Mon.Not.R.Astron.Soc.000,1–??(0000) Printed25January2009 (MNLATEXstylefilev2.2) XMM-Newton and Suzaku analysis of the Fe K complex in the Seyfert 1 galaxy Mrk 509 G. Ponti1,2,3⋆, M. Cappi2, C. Vignali3, G. Miniutti1,4, F. Tombesi2,3, M. Dadina2,3, A.C. Fabian5, P. Grandi2, J. Kaastra6,7, P.O. Petrucci8, S. Bianchi9, G. Matt9, 10 2 L. Maraschi and G. Malaguti 9 1APCUniversite´Paris7DenisDiderot,75205ParisCedex13,France 0 2INAF–IASFBologna,ViaGobetti101,I–40129,Bologna,Italy 0 3DipartimentodiAstronomia,Universita`diBologna,ViaRanzani1,I–40127,Bologna,Italy 2 4LaboratoriodeAstrof´ısicaEspacialyF´ısicaFundamental(CAB-CSIC-INTA),PostalAddress: n LAEFF,EuropeanSpaceAstronomyCenter,P.O.Box78,E-28691VillanuevadelaCan˜ada,Madrid a 5InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA J 6SRONNetherlandsInstituteforSpaceResearch,Sorbonnelaan2,3584CAUtrecht,TheNetherlands 3 7AstronomicalInstitute,UniversityofUtrecht,Postbus80000,3508TAUtrecht,TheNetherlands 1 8Laboratoired’AstrophysiquedeGrenoble-Universite´Joseph–Fourier/CNRSUMR5571-BP53,F–38041Grenoble,France 9DipartimentodiFisica,Universita´ degliStudiRomaTre,viadellaVascaNavale84,00146Roma,Italy ] 10INAF/OsservatorioAstronomicodiBrera,ViaBrera28,20121,Milano,Italy E H . h 25January2009 p - o r ABSTRACT st WereportonpartiallyoverlappingXMM-Newton(∼260ks)andSuzaku(∼100ks)observa- a tions of the iron K band in the nearby,brightSeyfert 1 galaxy Mrk 509. The source shows [ aresolvedneutralFeK line,mostprobablyproducedintheouterpartoftheaccretiondisc. 1 Moreover,the source shows further emission blue–ward of the 6.4 keV line due to ionized v material. This emission is well reproduced by a broad line produced in the accretion disc, 2 whileitcannotbeeasilydescribedbyscatteringoremissionfromphoto–ionizedgasatrest. 8 ThesummedspectrumofallXMM-Newtonobservationsshowsthepresenceofanarrowab- 8 sorptionlineat7.3keVproducedbyhighlyionizedoutflowingmaterial.Aspectralvariability 1 studyoftheXMM-Newtondatashowsanindicationforanexcessofvariabilityat6.6–6.7keV. . 1 Thesevariationsmaybeproducedintheredwingofthebroadionizedlineorbyvariationof 0 afurtherabsorptionstructure.TheSuzakudataindicatethattheneutralFeKαlineintensity 9 isconsistentwithbeingconstantonlongtimescales(ofafewyears)andtheyalsoconfirmas 0 mostlikely theinterpretationoftheexcessblueshiftedemissionin termsofa broadionized : Fe line.The averageSuzakuspectrumdiffersfromthe XMM-Newtononeforthe disappear- v i anceofthe7.3keVabsorptionlineandaround6.7keV,wheretheXMM-Newtondataalone X suggestedvariability. r a Key words: galaxies: individual:Mrk 509 – galaxies: active – galaxies: Seyfert – X-rays: galaxies 1 INTRODUCTION Guainazzietal.2006;Nandraetal.2007)andthationizedcompo- nentsoftheline,generallyassociatedwithemissionfromphoto– DeepinvestigationsoftheFeKbandinthebrightestAGNsallow and/or collisionally– ionized distant gas are also common (NGC ustoprobethepresenceofhighlyionizedemitting/absorbingcom- 5506,NGC7213,IC4329A;Bianchietal.2003;Pageetal.2003; ponentsfromtheinnermostregionsaroundthecentralblackhole. Reynolds et al. 2004; Ashton et al. 2004; Longinotti et al. 2007; The high–sensitivity X–ray satellites XMM-Newton and Chandra see also Bianchi et al. 2002; 2005). The presence of broad (neu- haveshownthatthepresenceofanarrowcoreofthelowlyionized tral or ionized) components of Fe K lines can only be tested via Fe Kα line is nearly ubiquitous (Yaqoob & Padhmanaban 2004; relativelylongexposuresofthebrightestsources(e.g.,Guainazzi etal.2006; Nandraetal.2007). Moreover, theobservational evi- ⋆ [email protected] denceforbroadlinesandtheirinterpretationintermsofrelativistic (cid:13)c 0000RAS 2 G. Pontiet al. effects may be questioned when an important absorbing ionized the first Suzaku observations overlap over a period of ∼ 25 ks. componentispresent.Spectralvariabilitystudieshelpindisentan- Eventfilesfromversion2.0.6.13oftheSuzakupipelineprocessing gling the different, often degenerate, spectral components (Ponti wereusedandspectrawereextractedusingXSELECT.Response etal.2004; Iwasawaetal.2004; Pontietal.2006; Tombesietal. matricesandancillaryresponsefilesweregeneratedforeachXIS 2007;Petruccietal.2007;DeMarcoetal.,inprep.). using XISRMFGEN and XISSIMARFGEN version 2007–05– Mrk 509 (z=0.034397) is the brightest Seyfert 1 of the hard 14.TheXIS1cameradataarenotconsideredherebecauseofthe (2–100keV)X-raysky(Maliziaetal.1999;Revnivtsevetal.2004; relativelyloweffectiveareaintheFeKenergyinterval,whilethe