PNdataafterverifyingthatthephysicalparametersofthe a broad band component is still missing. We then substituted modeling were the same for the three separate data sets. Epic- the simple powerlaw model with a broken power law, obtain- MOS1camerawassetintimingmode.Duetostillexistingen- inganacceptabledescriptionofthecontinuum.Thereducedχ2, ergy gain uncertainties in this mode, we did not analyze these considering only the best-fit continuum, without narrow emis- data further. Epic-MOS2 were collected in imaging mode that sion/absorptionfeatures,isχ2/ν ∼ 2.5.Theparametersofthis resultedinabout61ksofnetobservation,afterfilteringoutshort phenomenologicalinterpretationof the continuum are listed in highbackgroundepisodes.ForbothEpic-PNandMOS2weim- Table 2 and the fit shown in Fig. 2. The parametersin Table 2 posedat least 20 countsper channelto allow the use of the χ2 andreducedχ2refertothetotalbestfit,includingemissionand minimization. absorptionfeatures,asdescribedbelow(Sect.2.2,2.3). TheRGStotalusefulexposuretimeisabout110ks.EachRGS For comparison,we analyzedalso MOS2 data, with the caveat datasethasbeenrebinnedbyafactor5whichresultedinabin that deviation from the Epic-PN best fit may occur, especially size of ∼0.07A˚ and signal-to-noise ratio of 10 for each set of atthelow(E<0.5keV)andhighenergy(E>8keV)endsofthe data that were simultaneously fitted. The spectral analysis was band,andattheinstrumentalgoldedgearound2keV2.Thefinal carriedoutusingthefittingpackageSPEX1(ver2.0). MOS2best-fitparametersareshowninTable2.Theparameters Inthefollowingwedescribefirsttheunderlyingcontinuum, agree well with the Epic-PN fit, albeit with some differences, then the emission line spectrum and finally the absorption whichweascribetothecrosscalibrationmismatchbetweenthe featureswhichfurrowthespectrum. MOSandPNcameras. 2.2. Theemissionlinespectrum 2.1. Thecontinuum We see evidence of a range of broad and narrow emission ThecontinuumhasbeenfirstdeterminedusingEpic-PN.Asin- lines both in the RGS and in the Epic spectra. Here we re- gle powerlaw fit, modified by Galactic absorption is unaccept- fer as narrow lines the ones which are unresolved by Epic- able(χ2/ν >34,whereν isthenumberofdegreesoffreedom). PN (i.e. FWHM<7000kms−1), but may be resolved by RGS. Thisfitproducessystematicresidualsbothatsoftandhardener- Then the broad lines (FWHM>7000kms−1) are instead re- gies,inadditiontonarrowfeaturesbothinabsorptionandemis- solved also by Epic. Finally, the very broad lines are the ones sion. We then addeda blackbodycomponent,modifiedbyco- withFWHM∼14000kms−1.Theonlyexampleofthelatterin herentComptonscattering(Kaastra&Barr1989).Thereduced 2 Several examples are provided at 1 http://www.sron.nl/divisions/hea/spex/version2.0/release/ http://xmm2.esac.esa.int/cgi-bin/ept/preview.pl E.Costantinietal.:XMM-NewtonobservationofMrk279 3 Fig.2.BestfitfortheEpic-PNdata.Themodelincludesamod- Fig.3. RGSspectrumintheOVIIregionintermsofratiofroma ifiedblackbody(dottedline),abrokenpowerlaw(dashedline), continuumfit.Fordisplaypurpose,onlytherebinneddatafrom bothabsorbedbyionizedgas,abroadFeKα(seeSect.2.2)line orbit1087and1088are shown. The measurementsreportedin andtwonarrowlinesat6.9and7.05keV(dash-dottedlines). thepaperarebasedonthefullRGSexposure.Thelabelsindicate someofthemainfeaturesofthewarmabsorber. Table2.Best-fitcontinuumparametersforaphenomenological model. frame)andabroademissionfeature,consistentwithablendof PN MOS2 FeXXVI and FeKβ at 6.90 ± 0.06keV and 7.05 ± 0.05keV Tmbb keV 0.16±0.02 0.12±0.02 respectively (Fig. 4, upper panel). Because the MOS2 spec- ΓΓ12 21..0785±±00..0011 21..0832±±00..0023 tral analysis deliver a slightly different powerlaw slope at en- E0 keV 2.31±0.04 2.0±0.1 ergies > 2keV (Table. 2), and the data are affected by lower χ2/ν 281/234 262/208 statistics, we restrict the iron line analysis to the Epic-PN data only. At first we modeled the FeKα line with a single unre- Note:Epic-PNandMOS2fittedseparately.Thereducedχ2 referhere solved Gaussian. Although the general fit improves (χ2/ν = tothefinalbestfit. 371/243 ∼ 1.5) This model does not provide a good fit for the line, as evident in Fig. 4 (lower panel). Next, we consid- eredthelineascomposedofanunresolvedGaussianandavery the present data is the broad, possibly relativistically smeared, broadcomponent,leadingtoasignificantimprovementofthefit componentoftheironlineat6.4keV. (∆χ2/∆ν = 32/3,Table 4). The verybroad componenthas a InourpreviousstudybroademissionfromablendoftheOVII FWHM of 0.29±0.04keV, correspondingto ∼14000kms−1. tripletlineswasverysignificantlydetected(at∼ 6σ,C07).We We tested thisverybroadcomponentofthe FeKα line against thereforelookedforsuchevidenceinthepresentRGSdata.We arelativisticallysmearedprofile(Laor 1991).Withthismodel, fix the wavelength of the line centroid (λ=21.9A˚) to the val- the line should be viewed at an angle of ∼ 15◦, with a radial ues found in C07. We also fix the FWHM of the broad fea- emissivity law r−q, with q ∼ 1.5 (Fig. 5, Table 4). These pa- ture, which could notbe resolved