ebook img

XMM-Newton observations of PSr B1259-63 near the 2004 periastron passage PDF

0.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview XMM-Newton observations of PSr B1259-63 near the 2004 periastron passage

Mon.Not.R.Astron.Soc.000,1–9(2005) Printed5February2008 (MNLATEXstylefilev2.2) XMM-Newton observations of PSR B1259–63 near the 2004 periastron passage M. Chernyakova1,2⋆†, A. Neronov1,2, A. Lutovinov3, J. Rodriguez4 and S. Johnston5 1INTEGRALScienceDataCenter,Chemind’E´cogia16,1290Versoix,Switzerland 6 2GenevaObservatory,51ch.desMaillettes,CH-1290Sauverny,Switzerland 0 3SpaceResearchInstitute,84/32ProfsoyuznayaStreet,Moscow117997,Russia 0 4CEASaclay,DSM/DAPNIA/Serviced’Astrophysique(CNRSUMR7158AIM),91191GifsurYvette,France 2 5AustraliaTelescopeNationalFacility,CSIRO,P.O.Box76,Epping,NSW1710,Australia. n a J Received<date>;inoriginalform<date> 1 1 ABSTRACT 1 PSR B1259–63isin a highlyeccentric3.4yearorbitwith a Be star andcrossesthe Be star v disctwiceperorbit,justpriortoandjustafterperiastron.Unpulsedradio,X-rayandgamma- 1 rayemissionobservedfromthebinarysystemisthoughttobeduetothecollisionofpulsar 4 windwiththewindofBestar.WepresentheretheresultsofnewXMM-Newtonobservations 2 ofthePSRB1259–63systemduringthebeginningof2004asthepulsarapproachedthedisc 1 ofBestar.WecombinetheseresultswithearlierunpublishedX-raydatafromBeppoSAXand 0 XMM-NewtonaswellaswithASCAdata.ThedetailedX-raylightcurveofthesystemshows 6 0 thatthepulsarpasses(twiceperorbit)througha well-definedgaussian-profilediskwith the / half-openingangle (projectedon the pulsar orbitplane) ∆θdisk ≃ 18.5◦. The intersection of h thediskmiddleplanewiththepulsarorbitalplaneisinclinedatθ ≃ 70◦ tothemajoraxis p disk of the pulsar orbit.Comparingthe X-raylightcurveto the TeV lightcurveof the the system - o we find that the increase of the TeV flux some 10–100 days after the periastron passage is r unambiguously related to the disk passage. At the moment of entrance to the disk the X- t s ray photonindexhardensfrom Γ ≃ 1.8 up to Γ ≃ 1.2 beforereturningto the steeper value a Γ>1.5.SuchbehaviourisnoteasilyaccountedforbythemodelinwhichtheX-rayemission : v issynchrotronemissionfromtheshockedpulsarwind.Wearguethattheobservedhardening i oftheX-rayspectrumisduetotheinverseComptonorbremsstrahlungemissionfrom10-100 X MeVelectronsresponsiblefortheradiosynchrotronemission. r a Key words: pulsars : individual: PSR B1259–63 – X-rays: binaries – X-rays: individual: PSRB1259–63 1 INTRODUCTION from the system are very different close to and far from the pe- riastron. Radio observations of the 1994, 1997 (Johnstonetal. PSR B1259–63 is a ∼48 ms radio pulsar in a highly eccentric 1999), 2000 (Connorsetal. 2002), and the 2004 (Johnstonetal. (e∼0.87), 3.4 year orbit with a Be star SS 2883 (Johnstonetal. 2005) periastron passages show that when the pulsar is far from 1992). The system’s distance from Earth is d ∼ 2 kpc periastron the observed radio emission is comprised entirely in (Johnstonetal.1994),note,however,thatdisuncertainbyafactor highlylinearlypolarizedpulsedemissionfromthepulsaritselfwith of∼2basedonradiomeasurements(see,e.g.,Manchester,Taylor, an intensity practically independent of the pulsar orbital position &Lyne1993). (McClure-Griffithsetal. 1998). But, starting about 100 days be- Be stars are well-known to be sources of strong highly fore periastron, depolarization of the pulsed emission occurs, the anisotropicmatteroutflow. Bothadilutepolarwindandadenser dispersionmeasureandtheabsolutevalueoftherotationmeasure equatorial disc have been invoked to reconcile models for infra- increasewhilethefluxdensity decreases. Thepulsed radioemis- red,ultra-violetandopticalobservations(Watersetal.1988).Tim- sion then disappears entirely as the pulsar enters the disc and is ing analysis of the PSR B1259–63 system shows that the disc hidden behind it (relativetotheobserver) approximately 20days of Be star is tilted with respect to the orbital plane (Wexetal. beforetheperiastronpassage.Shortlybeforethedisccrossingun- 1998; Wangetal. 2004). The properties of the radio emission pulsedradioemissionappearsandwithinseveraldayssharplyrises toapeakwhichismorethantentimeshigherthantheintensityof ⋆ E-mail:[email protected] thepulsedemissionfarfromtheperiastron.Afterwardtheunpulsed † M.ChernyakovaisonleavefromAstroSpaceCenteroftheP.N.Lebedev fluxslightlydecreases,asthepulsarpassesthroughperiastronbe- PhysicalInstitute,Moscow,Russia 2 M. Chernyakova et al. fore reaching a second peak just after the pulsar crosses the disc SC X1 forthesecondtime.Theunpulsedradioemissionisdetecteduntil X2 A4 atleast100daysaftertheperiastronpassage.