Sazonov et al. 2007) that is not strongly affected by a warm ab- XIS2 is unavailable for observations performed after November sorber component (Pounds et al. 2001; Yaqoob et al. 2003). The 2006. We used the data obtained during the overlapping interval HETG Chandra observation confirms the presence of a narrow tocheckwhethertheEPICpnandMOSdataononehandandthe componentoftheFeKlinewithanequivalentwidth(EW)of50eV SuzakuXIS0andXIS3dataontheotherhandareconsistentwithin (Yaqoobetal.2004).Thepresenceofasecondionizedcomponent theinter–calibrationuncertainties.Wefoundanoverallgoodagree- oftheFeKlineat6.7–6.9keVhasbeenclaimedbyPoundsetal. ment between thedatafromthetwo satellites,theparametersre- (2001)whofitteditusingarelativisticprofile,butPageetal.(2003) latedtothemainironemissionfeaturesandthepower–lawcontin- showed that the same spectral feature was consistent also with a uumbeingthesamewithintheerrors(exceptfortheXIS2camera simpleCompton reflectioncomponent fromdistant material.The above8keV).ThetotalXISobservationtimeisabout108ks.The broad–bandBeppoSAXspectrumand,inparticular,thesoftexcess, sourceandbackgroundphotonsareextractedfromaregionof4.3 have been fitted by De Rosa et al. (2004) with a reflection com- arcminwithinthesameCCDofthesource.FortheHXD/PIN,in- ponentfromaionizeddiscinadditiontoaneutralreflectioncom- strumentalbackgroundspectraandresponsematricesprovidedby ponent.Finally,Dadinaetal.(2005)foundevidenceofabsorption theHXDinstrument teamhavebeen used. Anadditional compo- duetotransient,relativisticallyred–blue–shiftedionizedmatter. nentaccountingfortheCXBhasbeenincludedinthespectralfits Here we present the spectral and variability analysis of the ofthePINdata. complex Fe K band of Mrk 509, using the whole set of XMM- All spectral fits were performed using the Xspec soft- Newton and Suzaku observations. The paper is organized as fol- ware (version 12.3.0) and include neutral Galactic absorption lows.Section2describestheobservationsandthedatareduction. (4.2×1020 cm−2;Dickey&Lockman1990),theenergiesarerest In Sect. 3 the spectral analysis of the EPIC-pn data of the Fe K frameifnotspecifiedotherwise,andtheerrorsarereportedatthe band(usingphenomenological models) ispresented.Inparticular 90 per cent confidence level for one interesting parameter (Avni in Sect. 3.3, to check for the presence of an absorption line, the 1976).ThesumofthespectrahasbeenperformedwiththeMATH- EPIC-MOSdatahavealsobeenconsidered.InSect.3.4thespec- PHA, ADDRMF and ADDARF tools within the HEASOFT tral variability analysis, within the XMM-Newtonobservations, is package(version6.1). presented.Sect.4describesthespectralanalysisoftheFeKband of the Suzaku summed (XIS0+XIS3) data and the detailed com- parison with the spectrum accumulated during the XMM-Newton 3 FEKBANDEMISSIONOFMRK509:THE observations. InSect.4.1theHXD-pindataareintroducedinor- XMM-NewtonDATA der toestimatetheamount ofreflectioncontinuum present inthe source spectrum. Finally, a more physically self-consistent fit of TheprimarygoalofthisinvestigationisthestudyoftheFeKline theEPICspectraofalltheEPICinstruments(EPIC-pnplusthetwo band;therefore,inordertoavoidtheeffectsofthewarmabsorber EPIC-MOS)isinvestigatedinSect.5.Theresultsofour analysis (althoughnotstrong;Yaqoobetal.2003;Smithetal.2007)andof arediscussedinSect.6,followedbyconclusionsinSect.7. the soft excess, we concentrate on the analysis of the data in the 3.5–10keVbandonly.Adetailedstudyofthewarmabsorberand itsvariationswillbeperformedbyDetmersetal.(inprep),wecan neverthelessanticipatethatthewarmabsorberhasnegligibleeffect 2 OBSERVATIONSANDDATAREDUCTION in the Fe K energy band and thus on the results presented here. Mrk509wasobserved5timesbyXMM-Newtonon2000–10–25, Figure 1 shows the source light curve in the 3.5–10 keV energy 2001–04–20, 2005–10–16, 2005–10–20 and2006–04–25. Allob- band obtained from the XMM-Newton pointings. Mrk 509 shows servations were performed with the EPIC–pn CCD camera oper- variationsoftheorderof∼30percentoverthedifferentobserva- atinginsmallwindowobservingmodeandwiththethinfilterap- tions,whilealmostnovariabilityisdetectedwithineachobserva- plied.Thetotalpnobservation timeisofabout 260ks.Sincethe tion.Onlyduringthefourthobservationthesourceshowssignifi- live–timeofthepnCCDinsmallwindowmodeis71percent,the cantvariability,withameanfractionalrmsofabout0.04. netexposureofthesummedspectrumisofabout180ks.Theanal- We start the analysis of the XMM-Newton data