in the individualOVII lines, rameters mimic a regular, almost symmetric, line profile (e.g. tothepreviouslymeasuredvalue:1.4A˚,correspondingtoabout Reynolds&Nowak2003).Thestatisticalimprovementwithre- 19000kms−1fortheblend.Wefindthattheintrinsiclinelumi- specttoasimplevery-broadGaussianis:∆χ2/∆ν ∼ 5/1,cor- nositydecreasedwithrespecttothe2003observationgoingfrom respondingto∼2.2σ.FortheFeKαfeature,weconsideredalso 50±8 to 13±7 in units of 1040ergs−1. The same line lumi- asingleGaussianwiththewidthfreetovary(Table3).Theline nosityismeasuredalsousingthethreeRGSdatasetsseparately. centroidis 6.41±0.08 in the rest frameof the source,and the The inclusion of the line improvesthe fit by ∆χ2/∆ν ∼ 6/1, intrinsicluminosityis61±6×1040ergs−1.Thelineisresolved correspondingtoonly2.4σsignificance.Thebroadlineisalsoa byEpic-PN,withaFWHMof0.21±0.03keV(corresponding necessaryemissioncomponenttocorrectlyfitsomeunderlying to ∼ 10000±1000kms−1). The statistical improvementwith absorptionfeatures(e.g.OV, OVI and OVII), importantin the respecttoasingleunresolvedlineis∆χ2/∆ν =37/1. globalfittingoftheionizedabsorberparameters(Fig.3).Thein- The inclusion of other two narrow lines, at the energy of the clusionofthislow-ionizationabsorberaloneimprovesthefitof FeXXVI andtheFeKβ furtherimprovesthefitby∆χ2/∆ν = theRGSspectrumby∆χ2/∆ν ∼58/3. 31/2.Forconsistency,wetestedtheLaormodel,withthesame IntheRGSbandwedetectthenarrowOVIIforbiddenlinewitha line parameters, to the FeKβ, fixing the line ratio to 0.135 flux(9±6×10−15ergcm−2s−1),consistentwiththeChandra (Yaqoobetal. 2007; Palmerietal. 2003). As expected the flux measurement(C07). The line is marginally detected (Table 3), ofabroadFeKβ linehasanegligibleeffectonthefit,therefore probablybecauseofaneighboringbadpixel.Forotherrelevant weignorethisadditionalcomponentinsubsequentfits.Thisneg- narrowlines, suchas OVIII Lyα, NeIX andNeX, we onlyob- ligiblecontributionofabroadprofileoftheFeKβalsostrength- tainupperlimitsontheluminosity(Table3). ens our assumption that the bump seen in the 6.9–7.05 region Both the PN and MOS2 spectra show a complexstructurebe- isablendoftwonarrowlines(FeXXVI andFeKβ)ratherthan tween6.4and7keV:aprominentFeKαlineat∼6.4keV(rest- a broad FeKβ line arising from the accretion disk. This fit is 4 E.Costantinietal.:XMM-NewtonobservationofMrk279 Table 3. list of line luminosities as measured by Epic-PN (inst.1)andRGS(inst.2). ion Rest Lum F-test inst. obs wavelength (A˚) (1040ergs−1) % narrowlines FeKβ 1.75 6.6±2.8 89.0 1 FeXXVILyα 1.77 10.0±2.7 99.98 1 FeXXVf. 1.85 <4.7 ... 1 FeKα1 1.93 12.0±7.0 >99.99 1 NeX 12.14 <1.2 ... 2 NeIXf. 13.69 <1.25 ... 2 OVIIILyα 18.97 <1.0 ... 2 OVIIf. 22.10 3.1±2.0 89.0 2 NVIILyα 24.78 <3.1 ... 2 NVIf. 29.53 <1.18 ... 2 broadlines OVIItriplet2 21.9 13±7 95.0 2 Fig.4.Upperpanel:residuals,intermsofσtothecontinuumin FeKα3 1.93±0.03 61±6 >99.99 1 theironlineregionasobservedbyEpic-PN.Threefeaturesare evident: a prominentFeKα line and weaker lines identified as Notes:Welisttheion,therest-framewavelength,theintrinsicluminos- FeXXVI andFeKβ.Lowerpanel:residuals,intermsofσ after ityandtheirsignificance,fornarrowandbroadlines. theinclusionofa narrowline at6.4keV. TheEpic-PNdataare 1Onlynarrow,unresolvedcomponentinatwo-linesmodel. identifiedbysimplecrosses,andtheMOS2databydiamonds. 2BlendoftheOVIItripletlines. 3SingleGaussianwithfreeline-widthmodel. Table4. ParametersfortheverybroadcomponentoftheFeKα lineinatwo-componentsmodel. Gauss1 Laor2 E keV 6.41±0.01 6.47±0.03 FWHM eV 0.29±0.04 ... Lum 1041ergs−1 4.64±0.16 5.0±0.7 q ... 1.5±0.5 i deg ... 15±7 χ2/ν 339/240 334/239 Notes: Third column: one Gaussian with free width. Fourth column: Profileincludingrelativisticeffects.Thereducedχ2 referstoaninter- mediatefit(seeSect.2.2) 1 Welisttheenergyofthecentroid,theluminosityofthelineandthe FWHM. 2Welisttheenergyofthecentroid,theluminosityoftheline,theemis- Fig.5.Spectrumandbestfitintheironlineregionasobserved sivitylaw,qandtheinclinationangle,i. byEpic-PN.Thesolidlinesdisplaythebroadandnarrowcom- ponents added to fit the emission features: a prominent FeKα lineandweakerlinesidentifiedasFeXXVIandFeKβ. withNH ∼3.6×1019cm−2andtemperatureT ∼7.2eV(C07, Williamsetal. 2006). Further, we detect other two, photoion- ized,gascomponentsintrinsictothesource.Wereporttheaver- showninFig.5. agephysicalparametersofthewarmabsorbersasmeasuredby Thereducedχ2 ofafitwithallemissionlinesincluded,butno absorption, is 308/238. With this final component(see below), the χ2/ν = 281/234 ∼ 1.2. The lines’ parameters and their Table5. Bestfitparametersfortheabsorbedspectrumasmea- significancearelistedinTable3.Inallthelinesfitting,wealso suredbyRGSandEpic-PN. letthenormalizationfreeto varytowardsnegativevalues.This allowedustouse the F-testasan indicationofthe significance comp. Param. RGS PN ofthelines(Protassovetal.2002). 