(Johnstonetal.1999, A5 2005;Connorsetal.2002). A3 ThefirstdetectionoftheX-raysfromPSRB1259–63system A6 wasdonebyROSAT in1992(Cominskyetal.1994).Themostre- cent published observations of thesystem inX-rays werecarried X3 θ Be A2 out with the ASCA satellitein 1994 and 1995 (Kaspietal. 1995; Hirayamaetal. 1999). These observations show that X-rayemis- A1 sionisapproximatelytwiceashighatthetimeofthedisccrossing X10 X4 X9 than at periastron. In soft gamma-rays the system was observed X7X8 only after the periastron passage with CGRO/OSSE and INTE- X5 S1 X6 GRAL/ISGRI(Grove1995;Shawetal.2004).Thecombinedsoft gamma-andX-rayspectrumisconsistentwithapowerlawofpho- Figure1.SchematicrepresentationofPSRB1259-63binarysystemwith tonindex∼ 1.7.Thisindexalsocoincideswiththeradiospectral thelocationsofthepulsarduringXMM-Newton BeppoSAX andASCAob- indexoftheunpulsedemission.NopulsedX-rayemissionwasde- servations.Shadedareashowsthegeometryofthediskinferredfromthe tected from the system. With the standard epoch-folding method X-raydata.Darkerandlightershadingcorrespondsto1and2half-opening theupperlimittoapulsedcomponentin2–10Kevenergyrange anglesofthedisk,respectively. Angleθistheorbitalphaseofthepulsar wasestimatedtobeabout10%oftheunpulsedcomponentcloseto referredinthetext. theperiastron,andtoabout 40%duringtheapastron(Kaspietal. 1995;Hirayamaetal.1999).Notethatsearchforthepulsationsin emission as the inverse Compton emission from the pulsar wind P - P˙ space allowed Kaspietal. (1995) to reduce an upper limit electrons. closetotheperiastrontolessthan2%underacertainassumptions Anothersurprisingresultofouranalysisthatisnotpredicted ontheshapeofpulseprofile. inthetheroeticalmodelscitedaboveisthepersistentlyhardX-ray The 2004 periastron passage was observed in TeV gamma- spectrum(photonindexΓ≃1.2−1.3)observedduringthe10-day raysbyHESS(Aharonianetal.2005).TeVlightcurveofthesource periodwhenthepulsarentersthedisk. showsanunexpectedbehaviour.Contrarytothepredictionthatthe Thispaper isorganizedasfollows:inSection2wedescribe TeVfluxshouldbemaximumattheperiastron(Kirketal.2002), thedetailsoftheXMM-NewtonandBeppoSAXdataanalysis.The thefluxapparentlyhasalocalminimumaroundthismoment. resultsarepresentedinSection3,anddiscussedinSection4. Several theoretical models were put forward to explain the behaviour of the X-ray lightcurve of the system. In the model ofTavani&Arons(1997),theenhancement ofsynchrotronX-ray 2 OBSERVATIONSANDDATAANALYSIS emission during the disk passage is attributed to enhancement of magneticfieldatthepositionofthecontact surfaceofpulsar and InFigure1weshowaschematicdrawingofthepulsarorbitalong stellar winds. In the model of Chernyakova&Illarionov (1999, withtheapproximatelocationofthepulsarpositionduringXMM- 2000)theenhancementoftheinverseComptonX-rayemissiondur- Newton,BeppoSAX,andASCAobservations.TheX-rayobserva- ingthediskpassageissupposedtobeduetotheeffectofthemacro- tions are more-or-less homogeneously distributed over the whole scopic mixing of the stellar and pulsar winds in the disk which rangeofpulsarorbitalphase0 6 θ < 360◦.Thefigurealsoshows effectively enhances the escape time of high-energy electrons re- thelocationof theBestar disk(parametersof thediskarefound sponsiblefortheobservedemission. belowfromtheanalysisoftheX-raydata).Onecanseethattheset TypicalenergiesofelectronsresponsiblefortheX-rayemis- ofobservationsdenotedasX6–X10enablestostudytheentrance sion are Ee ∼ TeV in Tavani&Arons (1997) model while in tothediskingreatdetails. Chernyakova&Illarionov (1999) model E ∼ 10 MeV. One can, e inprinciple,distinguishbetweenthetwomodelsbycomparingthe detailsofradio,X-rayandTeVlightcurveofthesystem.Wehave 2.1 XMM-Newtonobservations organizedacycleoffiveXMM-Newtonobservationsasthepulsar The log of the XMM-Newton data analyzed in this paper is pre- approachedthe2004periastron.Inthispaperwepresenttheresults sented in Table 1. Observations X6 – X10 were obtained as part of our observations along with other XMM-Newton observations of the2004 periastron campaign and we have also used all other of thesystem not previously published. For the completeness we XMM-Newton observations of the system, which are now public alsoincludetheanalysisofthepreviouslyunpublishedBeppoSAX (X1 – X5). In the Table negative τ denotes the number of days data.The2004periastronpassagewasextensivelyobservedinra- before the date of 2004 periastron passage (2004 March 7), and dio(Johnstonetal.2005)andTeV(Aharonianetal.2005)bands. positivevaluescorrespondtothenumberofdaysafterthe2000pe- Combinationoftheradio,X-rayandTeVdataopensupapossibil- riastron(2000October17).