considering ysishasbeenmadewiththeSASsoftware(version7.1.0),starting the spectra from the EPIC-pn camera only (including the EPIC- fromtheODFfiles.Singleanddouble eventsareselectedforthe MOS data only when a check of the significance of a feature is pndata,whileonlysingleeventsareusedfortheMOScamerabe- required;seeSect.3.3).Wehavefittedasimplepowerlawmodel cause of a slight pile–up effect. For the pn data we checked that to the 3.5–10 keV data and found that the spectral index steep- theresultsobtainedusingonlysingleevents(thatallowasuperior enswithincreasingflux.Itgoesfrom1.54±0.03to1.72±0.03for energyresolution)areconsistentwiththosefromtheMOS,finding fluxes of 2.5×10−11 and 3.3×10−11 erg cm−2 s−1, respectively goodagreement.Thesourceandbackgroundphotonsareextracted (3.0×10−11 –4.3×10−11 ergcm−2 s−1,inthe2–10 keVband). fromaregionof40arcsecwithinthesameCCDofthesourceboth WefirstlyphenomenologicallyfittedtheFeKcomplexofeachsin- forthepnandMOSdata.Responsematricesweregeneratedusing gleobservationwithaseriesofemission-absorptionlines(seealso theSAStasksRMFGENandARFGEN. §3.3)andcheckedthattheresultsontheparametersofFeKcom- SuzakuobservedMrk509fourtimeson2006–04–25, 2006– plexobtainedineachobservation areconsistent withintheerrors 10–14, 2006–11–15 and2006–11–27. ThelastXMM-Newtonand (not a surprising result in light of the low statistics of the single (cid:13)c 0000RAS,MNRAS000,1–?? 3 1 norm counts/s/keV 0.10.20.5 1.2 a) χ2=753.9 ratio 1.1 dof=307 1 Figure1.3.5–10keVEPIC–pnlightcurvesoftheXMM-Newtonobserva- tions. Theabscissa shows the observation time inseconds. Thetime be- tween the different observations is arbitrary. The black, red, green, blue andlightblueshowthelightcurvesduringthe2000–10–25,2001–04–20, 2005–10–16,2005–10–20and2006–04–25observations,respectively. spectraandweaknessoftheionizedfeatures;see§3.4).Hence,we concludedthatthecontinuumvariationsdonotstronglyaffectthe observedshapeofthenarrow–bandemission/absorptionstructures intheFeKband.Thus,inordertoimprovethesignal–to–noisera- tioandthustodetailthefinestructuresoftheFeKband,thespectra ofalltheXMM-Newtonobservationshavebeensummed(see§3.4 forthestudyofthesourcespectralvariability).Thesummedmean Figure 2. (Upper panel) Observed–frame 3.5–10 keV summed XMM- EPIC–pnspectrumhasbeengroupedinordertohaveatleast1000 NewtonEPIC–pnspectrumfittedinthe3.5–5and8–10keVbandwitha powerlaw.(Panela)Data/modelratio.Thisratioshowsaclearevidence countsineachdatabin.Moreover,thisbinningcriterionensuresto foraneutralFeKemissionlineandfurtheremissionfromionizedFe,as haveatleast 30data–points perkeV inthe4–7keV band, where wellasothercomplexitiesaround7keV.(Panelb)Data/modelratiowhen the Fe Kα complex is expected to contribute. This guarantees a tworesolved emission lines (forthe FeKαandKβ)areincluded inthe good samplingoftheenergyresolutionof theinstrument andthe spectralfitting.Strongresidualsarestillpresent,indicativeofionizedFeK possibilityoffullyexploitingthespectralpotentialsoftheEPICin- emission,whilenoresidualemissionredwardoftheneutralFeKlineap- struments.Fig.2showstheratiobetweenthedataandthebest–fit pears.(Panelc)Data/modelratiowhenanarrowemissionlineisincluded powerlaw.Theenergybandusedduringthefithasbeenrestricted inthemodeltoreproducetheionizedemission.(Paneld)Sameaspanelc, to3.5–5and8–10keV,inordertoavoidtheFeKband,hencemea- butwithasinglebroademissionlineinsteadofanarrowline.Inbothcases suringtheunderlyingcontinuum.Theresultingbest–fitpower–law (panelcandd),anabsorption feature ispresent around7keV.(Panele) continuumhasaphotonindexof1.63±0.01andverywellrepro- Data/modelratiowhenanabsorptioncomponent(modeledusingXSTAR) ducesthesourceemission(χ2=170.0for163degreesoffreedom, andarelativisticionizedlineareaddedtothepowerlawandtheemission fromneutralFeK. dof)outsidetheFeKband.TheinclusionoftheFeKbandshows thatothercomponentsarenecessarytoreproduceit(χ2=753.9for 307dof).Thebadstatisticalresultisexplainedbythepresenceof clearspectralcomplexityinthe6–7keVband. 3.1 The6.4keVemissionline m s)−2−1 3×10−5 m s)−2−1 6×10−6 Plfioanrneee,alcdaodnoesfdiFsatiegGn.ta2uwsshsitoihawnasetnmheeiusctsrlieaoalnrFleievnieKdetαonctlheinefeomraoatdp6er.l4o,mokbientVaei.nntWinegematihsvseieroreny- αFe K line flux (ph c 2×10−5 Fe K line flux (ph c 2×104×10−6−6 significantimprovementofthefit(∆χ2=392.1fortheadditionof 0 3 dof). The best–fit energy of the line is 6.42±0.02 keV, consis- 0.1 0.15 6.7 6.8 6.9 7 7.1 Fe Kα line width (sigma, keV) Fe K line Energy (keV) tent with emission from neutral or slightly ionised material. The Figure3.