1 NH 0.7±0.2 1.5±0.5 logξ 0.8±0.3 1.1±0.3 vout −300±150 –300fix. 2.3. Theunderlyingabsorption 2 NH 3±1 4±1 logξ 2.6±0.1 1.8±0.1 Mrk 279 shows a complex absorption spectrum (C07), whose vout −400±150 –400fix. characteristicsarebeststudiedusingRGS.InanalogywithC07, wemodeledtheabsorptionwithtwoGalacticcomponents,that Note:Foreachcomponentwelistthecolumndensities(NH)inunitsof is a neutral gas (NH = 1.64 × 1020, Elvisetal. 1989) and a 1020cm−2,ionizationparameter(logξ)andoutflowvelocities(vout,in ionized gas, highlighted by the OVII absorption line at 21.6A˚, kms−1). E.Costantinietal.:XMM-NewtonobservationofMrk279 5 However,theionizingcontinuum,andasaconsequencethe lineluminosities,mayhavechanged.InFig.6theSEDusedfor thepresentobservation(2005)isdisplayed(solidline).Theop- ticalpointsaremeasuredbyOMusingtheU(344nm),UVW1 (291nm), UVM2 (231nm) and UVW2 (212nm) filters. The unabsorbed X-ray continuum is evaluated using the Epic-PN data.Forenergieshigherthan10keV,thepowerlawcontinuum was extended and artificially cut off at ∼150keV. On the very lowenergyendoftheSED(farinfraredtoradioband),theshape was takenfroma standardAGN SED template used in Cloudy (Ferland 2004). We used Cloudy (version 07.02.02) to obtain a line luminositygrid overa large range of r and n values. As inC07,r rangedbetween1014.7−18cm.Thevalueofnranged between 108−12.5cm−3. For both parameters the spacing of the valueswas 0.125inlog. Forcomparison,we show also the SED used for the 2003 observation. The overall optical flux is higherforthepresentdata,whiletheX-raycontinuumremained almostunchangedinfluxandsoftX-rayspectrum. Fig.6.TheSEDofMrk279in2005measuredbyXMM-Newton (solid line). The optical data are measured by OM, while the InordertoinfertheBLRcontributiontotheFeKαline,we broadbandX-raycontinuumismeasuredbyEpic-PN.Thedot- havetorelyontheOVII tripletintheX-rayband,whoselumi- tedlineshowstheSEDofthe2003dataforcomparison(C07). nositycouldbetotallyaccountedforbytheLOCmodel(C07). Therefore we assume that all the emission from the broad line of the OVII triplet comes from the BLR. The OVII line lumi- RGS and the Epic-PN in Table 5. The absorbersare character- nosity (LOVII = 13± 7 × 1040ergcm−2s−1) from the RGS ized by a low NH. Thereforeabsorptionlines, well detected in data can be explained by the LOC model using the new 2005 the high-resolutionspectrum(Fig. 3), rather thanedges(which SED,withthevaluesofγ andC setbythepreviousanalysis, V are in this case shallow features in the Epic spectrum), are the withintheerrors.Giventheseconstraints,theresultingvaluefor signature of the absorbers. The inclusion of a lower ionization γ =1.17±0.03,whichisheretheonlyfreeparameter,isfound gasalonealreadyimprovestheEpic-PNfitby∆χ2/∆ν =17/2. tobeconsistentwithpreviousresults.Oncethisconstraintisset, The inclusion of a two-component gas, with column densities we can predictalso the contributionof the FeKα and otherX- andionizationparametersfreetovaryleadstoanimprovement raylines. of the fit of ∆χ2/∆ν = 27/4, bringing the reduced χ2/ν to In Sect. 2.2 we have provided two statistically acceptable de- ∼ 1.20. A detailed analysis of the complex absorption and a scriptions of the FeKα line: a narrow+very-broadcomponent comparison with previous results will be presented in a forth- modelandasingle,resolved,Gaussian.Onlyforthelattercase comingpaper(Ebreroetal.,inprep.). the FWHM is similar to the one directly measured from the UVdata(FWHM =8500–9500kms−1,Gabeletal. 2005).In UV Fig.7weshowtheBLRlineluminositiespredictedbytheLOC 3. ModelingoftheFeKα line region model in the X-ray band. Along with the OVII observed lu- minosity we also plot the observed value for the FeKα line in Inthissectionweevaluatethecontributionofdifferentregionin the case of a single Gaussian model (Table 3). The predicted theproximityoftheAGNtothespectrumabove6keV. OVII/FeKα luminosity ratio is about 6.3 within the narrow 1.14-1.20 range for γ. Therefore, the BLR contribution to the 3.1. TheLOCmodelforthebroademissionlines FeKαlineisthenLBLR(FeKα)=2±1×1040ergs−1,about30 times smaller than the broadFeKα componentmeasuredfrom HereweinvestigateapossiblephysicallinkbetweentheFeKα thedata.Forcomparisonwealsomadeapredictionontheiron line and the optical BLR. In order to quantitatively evaluate line flux based on the 2003 SED and the BLR parameters de- the contributionof the BLR to any X-ray broadlines, we used rivedinC07.InthatcasetheFeKαluminosityofironfromthe the “locally optimally emitting clouds” model (Baldwinetal. BLRis10±5×1040ergs−1. 1995). This model considers the observed line luminosity as a sum of lines emitted at different density n and distances r, 3.2. Variability ofthecontinuumandironlinecomplex weightedbyapowerlawdistributionfornandr:n−β andr−γ respectively (see e.g. C07, Koristaetal. 