θistheorbitalphasecountedasshown ity,tostudytheevolutionofthespectrumofPSRB1259–63system inFig.1. oversome12decadesinenergy. The XMM-Newton Observation Data Files(ODFs) were ob- OuranalysisoflargeX-raydatasetenables,forthefirsttime, tainedfromtheon-lineScienceArchive1;thedatawerethenpro- toconstrainthegeometricalparametersofthediskofBestar,such cessedandtheevent-listsfilteredusingwithintheSci- astheopening angleandorientation. Comparing theTeVand X- enceAnalysisSoftware()v6.0.1.Inallobservationsthesource raylightcurveswefindthattheincreaseoftheTeVfluxsome10 wasobservedwiththeMOS1andMOS2detectors.TheX1–X5 to100daysaftertheperiastronpassageisunambiguously related tothepulsarpassagethroughtheBestardiskforthesecondtime. ThischallengestheconventionalinterpretationoftheobservedTeV 1 http://xmm.vilspa.esa.es/external/xmm dataacc/xsa/index.shtml XMM-Newton observationsofPSR B1259–63near the2004periastronpassage 3 Table1.JournalofXMM-NewtonobservationsofPSRB1259–63 Table2.JournalofBeppoSAXobservationsofPSRB1259–63 Data Date MJD τ θ Exposure Data Date MJD τ θ Exposure Set (days) (deg) (ks) Set (days) (deg) (ks) X1 2001-01-12 51921.73 87.2 320.8 11.3 S1 1997-03-22 50529.63 −68.31 44.9 28.622 X2 2001-07-11 52101.31 266.7 342.9 11.6 S2 1997-09-02 50693.75 95.81 322.9 16.985 X3 2002-07-11 52467.24 −604.1 0.5 41.0 S3 1997-09-08 50699.44 101.50 324.1 53.555 X4 2003-01-29 52668.27 −403.1 9.31 11.0 S4 1997-09-17 50708.08 110.14 325.9 51.301 X5 2003-07-17 52837.53 −233.9 19.5 11.0 S5 1997-09-25 50716.05 118.11 327.3 28.719 X6 2004-01-24 53028.79 −42.6 57.4 9.7 X7 2004-02-10 53045.43 −25.0 73.4 5.2 X8 2004-02-16 53051.39 −20.0 83.1 7.7 X9 2004-02-18 53052.02 −18.4 86.5 5.2 X10 2004-02-20 53055.82 −15.6 93.2 6.9 observations were done in the Full Frame Mode, while the 2004 observationswereperformedintheSmallWindowMode,tomini- PSR B1259-63 mizethepile-upproblems.FortheX6–X10observationsPNdata arealsoavailable.Inallobservationsamediumfilterwasused. Theeventlistsforspectralanalysiswereextractedfroma45′′ radiuscircleatthesourceposition fortheX1–X5observations, deg-63.9 andfroma22.5′′ radiuscircleforMOS1,2observationsinSmall on, ati WindowMode(X6–X10).ForthePNinstrumentaregionof35′′ eclin aroundthesourcepositionwaschosen.Backgroundphotonswere D collected from aregion located inthe vicinity of the source with 2RXP J130159.6-635806 thesamesizeareaastheonechosenforthesourcephotons. Forthespectralanalysis,periodsofsoftprotonflaresneedto be filtered out. To exclude them we have built light curves with ahundredsecondbinningandexcludedalltimebinsinwhichthe -64.0 countrateabove10keVwashigherthan1.5cnt/s.Thesourcecoun- 195.8 195.6 195.4 tratein1–10keVenergyrangevariedfromabout0.07to1.2cts/s Right ascention, deg for MOS instruments, and from 0.4 to 4 cts/s for PN. Data from MOS1,MOS2and, whenavailable, PNdetectorswerecombined inthespectralanalysistoachievebeststatistics. Figure2.ContourplotoftheXMM-NewtonfieldofviewfortheX6ob- servation.Atotalof10contourswereusedwithalinearscalebetween5 counts perpixel (outer contour) and 50counts perpixel (inner contour). 2.2 BeppoSAXobservations Inthisobservation2RXPJ130159.6-635806wasfortytimesbrighterthan PSRB1259–63.ThisfigureistakenfromChernyakovaetal.(2005). Table 2 lists the observations of PSR B1259–63 made with BeppoSAXaroundthe1997periastronpassage.IntheTableτde- notesthenumber ofdaysbeforeorafterthe1997periastronpas- observationsareconsistentwitheachother,andcombinedthemin sage. ordertoimprovestatistics.Thiscombinedspectrumwedenoteas WeuseddataofMECSinstrumentsaboardBeppoSAXobser- SChereafter. vatorywhichprovidesthecoverageintheenergyrange∼1.5-11.0 keV.ReductionofMECSdatawasdonewiththehelpofstandard tasks of LHEASOFT/FTOOLS5.2 package according to recom- 3 RESULTS mendations ofBeppoSAX Guest Observer Facility2.Spectrumof thesourcewasobtainedextractingeventsfromacircleof3′radius 3.1 ImagingAnalysis aroundthesourceposition.Spectrumoftheinstrumentbackground IntheXMM-NewtonfieldofviewduringitsPSRB1259–63obser- wasestimatedconsideringeventsfromacircleofthesameradius vationprogram,twosourceswereclearlydetected(seeFig.2for 6′ away from the source. Typically the source provided several thecontourplotofXMM-NewtonfieldofviewfortheMJD53029 hundredsofcountsperobservation.Responsematrices(RMFand (X6) observation). Besides PSR B1259–63 itself there is second ARF) of MECS detectors were taken from HEASARC archive3. source,whichwehaveidentifiedas2RXPJ130159.6-635806.De- CorrectionsofphotonsarrivaltimetotheSolarsystembarycenter tailed analysis of this source are presented in Chernyakovaetal. forsubsequentusageoftheeventlistsintiminganalysisweredone (2005).Inthispaperitisshowninparticular,that2RXPJ130159.6- withthehelpoftasksfromSAXDASpackage4. 