(Leftpanel)Contourplotofthesigmavs.intensityoftheneutral line has an equivalent width of 69±8 eV and is clearly resolved FeKline.(Rightpanel)Contourplotoftheenergyvs.intensityofthenar- (σ=0.12±0.02keV),asshownbythecontourplotintheleftpanel rowlineusedtofittheionizedFeKemission.Thenarrowlineenergyisnot ofFig.3.TheresidualsinpanelbofFig.2shownoexcessredward consistentwithemissionfromFeXXV(neitherwiththeforbiddenat6.64 ofthisemissionline,whichcouldhavebeenindicativeofemission keV,norwiththeresonantat6.7keV),FeXXVIorFeKβ,whoseenergy fromrelativisticallyredshiftedneutralmaterial. isindicatedbytheverticaldottedlines(fromlefttoright). 3.2 TheionizedFeKemissionline Anexcessis,however,presentintherange6.5–7keV(Fig.2,panel a).IfmodeledwithaFeKβ componentwiththeexpectedenergy (cid:13)c 0000RAS,MNRAS000,1–?? 4 G. Pontiet al. (fixedat 7.06keV) andforcedtohaveanintensityof 0.15ofthe Kα(Palmerietal.2003a,b;Basko1978;Molendietal.2003)and ×10×10−6−6 awidthequaltotheFeKαline(i.e.assumingthattheKαandKβ −6−6 lineoriginatefromoneandthesamematerial),thefitimprovessig- mm ×10×10−6−6 npirfiesceannttliyn(t∆heχ62.=52–06..39).keNVonbeatnhdele(pssa,nseilgbniofifcaFnigt.r2e)s.idIfuathlsisafruertshtielrl nornor −2×10−4−2×10−4−6−6 excess is modelled with a narrow Gaussian line (∆χ2=25 for 2 00 additional dof), the feature (EW=12±4 eV) is found to peak at 77..22 77..33 77..44 LLiinneeEE kkeeVV E=6.86±0.04 keV (see panel c of Fig. 2 and right panel of Fig. 3).Thus,theenergycentroidisnotconsistent withthelinebeing producedbyeitherFeXXVorFeXXVI(rightpanelofFig.3)in ascatteringmediumdistantfromtheX-rayssource(Bianchietal. 2002;2004).ThehigherenergytransitionoftheFeXXVcomplex isthe”resonant line”expected at 6.7keV (seee.g. Bianchi et al. 2005).Thus,tosavethisinterpretation,itisrequiredthatthephoto- ionizedgashasasignificantblueshift(∼5700km/s,ifthelineisas- sociatedtoFeXXV)orredshift(∼4500km/s,forFeXXVI).Then, insteadoffittingtheionizedexcesswithasingleline,wefittedit withtwonarrowlinesforcingtheirenergiestobe6.7and6.96keV. Figure4.Superpositionofthepn(green),MOS1(black)andMOS2(red) Thefitclearlyworsens(χ2=326.7for302dof,correspondingtoa summedspectraofalltheXMM-Newtonobservations.Thedataarefitted, ∆χ2 =−10.1forthesamedof).However,ifthegasisallowedto inthe3.5–5and8–10keVbandswithapowerlaw,absorbedbyGalactic beoutflowing,thefitimproves(∆χ2=4.3fortheadditionof1new material.Thesamestructuresarepresentinthethreespectra.Inparticular,a parameter;χ2=312.3for301dof;theEWare8.9and12.4eVfor narrowdropofemissionispresentinalltheinstrumentsatthesameenergy theFeXXVandFeXXVIlines,respectively)asrespecttothesin- (seeverticaldottedline).(Insetpanel)Confidencecontourplotoftheinten- glenarrowemissionlineanditresultstohaveacommonvelocity sityvs.energyofthenarrowunresolvedionizedabsorptionwhenusingthe of3500+1900 km/s. pndataalone(dashedcontours)andincludingtheMOSdataaswell(solid −1200 contours).Thelinesindicatethe68.3(black),90(red),99(green)and99.9 Alternatively,theexcesscouldbeproducedbyasinglebroad (blue)percentconfidencelevels. linecomingfrommatterquiteclosetothesourceofhigh–energy photons(inthiscasetheFeKemissioniscomposedbyFeKα+β plusanotherFeKline).Leavingthewidthofthelinefreetovary, andEW=−14.9+5.2eV,E=7.33+0.03keVandEW=−13.1+5.9eV, −5.5 −0.04 −2.9 thefitimproves,withχ2=311.1(paneldFig.2)and∆χ2 of5.5, inthepnaloneandinthepn+MOS,respectively. withrespecttothesinglenarrowionizedemissionlinefit,and∆χ2 of1.3forthesamedofwithrespecttothebest–fitmodelwithtwo narrow ionized lines. The resulting broad ionized Fe K line has 3.4 Timeresolvedspectralvariabilityandtotalrmsspectrum EW=23±9eVandσ=0.14+0.13keV.Thebest–fitenergyoftheline −0.08 One of the goals of the present analysis is to search for time– doesnotchangesignificantly(E=6.86+0.08 keV);however,inthis −0.16 variationoftheemission/absorptionfeaturesoftheFeKcomplex. casetheemissionisconsistent(atthe99percentconfidencelevel) TomeasurepossiblevariationsintheFeKband,themeanEPIC- witheitherFeXXVorFeXXVI.Althoughthestatisticalimprove- pnspectraofeachofthe5XMM-Newtonobservations havebeen ment is not highly significant, in the following we will consider studied. Thespectraarefittedwiththesamemodel composed by thatthe∼6.8–6.9keVexcessisindeedassociatedwitharesolved apowerlawplusthreeemissionlinesfortheFeKα,Kβ(withthe emissionline. widthfixedatthebest–fitvalue,σ=0.12keV)andthebroadionized