1997, for details). For Lines emitted at a few gravitational radii from the black hole thepresentobservationwecanbenefitfromtheresultsobtained may show significant short term variability. We examined the inC07:theyevaluatedthe“structure”oftheBLR(i.e.thedistri- FeKαline parametersin the threetime segmentsof ourobser- butionofrandthecoveringfactor)fitting11UVlinesobserved vationusingasimpleGaussianmodel.Wefindthattheflux,the byHST-STISandFUSEsimultaneouslytotheChandra-LETGS FWHM,centroidenergyandtheunderlyingpowerlawslopeare data.Theyfoundaslopeforr,γ = −1.02±0.14andacover- nearly the same in response to the central-source variation. In ing factor C = 34 ± 26%, keeping the slope for n fixed to ordertofurthertestavariabilityoftheFeKαfluxweanalyzed V –1(Korista&Goad 2000).ThegeneralstructureoftheBLRis bothanarchivalXMM-Newton-pndatasetwith anetexposure notexpectedtohavechangedsignificantlyin the2.5yearsthat time of ∼26ks, collected in May 2002 and Chandra HETGS have elapsed since the Chandra observation. Thereforewe ap- data, collected about 10 days later in May 2002 (Scottetal. ply those value also to the present spectral energy distribution 2004; Yaqoob&Padmanabhan 2004). In Table 6 we show the (SED). comparisonofthelineparametersofallobservationssince2002, 6 E.Costantinietal.:XMM-NewtonobservationofMrk279 Fig.7.Thesolidthickline showsthe predictedBLRlinelumi- Fig.8. Emission line contribution to the high ionization lines nositiesintheX-raybandinunitsof1040ergs−1usingtheLOC (FeXXVI, FeXXV, NeX, OVIII). Triangles:data. Lightshaded model,usingasconstraintsC =34±26%andtheobservedlu- line:rangeofmodelsviabletofitthedata. V minosityofthebroadOVIIline.Thevalueofγisconsistentwith whatpreviouslyfoundforMrk279.Theasterisksarethevalue oftheobservedbroadlineluminositiesbyXMM(Table3).The dashed line shows the LOC modeling based on the 2003 SED andobservedOVIIlineluminosity.Thefilledtriangleshowsthe OVIIbroadlineluminosityobservedbyChandra. Table6. ParametersoftheFeKαatdifferentepochs. year E L FWHM (keV) (1040ergs−1) (keV) 2002a 6.43±0.03 46±11 0.26±0.12 2002b 6.42±0.04 41±15 <0.20 2005obs1 6.42±0.01 56±8 0.19±0.05 2005obs2 6.40±0.02 53±8 0.17±0.05 2005obs3 6.42±0.03 86±17 0.3±0.1 Note:Welisttheenergy,intrinsicluminosityandFWHMforasingle- Fig.9.Parameterspaceofparametersviabletoproducetheob- line fit to the FeKα profile for the spectra obtained in 2005 in three servedhigh-ionizationemissionspectrum.Upperpanel:Logof separateorbitsandforobservationscollectedin2002byXMM-Newton (2002a)andChandra-HETGS(2002b). the ionizationparameteras a functionof the logof thecolumn density. Lower panel: Covering factor of the FeXXVI line as a functionofthelogofthecolumndensity. 3.3. TheFeXXVI lineat6.9keV forasingle-linemodel. Priorto1994,Mrk279showedasignificant2–10keVfluxvari- TherearenodetectablechangesintheFeXXVIlineina3-years ation,rangingfrom1−5×10−11ergcm−2s−1 (Weaveretal. timescale.Theabsenceofanyofthelines(orablendoflines) 2001).The2002Chandra-HETGSobservation,revealedavery of the FeXXV triplet is also peculiar (Table 4, Fig. 5). In or- low-flux state of the source (∼ 1.2 × 10−11ergcm−2s−1, dertounderstandthepropertiesofthegasemittingFeXXVI,we Scottetal. 2004), a factor of two lower than what measured created a grid of column density, logNH= 22.0–24.5, and ion- by XMM-Newton, shortly before. In the last XMM-Newton ization parameter, logξ=3–7, using Cloudy. For lower-column- observation the source shows a 2–10keV flux of ∼ 2.5 × density,lower-ionizationparametergas, the predictedemission 10−11ergcm−2s−1.Weseethat,despitethechangeinthecon- linewouldbetooweak,orabsent.Foraneasyscalingofthelu- tinuum flux (a factor two), the FeKα line parameters did not minosity,weinitiallyconsideredthecoveringfactor(C )equal V dramaticallychangeinthreeyearstime,withintheerrors. to unity.This is the fractionof lightthat is occultedby the ab- In the Chandra data the decline of the HETGS effective area sorber3.Acoveringfactorofoneisofcourseunrealistic,because andthe low signal-to-noiseratiohamperedthe detectionof the inthiscaseabsorptionlinesofthesameionsshouldbeobserved. FeXXVI andFe Kβ lines.On the contrary,inthe 2002XMM- ThereforeC mustbelessthanone.We also simplisticallyas- V Newton spectrum, bothlines, althoughblended,are detectedat about95and90%confidencelevelforFeXXVIandFeKβ,re- 3 This is different from the global covering factor, the fraction of spectively.Thelineluminositiesarethesameweobtainin2005, emission intercepted by the absorber averaged over all lines of sight, withintheerrors. whichishasbeenestimatedtobeabout0.5(e.g.Crenshawetal.2003). E.Costantinietal.:XMM-NewtonobservationofMrk279 7 sumethatasinglegascomponentisresponsibleforallFeXXVI Table7. Alternativefitofthecontinuum,includingreflection. emission.Therefore,wetookthemeasuredintrinsicluminosity ofFeXXVI asthereferencelinetoestimatethecoveringfactor. Tmbb keV 0.21±0.3 Weonlyhaveupperlimitsonotherhighlyionizedlines(namely Γ 2.5±0.1 NVII,OVIII,NeXandFeXXV,Table4),thereforeaformalχ2 blurred fitcannotbeperformed.However,thoselimitscontaininforma- normpow 1051phs−1keV−1 4.1±0.3 tionthatcanbe usedto constrainttheparameters.In Fig.8 the Γ 1.73±0.08 set of parameters which are consistent with the measurements α >1.7 i deg <30 aredisplayed. s 0.8±0.3 In Fig. 9, we show the parameter space of the possible solu- unblurred tions.Weseethattheionizationparametersufficienttoproduce normpow 1051phs−1keV−1 8.0±2.5 FeXXVI, but not FeXXV has to be larger that ∼5.3. The ion- Γ 1.73±0.08 izationparameterlinearlycorrelateswiththecolumndensity,as i deg 60fixed forthehighestvaluesoflogξtheemissionlinesarevisibleonly s 1.1+1.3 −0.2 if there issufficientemittingmaterial.For the same reason,for χ2/ν 322/230 thesamecolumndensity,logξandC correlatelinearly.Onthe V otherhand,thecoveringfactoranti-correlateswithNH (Fig.9). Note:Themodelincludesablackbody,apowerlaw,blurredreflection Indeed, for a high column density less material on the line of fromtheaccretiondiskandreflectionfromunblurredcoldanddistant sightisneededtoproducetheobservedemission. material.Thevalueofχ2 referstofullmodeling,includingabsorption red (Sect.2.3)andemissionlines(Sect.2.2). 