635806 is highly variable, with an intensity during flares which WehavecheckedthatallthespectraobtainedintheS2–S5 isseveral times larger than the peak intensity of PSRB1259–63. Therefore, although many observations of PSR B1259–63 have 2 http://heasarc.gsfc.nasa.gov/docs/sax/abc/saxabc/saxabc.html, beenmadewithRXTE,thefactthatitisanon-imagingtelescope http://www.asdc.asi.it/bepposax/software/cookbook/ means that it is extremely difficult to determine the flux from 3 http://heasarc.gsfc.nasa.gov/FTP/sax/cal/responses PSRB1259–63alone.WethereforedonotusenumerousRXTEob- 4 http://www.asdc.asi.it/bepposax/software/saxdas/index.html servationsofthe2004periastronpassage,presentedinShawetal. 4 M. Chernyakova et al. A3 A4 A2 X1 X10 SC X6 X5 S1 HESS 2004 (> 380 GeV) 1994 1997 2000 2004 Figure3.Comparisonbetween theX-ray(top),TeV(middle) andradio (bottom)lightcurves. The1-10keV X-rayfluxisgiven in10−11ergscm−2s−1. XMM-Newtonobservationsaremarkedwithtriangles,BeppoSAXoneswithcircles,andASCAoneswithsquares.Dataforfourdifferentperiastronpassages areshownwithdifferentcolors:red(1994),green(1997),black(2000)andblue(2004).BottomXaxisshowstheorbitalphase,θ,topXaxisshowsdaysfrom periastron,τ. (2004).NotethatdespiteintheShawetal.(2004)allRXTEobser- Duringthenexttwodaystheintensitycontinued toincrease,and vationsareanalysed,theauthorswereabletouseintheiranalysis reacheditspeakvalueatX9.Thenextobservation(X10)wasdone only data simultaneous to INTEGRAL observations, when it was onlythreedayslater,andtheobservedfluxwasalreadyoneanda clearthatinfluenceof2RXPJ130159.6-635806issmall. halftimeslower. ComparisonofX-rayandradiolightcurvesshowsthattheX- rayfluxfromthesystemvariesinamoreregularwaythanthera- 3.2 TheX-raylightcurve dio flux: the X-ray data points from different periastron passages The upper panel of Fig. 3 shows the X-ray lightcurve of the liemore-or-lessonthesamecurve.RapidgrowsoftheX-rayflux system. For comparison we also show in the same Figure TeV found in our XMM-Newton observations X6 – X10 is correlated lightcurveof2004HESSobservation(Aharonianetal.2005)and withtherapidgrowthoftheunpulsedradioemissionfromthesys- radio (Johnstonetal. 1999; Connorsetal. 2002; Johnstonetal. tem. The growth of radio and X-ray flux at these phases can be 2005)lightcurvesofdifferentyearsperiastronpassages. attributedtothepulsarenteringtheBestardisk. The X-ray fluxfrom the source, inagreement withprevious Unfortunately,TeVobservationsstartsomewhatlateranditis observations,wasobservedtobehighlyvariable.The1–10keV not possible to see whether the TeV flux growth during the pre- fluxisatminimumnearapastron(observationX3),andhasmax- periastron disk crossing. However, simple geometrical argument imummore than20 timeslarger, 18days before periastron (X9). tells that the orbital phase θ at which the pulsar should enter the DuringobservationsX5,X6,andX7,theintensityoftheemission diskfor thesecond timeshouldbeshiftedby180◦ relativetothe increased,asthepulsarapproachedperiastronandtheBestardisc. firstentrance.FromFig.3onecaninferthatthefirstpre-periastron FivedaysafterX7observationthefluxincreasedbyafactorof4. entrancefallsroughlybetweenthephases70◦ < θ < 110◦.Thus, XMM-Newton observationsofPSR B1259–63near the2004periastronpassage 5 X9 X7 X3 SC X9 SC X7 X3 Figure4.TheX-ray(top)andTeV(bottom)fluxasafunctionoftherelative phase∆θ=θ−θdisk(seetextforthedefinitionofθdisk).Thecurvesshowa fitwithagaussianofthehalf-width∆θdisk=18.5◦. Figure5.Folded(upperpanel)andunfolded(bottompanel)PSRB1259– 63spectrafromtheSC,X3,X7,andX9observations.TheXMM-Newton spectraforX7andX9areforMOS1instrument.TheX3spectrumisfor PNinstrument. thepulsar hastoenter the diskagainbetween the phases 250◦ < θ < 290◦.Surprisingly,onecanclearlyseefromthemiddlepanel ofFig.3thattheTeVfluxgrowsinthisphaseinterval. 3.3 TimingAnalysis Thegrowthrateof theX-rayfluxbetweenthephases70◦ < θ < 110◦ is remarkably close to the decrease rate at the phases For each of the fivePN event filesin 0.2 – 10 keV energy range 290◦ < θ < 340◦. This enables us to make a conjecture that the witha 6 ms time resolution we searched for a possible pulsation aroundthenominal 47.6msperiodusingtheepoch-folding tech- observeddecreaseoftheX-rayfluxcanbeassociatedtotheexitof nique(efsearch toolfromtheXRONOSpackage). Fromtheindi- thepulsarfromthedisk.Totestthisconjecturewesuperimposethe vidual observations the best 3−σ upper limit on pulsation at a pre-periastronX-rayandTeVlightcurvesoverthepost-periastron periodof47.6msis∼9%,compatiblewithprevioussimilaranaly- lightcurvesbyshiftingthephaseofthepost-periastrondatapoints by −180◦. For X-rayswe haveused only data fromthe rise(θ < sismadewithASCA(Kaspietal.1995;Hirayamaetal.1999).In 110◦)andthefall(θ > 290◦)periods.TheresultisshowninFig. ordertoperformadeepersearchforpulsationswecombinedneigh- boringXMMobservations(namelyX7-X10,see.Table1).Asthe 4.Onecanseethatinsuchrepresentationtheriseanddecreaseof timespan of these