FeKline.Thelowstatisticsofthespectraofthesingleobservations preventsusfromthedetectionofsignificantspectralvariabilityof 3.3 Ionizedabsorption? theweakionisedemission/absorptionlines.TheneutralFeKline TheXMM-Newtondataalsodisplayanarrowabsorptionfeatureat isbetterconstrainedandwefindthatitsEWisanti–correlatedwith E∼7keV(observedframe;seeFig.2,paneld).Sincethisfeatureis thelevelofthecontinuum,asexpectedforaconstantline. veryclosetothebroadexcesswejustdiscussed,itssignificanceand Adifferent,moresensitive,waytodetectanexcessofspectral intensityaredegeneratewiththebroademission–lineparameters. variabilityisthetotalrmsfunction.TheupperpanelofFig.5dis- Inorder to gainsome insight, wethen fixedthe broad emission– playstheshapeofthesummedspectrumintheFeKlineband.The lineparametersatthebest–fitonesobtainedbeforetheadditionof lowerpanelshowsthetotalrmsspectrum(Revnivtsevetal.1999; anarrow(σfixedat1eV)Gaussianabsorptionlinecomponent.In Papadakis et al. 2005) calculated withtimebins of ∼4.5 ks. The thiscase,thelineissignificantatthe∼99percentconfidencelevel totalrmsisdefinedbytheformula: (dashedcontoursofFig.4;∆χ2=15.5for2additionalparameters; pS2(E)−<σ2 > see also panel e of Fig. 2). Once the MOS data1 are added, the RMS(E)= err (1) significanceofthisfeatureincreasesto99.9percent(solidcontours ∆E∗arf(E) ofFig.4),inbothcases,ofabroadandofanarrowionizedemission where S2 is the source variance in a given energy interval ∆E; line.ThebestfitenergyandEWofthelineareE=7.28+−00..0032 keV <σe2rr >isthescatterintroducedbythePoissoniannoiseandarf isthetelescopeeffectiveareaconvolvedwiththeresponsematrix2. 1 The shapes of the emission/absorption lines in the MOS instruments appearslightlynarrower,althoughconsistentwiththevaluesobtainedwith 2 The total rms spectrum provides the intrinsic source spectrum of the thepninstrument. variable component. Nevertheless, we measure the variance as observed (cid:13)c 0000RAS,MNRAS000,1–?? 5 Thisfunctionshowsthespectrumofthevaryingcomponent only, inwhich any constant component isremoved and has been com- 1.2 putedbyusingthedifferentXMM-Newtonobservationsasifthey werecontiguous.Thetotalrmsspectrummaybereproducedbya ratio 1.1 powerlawwithaspectralindexof2.13(χ2=46.4for43dof).Thus, 1 the variable component is steeper than the observed power law inthemeanspectrum,inagreement withthementionedobserved steepeningofthephotonindex(Γ)withflux.TheΓ–fluxcorrela- tioniscommonlyobservedinSeyfertgalaxiesandhasbeeninter- pretedasbeingduetotheflux-correlatedvariationsofthepower- lawslopeproducedinacoronaaboveanaccretiondiscandrelated tothechangesintheinputsoftseedphotons(e.g.Haardt,Maraschi &Ghisellini1997; Maraschi &Haardt 1997; Poutanen&Fabian 1999;Zdziarskietal.2003).Thesemodelspredictthepresenceof apivotpoint,thatwouldcorrespondtoaminimuminthetotalrms spectrum.Theobservation ofaperfectpowerlawshape(seeFig. 5) indicates that the pivot point (if present) has to be outside the 3–10keVenergyband.Ontheotherhand,theslope-fluxbehaviour can be explained in termsof atwo-component model (McHardy, Papadakis&Uttley1998;Shih,Iwasawa&Fabian2002)inwhich a constant-slope power law varies in normalization only, while a Figure5. Lowerpanel:TotalrmsvariabilityspectrumoftheXMM-Newton observations. The data (blue crosses) show the spectrum of the variable harder component remainsapproximately constant,hardening the component.Thebest–fitmodelisapowerlawwithspectralindexΓ=2.18 spectralslopeatlowfluxlevelsonly,whenitbecomesprominent (redline)plusaGaussianemissionline(improvingthefitby∆χ2of8.9for inthehardband.Inthisscenariothespectralindexofthevariable theadditionof2parameters).Thedashedlinehighlightsthecentroidenergy component is equal to the one of the total rms spectrum, that is oftheneutralFeKαline,whilethedottedlineisplacedatthemaximumof Γ=2.13. thevariabilityexcess,modeledwiththeGaussianemissionline.Theexcess Moreoverwenotethatattheenergyoftheneutralandionized variabilityenergycorrespondstoadropofemissionoftherealspectrum. FeKlinecomponents,noexcessofvariabilityispresent,inagree- mentwiththesecomponentsbeingconstant,whileanindicationfor anexcessofvariabilityispresentaround6.7keV.Inordertocom- Alsoduringthe4Suzakupointings,Mrk509hasshownlittle putethesignificanceofthisvariabilityfeature,anarrowGaussian variability,withfluxchanges lowerthan10–15 percent,hamper- linehasbeenaddedtothemodellingofthetotalrmsspectrum.The inganyspectral variabilitystudy. Fig.6shows theXMM-Newton best–fit energy of the additional line