4. Discussion The two reflection component cannot fit simultaneously the 4.1. Acomplexcontinuum broad band continuum, as the soft energy portion of the spec- The continuumspectrum of Mrk 279needs at least three com- trumissignificantlyunderestimated.Toreachanacceptablefit, ponenttobecorrectlyinterpreted:amodifiedblackbodyanda this region has to be modeled again by a modified black body broken powerlaw (Table 2). In principle, reflection from both andasinglepowerlaw(Table7).Residualsmainlyatthecross- the accretion disk and from distant matter should be present ing points of the continuum components determine the value (Nandraetal. 2007; Krolik&Kriss 1995; Mattetal. 1991; of the reduced χ2 (Table 7). Therefore a broad band modeling George&Fabian 1991). The only difference would be that if only in terms of reflection is not straightforward. In addition, arisingfromtheaccretiondisk,thereflectionandtheassociated hardX-rayscoverageisnotavailableandthisfitisbasedonthe iron line should be modified by relativistic effects. The harder 0.3–10keVcontinuumshapeandanironlinewithtwoblended tailwithΓ∼1.75andthedoublecomponentoftheironlinepro- components.Thislimitedknowledgeonthebroadbandbehavior file(Sect.2.2)maybereminiscentofareflectionemissioncom- makesthefitparametersveryuncertain. ponent. We therefore tested this scenario, in comparison with ourphenomenologicalmodelforthecontinuum,includingboth 4.2. ThecontributionoftheBLRtotheFeKαline types of reflection in the model (model REFL in SPEX). This model simultaneously considers the Compton reflected contin- We have quantitatively evaluated the BLR contribution to the uum(Magdziarz&Zdziarski1995)andthefluorescentemission emissionoftheprominentFeKαlineat6.4keV.Thehighlyion- from FeKα (Zycki&Czerny 1994; Zyckietal. 1999) from a izedspecieofFeXXVIhasanegligibleroleintheBLR,therefore Schwarzschildblackhole.Generalrelativityeffectsandconvo- theemissionweseeatthoseenergiesintheX-rayspectrummust lution with an accretion disk effectscan be easily switched off comefromsomeotherlocation(Sect.4.4).Webasedthisanaly- in this model. Free parameters are the normalizationof the re- sisonpreviousresultsfortheBLRstructureandonthepresent flectedpowerlaw anditsspectralindexΓ, thereflectionscale4 detection of the OVII broad line in the RGS spectrum. From s,theemissivityscaleα(Zyckietal.1999),theinclinationangle the extensive experience of broad lines studies in optical spec- iofthediskoftheironlineemission.Intheunblurredreflection, tra of AGN, it is known that measurements of broad and shal- wefixedtheinclinationangleto60◦,basedontheaveragefound lowemissionfeaturescanbeaffectedbylargeuncertaintiesand foralargesampleofSeyferts(Nandraetal.2007). should be cautiously treated. The limitation is due for instance We findthatthe energyrangeE > 3keV canbe wellfittedby to the signal-to-noise ratio of the continuum level. Resolution, acombinationofareflectorwithrelativisticpropertiesandbya effectiveareaandcalibrationoftheinstrumentarealsorelevant distantreflector. The formeraccountsfor the broadcomponent effects.However,known,possiblynotcompletelycalibrated,in- oftheFeKαline,whilethelattermodelsthenarrowcomponent strumentalnarrowfeatures(23.05,23.35A˚,deVriesetal.2003) of the line (Table 7) in a similar way as obtained in the two- fall at the border of the OVII emission region. Observation- componentfit(Fig.5). specificbadpixels(flaggedasbadchannelsinthespectrum)are The basic parameters of the disk (e.g. the inclination angle, automaticallytakenintoaccountwhencomputingtheinstrument Table7)areinagreementwithwhatwasfoundfromtheFeKα response, but they may certainly cause additional uncertainty linefitusingtheLaor (1991)model.Wenotehoweverthathere whenfittingnarrowfeatures.TheOVIIbroadlineis1.4A˚ wide acomparisonisnotstraightforwardasinZycki&Czerny(1994) and the determination of its flux is not significantly influenced adisklinefromaSchwarzschild(ratherthanKerr)blackholeis by bad pixels. Considering also the very significant, indepen- included. dent,detectionintheChandra-LETGSdata,wetreatthisfeature 4 The parameter s is a scaling factor for the reflected luminosity: asanintrinsically-low-fluxOVIIline.Thelinefluxmeasuredin Ltot = Lpow +sLrefl.Foranisotropicsourceabovethedisks = 1, 2005isindeedweakerthanin2003(Sect.2.2),eventhoughthe correspondingtoanequalcontributionfromdirectandreflectedspec- SEDof2005showsanincreasedavailabilityofopticalandUV trum. photons(Fig.6).Suchabehaviorofthelineintensityishowever 8 E.Costantinietal.:XMM-NewtonobservationofMrk279 notunexpected,asthesinglelineluminositiesarealsosensitive (e.g. Sulenticetal. 