observations covers only small fraction of the both X-rayand TeV fluxfromthesystem can bewell fittedwith binary orbit wedidnot make corrections tothebinary motion of agaussiancurveF(θ) ∼ exp −(θ−θ )2/(2∆θ2 ) .Wefindthat the best fit is achieved witht(cid:16)he paramdisekter choidcieskθ(cid:17) ≃ 109.1◦, theneutronstar.Usageofthecombined XMMdataimprovesthe ∆θ ≃ 18.5◦ (thecoordinate∆θalongtheX-axisodfiskFig.4is,in upperlimitto∼2%. disk Data of BeppoSAX/MECS (1.5-11 keV) observations also fact∆θ=θ−θ ). disk weresearchedforpulsations.Fordeepersearchwecombinedob- Themost obviousexplanation totheshape oftheX-rayand servations S2-S5 (see Table 2). Due to small time period of per- TeV lightcurves shown in Fig. 4 is that pulsar crosses the thick formedobservationswedidnotmakecorrectionforbinarymotion disk with the half opening angle ∆θ . The “middle” plane of disk oftheneutronstar.Inspiteof considerably smallereffectivearea the disk intersects the pulsar orbital plane along the line θ = (109.1◦ 289.1◦).Theintersectionofthediskwiththeabovepa- ofMECSinstrumentsofBeppoSAXobservatory,theeffectiveex- posuretimeofobservationsofthesourcewasmuchlarger,which rametersSwith the pulsar orbital plane is shown schematically in resulted in acomparable upper limit on X-ray pulsation fraction. Fig. 1 by a shaded area. Because of the exponential profile, the Wehavenotfoundpulsationswith3-σupperlimitat∼2%. diskhasnofixedboundary. DensershadinginFig.1corresponds totheoneopening angleofthedisk, whilelightershadingcorre- spondstotwoopeningangles.Thediskisalsoshownbythesame 3.4 SpectralAnalysis shading in the Fig. 3. From this figure one can see that although thediskappearsquitesymmetricintermsoftheorbitalphaseθ,it The spectral analysis was done with NASA/GSFC XSPEC soft- ishighlyasymmetricintermsofthetimeτwhichmeasuresdays ware package. In Fig. 5 the folded and unfolded spectra of fromtheperiastronpassage.Forexample,duringthesecond(post- PSRB1259–63 forSC,X3,X6,andX9observationsareshown. periastron) diskpassage, therisephase (250◦ < θ < 290◦)of X- A simple power law with a photoelectrical absorption de- rayandTeVlightcurvestakesjustsome10days,whilethedecay scribesthedatawell,withnoevidenceforanylinefeatures.InTa- (290◦ <θ<340◦)takesabout100days. ble3wepresenttheresultsofthethreeparameterfitstotheXMM- 6 M. Chernyakova et al. -618 -40 -8.5 0 8.5 40 618 X5 S1 A1 A2 A3 A4 X10 X1 X6 SC X7 Figure6.SpectralparametersofXMM-Newton,BeppoSAX,andASCAobservationsofthePSRB1259–63system.NotationsarethesameasinFig.3.Top panelshowstheevolutionofthephotonindexΓasafunctionoftheorbitalphaseθ.BottompanelshowstheevolutionofthehydrogencolumndensityNH. DenserandlightershadedregionshowphaseswithinoneandtwohalfopeninganglesoftheBestardisk. Newtondata inthe 0.5 –10 keV energy range. The uncertainties thehydrogencolumndensityremainshighstartingfromabout20 aregiven atthe1σ statisticallevel anddonot includesystematic daysbeforetheperiastrontillatleast87daysafterperiastron. uncertainties.Thegraphicalrepresentationoftheevolutionofthe PSRB1259–63spectralparametersalongtheorbitisgiveninFig- Thebehaviourofthespectralslopeasafunctionoftheorbital ure6whichincludesdatafromtheBeppoSAXandXMM-Newton phase θ found in XMM observations differs from the one found observations, and those from ASCA (taken from Hirayamaetal. in ASCA observations. Whereas in 1994 – 1995 the spectrum at (1999)). apastron was found to be significantly harder than during perias- tron,XMM-Newtonobservationsshowmuchsofterspectrumatthe InFigure7weshowcontourplotsofN versusphotonspec- apastronwiththespectralslopeclosetotheASCAperiastronvalue. H tralindexΓ,holdingthe1–10keVfluxfixedatthevaluesgiven inTable3.Thecontoursplottedarethe68%,90%,and99%con- Themostremarkable featureofthespectral evolutionof the fidencelevels.FortheX5observationthevaluesof N andΓare systemisthehardeningoftheX-rayspectrumclosetothemoment H consistentwithX4observation,andweomittedtheX4contoursto whenpulsarenterstheBestardiskatthephaseθ≃θdisk−2∆θdisk ≃ keeptheFigureclear. 70◦.OnecanseethatthedecreaseofthephotonindexΓissimul- taneous with the onset of the rapid growth of the X-ray flux. To Onecanseethat thevariation of N asafunction oforbital thebestofourknowledge,suchbehaviourwasnotpredictedinany H phase is correlated with the Be star disk crossing. No variations ofexistingmodelsofX-rayemissionfromthesystem.Moreover, of N are observed for the XMM-Newton observations X2 to X7 the observed values Γ < 1.5 during the observations X6 – X10 H whichallfalloutsidethedisk(assumingthediskparametersfound aredifficulttoreconcilewiththemodelsofsynchrotronorinverse inSection3.2).ThemeanvalueofofN duringtheseobservations Comptonemissionfromshock-acceleratedelectronsbecauseofthe H isN (X2−X7)∼0.32×1022cm−2.However,theobservationsX8, toohardelectronspectrumimplied.Possibleerrorindetermination H X9,X10andX1arecharacterizedbyabsorptionwhichishigherby ofΓduetotheuncertaintyindeterminationof N (seeFig.7)is H afactorofabout1.5,N (X8−X10,X1)∼0.45×1022cm−2.Thus, toosmalltoallowforΓ>1.5atleastforobservationsX7–X9. H XMM-Newton observationsofPSR B1259–63near the2004periastronpassage 7 X1X08 XX810 X1 X9 XX54 X6 X2 X7 X4 X3 X5 Figure7.ConfidencecontourplotsofthecolumndensityNHandofthephotonspectralindexΓuncertaintiesforapower-lawfittoXMM-Newtonobservations. Thecontoursgive68%,90%,and99%confidencelevels.X4observation,markedwithtriangle,isverysimilartotheX5observationandthecontoursarenot plottedhere. throughthediskiscausedbythemacroscopical mixingofpulsar Table3.Spectral parameters forBeppoSAXandXMM-Newton Observa- tionsofPSRB1259–63.∗ windwiththestellarwind. MainpredictionofthismodelisthecorrelationofX-raywith Data F(1-10keV) Γ NH χ2(dof) the radio lightcurves of the system. Although different quality of Set 10−12ergs−1 (1022cm−2) X-rayandradiolightcurvesdoesnotallowtomakedefinitivecon- clusions about radio-X-ray correlations, our XMM-Newtonobser- S1 1.36+0.26 1.88+0.73 0.47+1.48 0.814(201) SC 6.31+−00..6493 1.39+−00..0262 0.65+−00..1467 0.898(813) vations show that the onset of rapid increase of the X-ray fluxis −0.80 −0.08 −0.20 simultaneouswithappearanceoftheunpulsedradioemissionfrom X1 8.51(30) 1.51(3) 0.45(2) 0.97(341) X2 2.81(23) 1.36(7) 0.39(4) 1.02(122) thesystem(seeFig3). X3 1.04(49) 1.69(4) 0.29(2) 0.88(207) TheX-rayinverseComptonemissionintheCImodelispro- X4 1.82(14) 1.82(7) 0.36(3) 1.01(109) ducedbyelectronswithrathermoderategamma-factors,γe,IC ∼10 X5 0.99(9) 1.80(8) 0.32(4) 0.80(62) while the gamma-factors of radio-synchrotron-emitting electrons X6 2.47(17) 1.41(6) 0.35(3) 0.96(151) arearound γ ∼ 102.Thesynchrotron/inverse Comptoncooling e,S X7 4.05(23) 1.20(4) 0.28(3) 0.95(154) timesforsuchelectronsare X8 12.59(34) 1.31(2) 0.47(1) 1.12(614) X9 24.27(56) 1.39(2) 0.43(1) 1.07(737) t ≃ 108 0.1G 3/2 10GHz 1/2 s X10 16.79(37) 1.47(2) 0.45(1) 0.88(772) S " B # " ν # 1erg/cm3 1keV 1/2 ∗Numberinparenthesesrepresent68%confidenceintervaluncertaintiesin t ≃ 106 s (1) IC " U #" ǫ # thelastdigitquoted. r IC Botharelargecomparedtothetypicaladiabaticcooling(orescape) timet ∼R/v∼103s(Risthecharacteristicsizeoftheemission esc region,andvisthevelocityoftheflowalongthecontactsurface). 4 DISCUSSION Anotherimportanttimescalefortheelectronsintheenergyrange InalltheoreticalmodelsofunpulsedemissionfromPSRB1259–63 relevantintheCImodelistheCoulomblossscale thecollisionofrelativisticpulsarwindwithnon-relativisticwindof 109cm3 γ t ≃104 e s (2) theBestarplaysacrucialrole.Duetotheinteractionofthewindsa coulomb " n #(cid:20)10(cid:21) systemoftwoshockwavesformsbetweenthestars.ClosetotheBe As the pulsar enters the disk, the density of the stellar wind in- starandtothepulsarbothwindsaresupposedtoberadialbutafter creases.Typicalestimatesofthewinddenistyatthepulsarlocation passingtheshocksparticlesturnandstarttoflowalongthecontact (assumingtheradialprofilen∼(R /R)2)resultinthedensityesti- surface,losingtheirenergyviasynchrotron andinverseCompton ⋆ maten∼109−1010 cm−3.Thus,insidethediskCoulombcooling (withtheseedphotonsbeingtheBestarsoftphotons)emission. timeiscomparabletotheescapetime. Inthemodel ofChernyakova&Illarionov(1999,2000)(CI) This effect leads to the modification of electron spectrum at theobservedX-rayemissionisduetoinverseComptonscattering theenergiesbelowtheso-called“Coulombbreak”energyatwhich of soft photons fromtheBestar on thesameelectron populaiton t =t : thatproduce thenon-pulsed radioemissionfromthesystem.The coulomb esc n t intensityofobservedunpulsedX-rayandradioemissiondepends γ ≃1 esc (3) stronglyontheflowvelocityoftherelativisticparticlesbeyondthe e,coulomb (cid:20)109cm−3(cid:21)(cid:20)103s(cid:21) shock.Slowerdriftvelocityleadstothehigherconcentrationofthe Namely,sincetheCoulomblossratedE/dt∼γ /t isenergy- e coulomb relativisticelectronsbeyondtheshockandhigherX-rayandradio independent, the electron acceleration spectrum with the spectral luminosity.Decreaseofthedriftvelocityduringthepulsarpassage indexΓ >2hardensto(Γ −1)<2belowthebreakenergy.This e e 8 M. Chernyakova et al. of the pulsar wind. Typical gamma-factors of the X-ray emitting electronsareγ∼106.ModulationoftheX-rayfluxfromthesource duringthediskandperiastronpassageisduetothecombinedeffect ofdisplacementofthecontactsurfacebythedisk(whichleadsto thevariationofthemagneticfieldstrength)andtheincreaseofthe inverseComptonenergylossclosetotheperiastron. OneofthemainpredictionsofTAmodelissteepeningofthe X-rayspectrumduringthediskandperiastronpassage.Theeffect is due to the fact that