is 6.69 keV, with a σ fixed (black) andSuzaku XIS0+XIS3(red) summed meanspectra. The at the instrumental energy resolution, while the resulting ∆χ2 is datawerefitted,inthe3.5–5and7.5–10keVbands,withasimple 8.9fortheadditionof2parameters(thatcorrespondstoanF–test powerlawandGalacticabsorption:theratioofthedatatothebest significanceof98.8percent).Introducingtheline,thecontinuum fitmodel isshowninFig.6.Thesourceemissionvariedbetween spectralindexsteepenstoΓ∼2.18.ThedashedlineinFig.5high- theXMM-NewtonandtheSuzakuobservations.Thebest–fitspec- lightsthecentroidenergyoftheneutralFeKαline,whilethedotted tralindexand the3.5–10 keV band fluxesare:Γ=1.63±0.01 and line(at∼6.7keV,restframe)isplacedatthemaximumofthevari- Γ=1.71±0.02 and 2.63×10−11 and 3.11×10−11 ergs cm−2 s−1, abilityexcess.Thisenergycorrespondstoadropofemissioninthe during the XMM-Newton and Suzaku observations, respectively. realspectrum,asweshalldiscussinmoredetailinSection5. TheneutralandionizedFeKemissionlinesappearconstant,while some differences are present at 6.7 keV, the same energy where theXMM-Newtondataweresuggesting anincreaseofvariability. 4 THESuzakuVIEWOFTHEFEKBANDEMISSION Other more subtle differences appears at ∼ 7 keV, where the ab- sorptionlineimprintsitspresenceintheXMM-Newtondataonly. As mentioned in §2, the source was also observed with Suzaku. The first 25 ks Suzaku observation is simultaneous with the last TheSuzaku spectrumofMrk509shows,ingoodagreement XMM-Newton pointing. Thesource spectraof all the instruments withtheXMM-Newtonone,aresolvedneutralFeKlinesmoothly areinverygoodagreement, duringthesimultaneousobservation. joiningwithahigherenergyexcess,mostlikelyduetoionizediron Thespectrumisalsoconsistentwiththepresenceoftheemission emission (see Fig. 6). Given that no absorption lines around 6.7 andabsorptionlines,asobservedinthemeanXMM-Newtonspec- keVor7.3keV arepresent intheSuzakudata,thespectrummay trum,nevertheless,duetothelowstatisticsofthe25ksspectrum beusefultoinferthepropertiesoftheemissionlinesmoreclearly. andtheweaknessoftheionizedfeatures,itisnotpossibletoper- TheXIS0+XIS3Suzakusummedspectrumhasbeenfittedin formadetailedcomparison.OnlythepresenceofthestrongFeKα the3.5–10keVbandwithapowerlawplustworesolvedGaussian linecanbeinvestigated,theionizedemissionandabsorptionlines emissionlinestoreproducetheemissionfromFeKα+β.Thepa- arenotconstrainedinthe25ksSuzakuexposure. rametersoftheFeKαlinearefreetovary,whiletheFeKβ ones areconstrainedasin§3.2.Thisfitleaveslargeresiduals(χ2=1379.8 for1337dof)intheFeKband.Inthisrespect,itisdifficulttode- through the instrument. Thus, the sharp features in the source spectrum, scribe the >6.5 keV excess with a single narrow ionized Fe line aswellastheeffectsofthefeaturesontheeffectivearea,arebroadenedby theinstrumentalspectralresolution.Forthisreason,toobtainthetotalrms (eitherduetoFeXXVorFeXXVI).Infact,althoughtheaddition spectrum,wetakeintoaccounttheconvolution oftheeffective areawith ofanarrowlineissignificant(∆χ2=20.1for2moreparameters), thespectralresponse. it leaves residuals in the Fe K band. This remaining excess can (cid:13)c 0000RAS,MNRAS000,1–?? 6 G. Pontiet al. 3.5–10keV BEST–FIT SPECTRA Suzaku Γ plnorma ENeut. σNeut. ANeut.b(EW)c EIon. σIon./rin AIon.b(EW)c χ2/dof keV keV keV keV/rg A 1.72±0.02 1.12±0.02 6.42±0.03 <0.06 1.7±0.5(32) 6.54±0.09 0.40±0.1 4.6±1.2(90) 1344/1340 B 1.72±0.02 1.12±0.02 6.42±0.02 <0.07 2.1±0.5(40) 6.61±0.08 24±10 3.4±0.8(79) 1346/1340 Self-consistentmodel XMM-Newton Γ plnorma ENeut. σNeut. ANeut.b Incl. ξ ARefl.Ion.b keV keV deg ergcms−1 C 1.70±0.01 0.92±0.04 6.41±0.01 0.07±0.01 2.2±0.3 47±2 11+200 0.9+3.0 −7 −0.5 NHd log(ξ) z χ2/dof 5.8+5.2 5.15+1.25 −0.0484+0.012 894.3/876 −4.8 −0.52 −0.013 Table1.Toppanel:Best–fitvaluesofthesummedspectra(XIS0+XIS3)ofallSuzakuobservationsfittedinthe3.5–10keVband.BothmodelAandBinclude apowerlawandtwoGaussianlinesKα+βtofitthe6.4keVexcess.Inadditiontothisbaselinemodel,eitheranotherGaussiancomponent(ModelA)ora DISKLINEprofile(ModelB)havebeenaddedtoreproducetheionizedline,respectively.InTablethebest–fitpowerlawspectralindex(Γ)andnormalization aswellastheFeKαenergy,widthandnormalizationarereportedformodelAandB.Theenergy,widthandnormalizationarereportedwhenaGaussian profilefortheionizedFeKlineisconsidered(ModelA),whilethebestfitenergy,innerradiusandnormalizationarepresentedwhenaDISKLINEprofile isfitted(ModelB).Standarddiscreflectivity index,outerdiscradiusanddiscinclination ofα = 3,rout = 400rg