1998; Nandra 2006). In at least one case, tothelongtermfluxhistoryandtheshapeoftheSEDbothinthe (the LINER galaxy NGC 7213, Bianchietal. 2008) a simulta- UVandX-rayband(atleastoftheprevioustwomonths,given neousoptical–X-rayobservationrevealedthesamewidthforthe thetypicalsize ofthe BLR).TheX-raycontinuumofMrk279 Hα and FeKα lines, suggesting a common origin in the BLR. has beenobservedto changein a monthtime-scale (Sect. 3.2), Howeverthe UV andX-raylinesmightcomein regionscloser howevertheinformationonthelightcurveofMrk279issparse, totheblackholewithrespecttothelowerionizationlinesinthe asthemostrecentobservationpriortotheXMM-Newtonpoint- optical,implyingalargerFWHM.MoreoverNGC7213canbe inghasbeendonein2003(C07).Thereforeareconstructionof consideredanoutsiderobject,ashasbeenproventototallylack the SED priorto the presentXMM-Newtonobservationcannot the reflection component (Bianchietal. 2003). Therefore a di- beperformed.Inthisstudywefindthatonlyasmallfractionof rectcomparisonwithclassicalSeyfert1galaxies(asisMrk279) thebroadFeKαlinecanbeproducedintheBLR.FromtheLOC maynotbepossible. modelingwe find that the FeKα line luminosity,coming from theBLR,shouldbeaboutsixtimessmallerthantheOVIItriplet. ThistranslatesinacontributiontotheFeKαlinewhichisabout 4.3. TheoriginoftheFeKαline 30 times smaller than that observed, implying a 3% contribu- Anyvariabilityoftheironlinewouldeasilysuggestaclosein- tion. However, the elemental abundance close to a black hole, teraction between the central source and the region producing especiallyofiron,mightbedifferentfromSolar.Abundancesup theironline,e.g.theaccretiondisk.Thelinedoesnotneedtobe to 7 times Solar have been suggested (e.g. Fabianetal. 2002). relativisticallysmeared,asalsoGaussian-shapedlinesmayarise The same BLR model, but with the Fe abundance enhanced fromtheaccretiondisk(Yaqoobetal.2003).UsingASCAdata by a factor seven only reduces the OVII/FeKα luminosity ra- Weaveretal. (2001)foundvariabilityinthelinecentroidatthe tiotoabout4.5.However,suchanoverabundanceimpliesmuch 1.6σlevel(90%confidence).Thevariabilitywasobservedona strongerX-rayironlinesfromtheL–Mshells,whicharenotob- timescaleofabout20ksfollowinga2–10keVcentral-fluxvari- served.IfweartificiallyconsidertheluminosityoftheFeKαas ation of ∼15%. The average EW and FWHM as measured by entirelyproducedin the BLR, we shouldobservean OVII line withaluminosityaslargeas3×1042ergs−1,whichisclearly ASCAwerehoweverconsistentwiththepresentXMM-Newton data.Overatimescaleofatleast3years,theFeKαlineare,in inconsistent with both the present and archival measurements firstapproximation,stableinluminosity,widthandcentroiden- (C07). Moreover the NeIX and OVIII broad lines (with pre- dictedluminosityofabout60×1040ergs−1)wouldbeclearly ergywithintheerrors(Table6).Towhichextentthelineisstable isdifficulttoassess,assomemeasurementsareaffectedbylarge visibleinthespectrum,againsttheobservationalevidence.The uncertainties.Formally,thelinecouldhavechangedofasmuch same discrepancyapplies if we consider the very broad profile as a factor of two or more in luminosity. In a scenario where of the FeKα line as arising from the BLR (Sect. 2.2). In that a dominantcomponentof the line doesnotrespondto the cen- case,theBLRcontributionwouldbe23timessmallerthanob- tral source variation, an origin of the iron line in the accretion served.Theunresolvedcomponentofthe FeKα wouldinstead disk can be justified by light-bending (e.g. Fabian&Vaughan beabout6timessmaller.Ifthiswerethecase,thecontribution 2003;Galloetal.2007).Inthatcasetheapparentfluxisallowed oftheBLRtotheFeKαlinewouldnotbenegligible(∼ 16%). tochangeevenofa largefactor(upto four)while theline-flux However,theFWHMofthecoreoftheFeKαline,asmeasured byChandra-HETGSis4200+3350kms−1(Nandra2006),which change is marginal (Miniuttietal. 2003). A number of factors −2950 mayinfluencetheironlinebehavior.Thelimitedknowledgeof is inconsistent with the FWHM of the UV lines (Gabeletal. the exact nature of the emission components (both FeKα line 2005).Moreover,BLRlinearesubjectedtosignificantvariabil- andcontinuum)inthissourcedoesnotallowustomakepredic- ity both in the UV (e.g., Goad&Koratkar1998) and in the X- tions on the variation of the line in response to the continuum rays(Steenbruggeetal.2009,andpresentwork),whilewecould changesoneithershortorlongtimescales. notdetectanysignificantchangeintheironlineflux,measured A symmetric line profile, possibly constant over a long time inafewoccasionsbydifferentinstruments(Sect.3.2).Thisalso scale, may also suggest a relatively unperturbed environment, supportstheideathattheBLRcontributionshouldbeminimal. likeforexamplethemoleculartorus,∼1pcawayfromthecen- AnimportantnoteisthattheBLRparametersofMrk279were tral source. In the framework of the unification model (e.g. determinedfirstusingUVdataonly(seeC07andSect.3.1)and Antonucci 1993), the iron line is a natural consequence of the then applied to the X-ray data. With this approach, any X-ray obscuringtorus.Intype1objects,theexpectedequivalentwidth lineonlyprovidesusefulupperlimits,withintherangeimposed would be of the order of 100eV. However geometrical effects alreadybytheC value,onthenormalizationoftheLOCmodel V would easily reduce it of a factor of two (Nandraetal. 