synchrotron and/or inverse Compton cool- ingtimeofX-rayemittingelectronbecomescomparableorshorter thanthetimeneededtoescapefromtheemissionregion.However, theobserved behaviour of thespectrum isquiteopposite: theen- trancetothediscisaccompaniedbythehardeningofthespectrum. ThevaluesofthephotonindexΓ<1.5foundintheobserva- tionsX6–X10aretoohardtobeexplainedwiththesynchrotron emissionfromshock-acceleratedelectronswhichnormallyresultin theelectronspectrawithpower-lawindexΓ >2and,correspond- e inglyinsynchrotronspectrawithphotonindexΓ>1.5.Ofcourse, overalargefractionofthepulsarorbitthesynchrotroncoolingtime islargerthanthetimeneededtoescapefromtheemissionregion along the contact surface. Thus, if one assumes that the produc- tion spectrum of high-energy electrons responsible for the X-ray emissionisharder thanΓ = 2,(if,e.g.electronsoriginateinthe Figure 8. Modification of the broad-band spectra of CI (a) and TA (b) e coldpulsarwindwiththebulkLorentzfactorγ∼106),itispossi- models due to the bremsstrahlung emission from shocked stellar/pulsar ble,inprinciple,toobtainspectrawhichareharderthanΓ = 1.5. wind electrons during the disk passage. Contributions to the total spec- trum from synchrotron, inverse Compton and bremsstrahlung processes However,inthiscaseoneexpectstoobserve theveryhardX-ray are marked with S, IC and BS, respectively. In the case of TA model spectrumwithΓ<1.5overmostofthepulsarorbit. blacksolidcurves showthespectrum ofemissionfromtheshockedpul- Within the TA model radio synchrotron emission originates sar wind while the green dashed curves show the contribution from the fromdifferentpopulation ofelectronsthantheX-raysynchrotron shocked stellar wind. Parameters used for the CI model calculation are emission (radio is convensionally attributed to shock-accelerated n = 2×109cm−3, B = 0.01G(low)and B = 0.1G(highsynchrotron stellar wind electrons, while X-ray flux is emitted by the pulsar flux),dNe/dγ ∼γ−2.4exp(−γ/400),withsuchparametersCoulombbreak windelectrons).Althoughitisnotpossibletoexplaintheharden- is at γ ∼ 50. The same parameters are used for the calculation of the ingoftheX-rayspectralindexbythechanges inthepulsarwind shocked stellar wind emission (green dashed curves) in the lower panel. electronspectrum,onecantrytoascribetheobservedhardeningto Theemissionfromtheshockedpulsarwindwascalculatedassumingn = 2×1011cm−3,B = 0.15G(low)andB = 1.5G(highsynchrotronflux), thecontributionfromtheshockedstellarwindelectrons.TheX-ray dNe/dγ∼γ−2.3exp(−γ/4×106).WithsuchparametersCoulombbreakis spectrumwithphotonindexharderthanΓ= 1.5isnaturalifthere atγ∼500. isabremsstrahlungcontributiontotheX-rayflux.Theincreaseof thedensityofstellarwindinsidethediskcanleadtotheincrease ofbremsstrahlungluminosity. naturallyleadstothehardeningofthespectrumofinverseCompton Theestimateofthebremsstrahlunglosstime X-rayemissionatthemomentwhenthepulsarentersthedisk,as 1010cm−3 itisshowninFig.8a.OnecannotethattheCoulombbreakenergy t =105 s (4) brems " n # (3)isclosetotheenergyoftheX-rayemittingphotons.Thismeans thattheX-rayphotonindexisverysensitivetotheslightchangesof shows that for radio emitting electrons it is orders of magnitude thedensityand/oroftheoutflowvelocity(seeFig.8ainwhichthe shorter than the synchrotron cooling time (see (1)). Thus, the twospectraarecalculatedforγ = 10andγ = 50). bremsstrahlung luminosity should be much higher than the radio e,coulomb e,coulomb Sincebothvaryduringthediskpassage(itisassumedthatwithin synchrotronluminosity.FromFig.8onecanseethatasatisfactory thediskpulsarandstellarwindsaremacroscopically mixed),nu- fittothebroad-bandspectrumcanbeobtainedassumingthedisk mericalmodelling isrequired topredict thetimeevolutionof the densityn∼1011cm−3.Itisinterestingtonotethatbremsstrahlung X-ray spectral index. Weleave the detailed modelling of this for canalsoexplainthebehaviouroftheTeVlightcurveinthiscase,if futurework(Chernyakova&Neronov2006). oneassumesthepossibilityofmixingofthepulsarwindelectrons IntheoriginalCImodel,onlyelectornswithtypicalgamma- withthepulsardiskmedium(similartotheoneassumedintheCI factors of 10-100 are considered. The presence of protons with model). comparable gamma-factors γ ∼ 1− 103 at the contact surface The bremsstrahlung model faces, however, a serious over- p wouldleadtothegenerationofTeVemissionduringthediskpas- all energetics problem. From Fig. 8b one can see that the total sagewhichisduetotheproton-protoninteractionsinthedisk(see bremsstrahlungluminosityisatleast2ordersofmagnitudehigher Kawachietal.