and30◦ havebeenassumedforthe relativisticprofile.Bottompanel:BestfitresultsofthesummedXMM-NewtonEPIC-pnandEPIC-MOSdataofMrk509(fittedinthe3.5–10keVband).The model(WABS*ZXIPCF*(POW+ZGAUS+ZGAUS+PEXRAV+KDBLUR*(REFLION)))consistsof:i)apowerlaw;ii)twoGaussianemissionlinesfortheFeKα andKβemission(thislatterhasenergyisfixedtotheexpectedvalue,7.06keV,intensityandwidthtiedtotheKαvalues);iii)aneutralreflectioncontinuum component(PEXRAVinXspec)withR=1(valuebroadlyconsistentwiththepinconstraintsandthevaluespreviouslyobserved;DeRosaetal.2004),Solar abundanceandhighenergycutoffoftheilluminatingpowerlawat100keV;iv)aionizeddiscreflectionspectrum(reflionmodel;Ross&Fabian2005)with thediscinnerandouterradiiandtheemissivityof6,400rg and−3,respectively.Thebestfitdiscinclinationandionizationandthenormalizationofthe discreflectioncomponentareshown;v)anionizedabsorptioncomponent(ZXIPCF)totallycoveringthenuclearsource.Thebestfitcolumndensity,ionization parameterandoutflowvelocityarereported.a)Inunitsof10−2photonskeV−1cm−2s−1at1keV;b)Inunitsof10−5photonscm−2s−1;c)InunitsofeV; d)Inunitsof1022atomscm−2. obtainanimprovementof∆χ2=9.7forthesamedof(seeTable1, 1.3 Suzaku modelA). XMM−Newton ↓ ↓ Thus, the Suzaku data indicate that the broad excess at 6.5– 2 1. 6.6keVisindeedduetoabroadlineratherthanablendofnarrow ionizedFelines.Sincebroadlinesmayarisebecauseofrelativis- o rati 1.1 thiycpeoftfheecstsisinbythfietitninngerthreegeioxncessosfatthe6.a5c–c6r.e6tiokneVflowwi,thwaeDteIsSteKdLtIhNiEs profile.Thestatisticsofthespectrumisnotsuchtoallowustocon- 1 strainalltheparametersoftheionizedDISKLINEmodel.Thus,the discreflectivityindexhasbeenfixedatthestandardvalue(α=−3, where the emissivity is proportional to rα), the outer disc radius 9 0. 5 andinclinationsto400gravitationalradii(rg)and30◦,respectively. Energy (keV) Thebroad lineisconsistent withbeingproduced intheaccretion disc(Table1,ModelB);however,theemissionfromtheinnermost Figure 6. XMM-Newton (black) and Suzaku XIS0+XIS3 (red) summed part of the disc is not required, the lower limit on the inner disc meanspectra.Thedataarefitted,inthe3.5–5and7.5–10keVbands,with asimplepowerlaw,absorbedbyGalacticmaterial,andtheratioofthedata radiusbeing10–15rg.AsclearfromFig.6,theSuzakudatadonot tothebestfitmodelisshown.Thearrowsmarkabsorptionfeaturesinthe requireanyionizedFeKabsorptionstructures. spectrum. In order to quantify the differences between the Suzaku and XMM-Newtonspectra(and,inparticular,therealityoftheabsorp- bereproduced(∆χ2=5.9for1moreparameter),inaphotoionized tionstructuresat 6.7and7.3keV appearing intheXMM-Newton gas scenario, by a blend of two unresolved ionized lines, requir- spectrum only) we fixed all the parameters of the Suzaku model ing three emission lines to fit the FeK band (FeKα+β, Fe XXV (apartfromtheintensityandspectralindexofthedirectpowerlaw) and FeXXVI). Inthiscase, such asintheanalysis of theXMM- and fit the XMM-Newton data with that model. This corresponds Newtonmeanspectrum,ablueshiftofthiscomponentissuggested toassumingthattheintrinsiclineshapesdonotvarybetweenthe (v=2600+2800 kms−1).However,thebest–fitmodel(thisscenario twoobservations.Then,anarrowGaussianlinehasbeenaddedto −2000 isstrengthenedbythelackofnarrowpeaks)suggeststhattheex- the XMM-Newtonmodel toestimate the significance of the puta- cessmaybeinfact associatedwithabroad ionizedFeline(over tiveabsorptionstructures.Theimprovementinthespectralfitting whichthe∼6.7keVand∼7.3keVabsorptionlinesaremostlikely isevident, asindicated bythe ∆χ2=28.3 and 22 inthe case of a superimposed, butduring theXMM-Newtonobservation only). In lineatE=6.72±0.04keVandE=7.29±0.04keV,respectively.The factconsideringabroadFelineinsteadofthetwonarrowlineswe presence of these spectral features only in the XMM-Newton ob- (cid:13)c 0000RAS,MNRAS000,1–?? 7 servationsisthusindicativeofvariabilityatenergies∼6.6–6.7and therelativisticprofile.Standardvaluesfortherelativisticprofileare ∼7.3keV. assumed,withthediscinnerandouterradiiandtheemissivityof6, 400r ,and−3,respectively.Finally,the∼7.3keVabsorptionline g hasbeenfittedwithaphotoionisedabsorptionmodel(zxipcfmodel 4.1 TheSuzakupindatatoconstrainthereflectionfraction inXspec;Milleretal.2007;Reevesetal.2008;ModelC,Table1), assumingatotalcoveringfactor. We add the pin data to measure the amount of reflection contin- Table1 shows thebest–fit parameters. Once thepresence of uum. We note that the pin data provide a good quality spectrum thereflectioncontinuumistakenintoaccount,thepowerlawslope