2007; (Fig.7).Therefore,inprinciple,givenaBLRmodelandanSED, Krolik&Kallman1987).InthecaseofMrk279,theEWofthe thecontributionoftheBLRtotheFeKαlinecanbecalculated narrowironlineis70±15eV,inagreementwiththetheoretical withoutthesupportofotherX-raylines.Asatest,wealsopre- prediction. The presence of FeKβ, insures that the ionization dicted the iron line luminosity considering the SED and BLR parametersderivedforthe2003dataset.Inthatcase,reminding stateofironislessthanFeXVII (Yaqoobetal.2007).Afurther constraintontheionizationstateofironwouldbebasedonthe thatwedonothaveanysimultaneousmeasurementoftheFeKα line in 2003, the contribution of the BLR to the line would be FeKα/FeKβ branching ratio, which rangesfrom 0.12 for FeI roughly17%. upto0.17forFeIX(Palmerietal.2003).Unfortunately,consid- eringtheassociatederrorsontheobservedlinefluxes,we only Here for the first time we have tested the connection be- obtainalowerlimitof0.1tothatratio. tween the optical BLR and the FeKα line, using the intrinsic luminosity of the lines (rather than the FWHM) and relying on a possible physical model for the BLR (The LOC model, 4.4. ThenatureoftheFeXXVIline Baldwinetal. 1995). The idea of a non-relation between the BLRandtheFeKαlinehasbeenalreadytestedcomparingthe He-like,sometimesassociatedwithH-like,ironlineshavebeen width of the optical broad lines with the width of FeKα line detectedinanumberofAGNspectra.Theselinescanbeassoci- E.Costantinietal.:XMM-NewtonobservationofMrk279 9 atedtohighcolumndensity,photoionizedgas(Longinottietal. The very broad componentof the FeKα line may be modeled 2007;Bianchietal.2005,andreferencestherein).Thespectrum by a line arising from an accretion disk, associated with ofMrk279doesexhibitanarrowemissionlineat∼6.9keV,con- relativistically smeared reflection. However, a formal fit using sistent with emission from FeXXVI, but interestingly FeXXV broad-band reflection models is affected by large uncertainties is not detected, showing the presence of extremely highly ion- and degeneracy of the parameters, as we cannot access the ized gas. Interpreting this emission as a product of photoion- region above 10keV and we only have to rely on the FeKα ization,wefindthatahighcolumn-density(NH ∼ 1023cm−2) profile,whichisinturnformedbytwoline-components. with a very-highionization parameter(logξ ∼ 6) is necessary. A rangeof NH andlogξ andcoveringfactorsis allowed to ex- We also detected emission from FeXXVI, but not from plain the FeXXVI emission and at the same time be consistent FeXXV. This implies an extremely highly ionized medium. withthemeasuredupperlimitsontheotherhighionizationlines: Usingtheavailableconstraintsonotherhighlyionizedions(e.g. FeXXV, NeX andOVIII (see Sect. 3.3and Fig. 9). Thecover- NeX, OVIII and NVII) we could limit the column density of ing factor is on average 0.65. As we do not see any associated such gas 1022 < NH < 5 ×1023cm−2 with an increasingly absorption, this gas must be out of our line of sight. The EW higher ionization parameter 5.3 < logξ < 7. The covering of the FeXXVI line (12±5eV) is consistent with an origin in factor of the gas is 0.65 on average. Such a gas is predicted photoionizedcircumnucleargasatthedistanceoftheobscuring by the AGN unification model, and it could be associated torus(Bianchi&Matt2002).Thetorusitselfwouldproducethe with a highly ionized outer layer of the obscuring torus (e.g. bulkoftheneutral-weaklyionizedironemission,whileahighly Krolik&Kallman1987). ionizedouterlayerofphotoionizedgaswouldberesponsiblefor H-likeandHe-likeiron.Inourcasethegasissoionizedtosup- pressevenFeXXV. Acknowledgements. The Space Research Organization of the Netherlands is Another possibility is that the FeXXVI line is formed in a hot supported financially by NWO, the Netherlands Organization for Scientific galactic wind, driven by starburst activity (Chevalier&Clegg Research. 1985).However,averyhot(logE∼9–10keV)plasmawouldbe neededtoproducetheobservedFeXXVIlineluminosityviacol- lisionalionization.Suchhightemperatureshavebeenproposed References for exampleforthe diffuseemission of the Galactic ridge (e.g. Anders,E.,&Grevesse,N.1989,Geochim.Cosmochim.Acta,53,197 Tanaka 2002). However,this interpretationis problematic with Antonucci,R.R.J.,&Miller,J.S.1985,ApJ,297,621 respecttotheconfinementoftheplasmawithinthehostgalaxy, Antonucci,R.1993,ARA&A,31,473 thesourceofsuchheat(e.g.Masaietal.2002)andthecontam- Baldwin,J.,Ferland,G.,Korista,K.,&Verner,D.1995,ApJ,455,L119 inationbypoint-like,hardsourcesinthediffuseemissionspec- Bianchi,S.,&Matt,G.2002,A&A,387,76 Bianchi,S.,Matt,G.,Balestra,I.,&Perola,G.C.2003,A&A,407,L21 trum(e.g.inNGC253,Stricklandetal. 