(2004)).Macroscopicmixingofthepulsarandstel- thantheX-rayluminosityatthemomentofX7observation,L ≃ X7 larwindwillleadtotheincreaseoftheproton-proton interaction 1033erg/s(seeFig.3).Asitisdiscussedabove,theenergylossrate rateinthedisk,whichcanexplaintheformoftheTeVlightcurve of mildlyrelativisticelectronsresponsible for thebremsstrahlung ofthesystem. emission is dominated by the Coulomb losses. Comparing (4) to InthemodelofTavani&Arons(1997)(TA)theX-rayemis- (2)onecanseethattheCoulomlossrateisstill2-3ordersofmag- sionisthesynchrotronemissionfromshock-acceleratedelectrons nitudehigherthanthebremsstrahlungluminosity.Thus,toobtain XMM-Newton observationsofPSR B1259–63near the2004periastronpassage 9 theX-raybremsstrahlungfluxatthelevelof1033 erg/sonehasto ChernyakovaM.,IllarionovA.,1999,MNRAS,304,359 assumethatthepowerinjectedintothe10−100MeVelectronsis ChernyakovaM.,IllarionovA.,2000,ApSS,274,177 about1038erg/swhichismuchhigherthanthespin-downluminos- Chernyakova M., Lutovinov A., Rodriguez J., Revnivtsev M., ityofthepulsarL ≃1036erg/s. 2005,MNRAS,364,455 pulsar ChernyakovaM.,NeronovA.,2006,inpreparation CominskyL.,RobertsM.,JohnstonS.,1994,ApJ,427,978 5 CONCLUSIONS Connors T.W., Johnston S., Manchester R. N., McConnell D., 2002,MNRAS,336,1201 InthispaperwehavepresentedtheXMM-Newtonobservationsof GroveJ.E.,TavaniM.,PurcellW.R.,etal.,1995,ApJ,447,L113 thepulsarPSRB1259-63 duringits2004periastronpassagenear Hirayama M., Cominsky L. R., Kaspi V. M., Nagase F., Tavani thecompanionBestarSS2883.Combiningourobservationswith M.,KawaiN.,GroveJ.E.,1999,ApJ,521,718 the previous X-ray observations from XMM-Newton, BeppoSAX JohnstonS.,Manchester R.N.,LyneA.,BailesM.,KaspiV.M., andASCAweproducedthedetailedlightcurveofthesystemover QiaoGuojun,D’AmicoN.,1992,ApJ,387,L37 thewiderangeoftheorbitalphases. Johnston S., Manchester R. N., Lyne A. G., Nicastro L., Spy- UsingthelargeX-raydatasamplewewereabletoconstrain romilioJ.,1994,MNRAS,268,430 thegeometryoftheBestardisk.Inparticular,wehavefoundthat Johnston S. Manchester R.N., McConnell D., Campbell-Wilson thehalf-openingangleofthedisk(projectedonthepulsarorbital D.,1999,MNRAS,302,277 plane)is∆θdisk ≃18.5◦ andthatthelineofintersectionofthedisk JohnstonS.,BallL.,WangN.,ManchesterR.N.,2005,MNRAS, withthepulsarorbitalplaneisinclinedatabout70◦withrespectto 358,1069 themajoraxisofthepulsarorbit. Kaspi V. M., Tavani M., Nagase F., Hirayama M., Hoshino M., Inspection of the X-ray and TeV lightcurves of the system AokiT.,KawaiN.,AronsJ.,1995,ApJ,453,424 hasrevealedcorrelationoftheX-rayandTeVfluxvariations.Our KawachiA.,NaitoT.,PattersonJ.R.,2004,ApJ,607,949 analysis shows that the variations of the TeV flux some 10-100 Kirk,J.G.,Skjæraasen,O.,Gallant,Y.A,2002,A&A,388,L29 daysaftertheperiastronpassagecanbewellfitwiththegaussian McClure-GriffithsN.M.,Johnston S.,StinebringD.R.,Nicastro curve whose parameters coincide withtheparameters of thedisk L.,1998,ApJ,492L foundfromtheX-rayanalysis(centeratθdisk =289.1◦,half-width ShawS.,ChernyakovaM.,RodriguezJ.,WalterR.,KretschmarP., ∆θ = 18.5◦)(seeFig.4).If theobserved behaviour of thefluxis MereghettiS.,2004,A&A,426,L33 indeedduetotheinfluenceofBestardisk,itcannotbeexplained TavaniM.,AronsJ.,1997,ApJ,477,439 withintheinverseComptonscatteringmodelofTeVemissionfrom TaylorJ.H.,ManchesterR.N.,LyneA.G.,1993,ApJS,88,529 thesystem. WangN.,JohnstonS.,ManchesterR.N.,2004MNRAS,351,599 Our XMM-Newtonobservations whichweredone duringthe Waters L.B.F.M., van den Heuvel E. P. J., Taylor, A. R., et al., period of first pulsar entrance to the disk (some 40 to 20 days 1988,A&A,198,200 before the periastron) revealed quite unexpected evolution of the WexN.,JohnstonS.,ManchesterR.N.,LyneA.G.,StappersB. spectrumofX-rayemission.Inparticular,theX-rayspectralslope W.,BailesM.,1998,MNRAS298,997 hardened from Γ ≃ 1.8 down to Γ ≃ 1.2 roughly at the onset of therapidgrowth of theX-rayluminosity. Thisbehaviour cannot beexplainedwithinthesynchrotronmodelofX-rayemissionfrom thesystem.Wehaveshownthattheobservedhardeningcanbethe result of the hardening of electron spectrum due to the Coulomb lossesinthediskinthemodelwhereX-rayemissionistheinverse Comptonemissionfromthepopulationofelectronsresponsiblefor the radio synchrotron emission. Otherwise, the hardening can be causedbytheincreaseofthebremsstrahlungemissionfromthese electrons.However,thebremsstrahlungproblemfacesaseriousen- ergybalanceproblem. 6 ACKNOWLEDGMENTS TheauthorsacknowledgeusefuldiscussionswithF.Aharonianand V.Beskin.AuthorsaregratefultoV.Kaspiforhelpfulcomments. We are grateful to L. Foschini for helpful advices on the XMM- Newton data analysis and thank M. Revnivtsev for the help with the BeppoSAX data reduction. MC thank M. Tu¨rler for the help withfigureproduction.ALacknowledgesthesupportofRFFIgrant 04−02−17276. REFERENCES AharonianF.etal.,A&A,442,1 BallL.,MelatosA.,JohnstonS.,SkjæraasenO.,1999,ApJ,514, L39

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.