2002).Anotherwayto Bianchi,S.,Matt,G.,Nicastro,F.,Porquet,D.,&Dubau,J.2005,MNRAS,357, modelthehighionizationspectrumintermsofagalacticwind, 599 is to invokequasi-thermalacceleration of electronswhich then Bianchi, S., La Franca, F., Matt, G., Guainazzi, M., Jimenez Bailo´n, E., wouldproduceX-rayswiththermalphotons.Ironlineswouldbe Longinotti,A.L.,Nicastro,F.,&Pentericci,L.2008,MNRAS,389,L52 Branduardi-Raymont,G.,Sako,M.,Kahn,S.M.,etal.,2001,A&A365,L140 producedbyrecombinationofbackgroundironionsrecapturing Chevalier,R.A.,&Clegg,A.W.1985,Nature,317,44 electrons, as proposed by Masaietal. (2002) for the Galactic Costantini,E.,etal.2007,A&A,461,121(C07) ridgeemission. Crenshaw,D.M.,Kraemer,S.B.,&George,I.M.2003,ARA&A,41,117 deVries,C.P.,denHerder,J.W.,Kaastra,J.S.,Paerels,F.B.,denBoggende, A.J.,&Rasmussen,A.P.2003,A&A,404,959 5. Conclusions Elvis,M.,Wilkes,B.J.,&Lockman,F.J.1989,AJ,97,777 Fabian, A. C., Ballantyne, D. R., Merloni, A., Vaughan, S., Iwasawa, K., & We have performed a detailed modeling of the spectrum of Boller,T.2002,MNRAS,331,L35 Mrk 279, observed for ∼ 160ks by XMM-Newton. Thanks to Fabian,A.C.,&Vaughan,S.2003,MNRAS,340,L28 Ferland,G.J.2004,AmericanAstronomicalSocietyMeetingAbstracts,205, thebroadbandcoveragewehadtheopportunitytostudyinde- Gallo, L. C., Brandt, W. N., Costantini, E., Fabian, A. C., Iwasawa, K., & tailboththe low-energyemissionlines(observedbyRGS)and Papadakis,I.E.2007,MNRAS,377,391 theironKcomplexataround6.4keV(observedbyEpic). Gabel,J.R.,etal.2005,ApJ,623,85 We have extended the “locally optimally emitting cloud” George,I.M.,&Fabian,A.C.1991,MNRAS,249,352 model,which hasbeenconceivedto modelthe UV broadlines Ghisellini,G.,Haardt,F.,&Matt,G.1994,MNRAS,267,743 Goad,M.,&Koratkar,A.1998,ApJ,495,718 coming from the BLR (Baldwinetal. 1995), first to the soft Jime´nez-Bailo´n, E., Piconcelli, E., Guainazzi, M., Schartel, N., Rodr´ıguez- X-ray band (C07) and, in the present paper, to the FeKα line. Pascual,P.M.,&Santos-Lleo´,M.2005,A&A,435,449 TheBLRcaneasilyaccountfortheOVIIbroademission(C07), Kaastra,J.S.,&Barr,P.1989,A&A,226,59 while it contributes marginally to the luminosity of the broad Kaastra, J. S., Steenbrugge, K. C., Raassen, A. J. J., van der Meer, R. L. J., Brinkman,A.C.,Liedahl,D.A.,Behar,E.,&deRosa,A.2002,A&A,386, iron line at 6.4keV (about 3%, this work). This is the first 427 attempt to evaluate the BLR contribution to the luminosity of Kaastra,J.S.,etal.2004,A&A,428,57 theironlineusingaglobalmodeling(ratherthanrelyingonthe Korista,K.,Baldwin,J.,Ferland,G.,&Verner,D.1997,ApJS,108,401 lineFWHMonly).Furtherinvestigationonhighqualitydataof Korista,K.T.,&Goad,M.R.2000,ApJ,536,284 similarsourcesareofcoursenecessarytotesttherobustnessof Krolik,J.H.,&Kallman,T.R.1987,ApJ,320,L5 Krolik,J.H.,Madau,P.,&Zycki,P.T.1994,ApJ,420,L57 ourresults. Krolik,J.H.,&Kriss,G.A.1995,ApJ,447,512 Laor,A.,1991,ApJ376,90 The bulk of the FeKα narrow emission line shows no Longinotti, A. L., Bianchi, S., Santos-Lleo, M., Rodr´ıguez-Pascual, P., remarkablevariability,influxandshapeoveratleastthreeyears Guainazzi,M.,Cardaci,M.,&Pollock,A.M.T.2007,A&A,470,73 Masai,K.,Dogiel,V.A.,Inoue,H.,Scho¨nfelder,V.,&Strong,A.W.2002,ApJ, (Sect. 3.2) and it may be produced by reflection from distant 581,1071 andcoldmatter.TheEWoftheline(∼70eV)isalsoconsistent Magdziarz,P.,&Zdziarski,A.A.1995,MNRAS,273,837 withthispicture. Matt,G.,Perola,G.C.,&Piro,L.1991,A&A,247,25 10 E.Costantinietal.:XMM-NewtonobservationofMrk279 Miniutti,G.,Fabian,A.C.,Goyder,R.,&Lasenby,A.N.2003,MNRAS,344, L22 Nandra,K.2006,MNRAS,368,L62 Nandra,K.,O’Neill,P.M.,George,I.M.,&Reeves,J.N.2007,MNRAS,382, 194 Ogle,P.M.,Mason,K.O.,Page,M.J.,Salvi,N.J.,Cordova,F.A.,McHardy, I.M.,&Priedhorsky,W.C.2004,ApJ,606,151 Palmeri,P.,Mendoza,C.,Kallman,T.R.,Bautista,M.A.,&Mele´ndez,M.2003, A&A,410,359 Peterson,B.M.1993,PASP,105,247 Pounds,K.A.,Reeves,J.N.,King,A.R.,&Page,K.L.2004,MNRAS,350,10 Protassov,R.,vanDyk,D.A.,Connors,A.,Kashyap,V.L.,&Siemiginowska, A.2002,ApJ,571,545 Reynolds,C.S.,&Nowak,M.A.2003,Phys.Rep.,377,389 Scott,J.E.,etal.2004,ApJS,152,1 Steenbrugge,K.C.,etal.2005,A&A,434,569 Steenbrugge,K.C.,Fenovcˇ´ık,M.,Kaastra,J.S.,Costantini,E.,&Verbunt,F. 2009,A&A,496,107 Strickland,D.K.,Heckman,T.M.,Weaver,K.A.,Hoopes,C.G.,&Dahlem, M.2002,ApJ,568,689 Sulentic, J. W., Marziani, P., Zwitter, T., Calvani, M., & Dultzin-Hacyan, D. 1998,ApJ,501,54 Tanaka,Y.,etal.1995,Nature,375,659 Tanaka,Y.2002,A&A,382,1052 Weaver,K.A.,Gelbord,J.,&Yaqoob,T.2001,ApJ,550,261 Williams,R.J.,Mathur,S.,&Nicastro,F.2006,ApJ,645,179 Wilms,J.,Reynolds,C.S.,Begelman,M.C.,Reeves,J.,Molendi,S.,Staubert, R.,&Kendziorra,E.2001,MNRAS,328,L27 Yaqoob,T.,&Padmanabhan,U.2004,ApJ,604,63 Yaqoob,T.,George,I.M.,Kallman,T.R.,Padmanabhan,U.,Weaver,K.A.,& Turner,T.J.2003,ApJ,596,85 Yaqoob,T.,etal.2007,PASJ,59,283 Young, A. J., Lee, J. C., Fabian, A. C., Reynolds, C. S., Gibson, R. R., & Canizares,C.R.2005,ApJ,631,733 Zycki,P.T.,Done,C.,&Smith,D.A.1999,MNRAS,305,231 Zycki,P.T.,&Czerny,B.1994,MNRAS,266,653