upto50keV. Themodel usedinvolvesadirectpower lawplusa neutralreflectioncomponent(pexravmodelinXspec;Magdziarz becomessteeper(Γ=1.70±0.01,∆Γ∼0.07)ascomparedtothefit with a simple power law and emission absorption lines (see §3). & Zdziarski 1995) plus the Fe Kα+β resolved lines and a broad ThebestfitenergyoftheneutralFeKαlineisE=6.41±0.01keV, (DISKLINE)component oftheline.AsformodelBwefixsome oftheparametersoftheDISKLINEprofile(discinclination=30◦, consistentwithbeingproduced byneutralmaterial,andresultsto benarrower(σ=0.07±0.01keV)thaninthepreviousfits.Theion- r =400r andα=-3).Moreoverweassumeahigh–energycutoff out g ized emission line is fitted with a ionized disc reflection model. of 100 keV and Solar abundance. Thus, by fitting the 3–50 keV band data, we obtained a reflection fraction R = 0.4+0.6 and a The only free parameters of such a component are the inclina- spectral index Γ=1.76+0.12. The total EW of the emi−ss0i.o2n lines tion and ionisation parameter of the disc that result to be 47±2◦ −0.03 andξ=11+200 ergcms−1 (Model C,Table1). Thematerial pro- above the reflectedcontinuum (about 1.2 keV) isbroadly consis- −7 ducing the 7.3 keV absorption feature in the XMM-Newton data tent with the theoretical expectations (Matt et al. 1996) and with has to be highly ionized, as also indicated by the absence of a whatobservedinComptonthickSeyfert2galaxies,wherethepri- strongcontinuumcurvature.Infact,thebestionizationparameter mary continuum is absorbed and only the reflection is observed. Nevertheless,alsoforthissource,asalreadyknownfromprevious islog(ξ)=5.15+−10..2552andthecolumndensityNH =5.8+−54..28×1022 cm−2.Neverthelesstheobservedenergyoftheabsorptionfeature studies(Zdziarskietal.1999), weobservethatthespectral index does not correspond to any strong absorption features, thus there andthereflectionfractionaredegenerate and stronglydepend on isevidenceforthisabsorptioncomponenttobeoutflowingwitha theenergybandconsidered. Infact,ifthe2–10keV bandiscon- sainddertehde,pthoewreerfl–leacwtiopnhofrtaocntiionndeinxcorefaΓse=s1,.r8e8s+ul0t.i0n3g.tTohbeetoRta=l1E.1W+−00o..25f χsh2ifitsv89=4.−30fo.0r488746+−d00o..00f11.23c(∼14000+−34620000kms−1).Theresulting −0.02 theFeemissionlinesabovethereflectedcontinuumareabout750 eV.Againthesevaluesarebroadlyinagreementwithexpectations (Mattetal.1996). 6 DISCUSSION Thisstudyclearlyshowsthatlongexposuresareneedtodisentan- 5 APHYSICALLYSELF-CONSISTENTFIT:POSSIBLE glethedifferentemitting/absorbingcomponentscontributingtothe ORIGINOFTHESPECTRALFEATURES shape–variability of the Fe K complex in Seyfert galaxies. Here wediscusstheoriginofbothneutralandionizedemissionandab- TheanalysisoftheXMM-NewtonandSuzakudatashowsevidence sorption Fe linesin Mrk 509 which allow to have insights in the forthepresenceof:i)aresolved,althoughnotverybroad,(σ∼0.12 innermostregionsoftheaccretionflow. keV)neutralFeKαlineandassociatedFeKβemission;ii)anion- izedFeKemissionlineinconsistentwithemissionfromadistant scatteringmaterialatrestandmostlikelyproducedintheaccretion 6.1 Neutral/lowlyionizedFeemissionline disc; iii) an absorption line at ∼7.3 keV, present in the summed spectrumofallXMM-Newtonobservationsonly;iv)anindication Oncethebroadionizedlineisfitted,thewidthoftheFeKαline foranenhancementofvariability-bothbyconsideringtheXMM- lowers to a value of 72±11 eV (see Fig. 3) that corresponds to Newtondataaloneandbycomparisonbetweenthetwodatasets-at a FWHM(Fe Kα)=8000±1300 km s−1 (see Model C, Table 1). ∼6.7keVthatcouldbeeitherduetothehighvariabilityofthered ThisvalueisslightlyhigherthanthatmeasuredbyYaqoob&Pad- wingofthebroadionizedFeKline,possiblyassociatedwithavari- manabhanwitha∼50ksHETGChandraobservation(2820+2680 −2800 ationoftheionisationofthedisc,ortoasecondionizedabsorption km s−1). The FWHM of the Fe Kα line islarger than the width line. of the Hβ line (FWHM(Hβ)=3430±240 km s−1; Peterson et al. These emission/absorption components are partially inter– 2004;Marzianietal.2003),indicatingthattheFelineisproduced connectedtoeachothergiventhelimitedCCDresolutiononboard closertothecenter thantheopticalBLRand, ofcourse, thanthe XMM-NewtonandSuzaku.Thuswere–fittheXMM-Newton(both torus postulated in unified models; we note that a wide range of thepnandMOSinthe3.5–10keVenergyband)datawithamodel FWHMvaluesisobservedfortheBLRandtheFeKlinesinlocal containingcomponentsthatbetterdescribethephysicalprocesses Seyfertgalaxies(Nandra2006). However, theUVandsoftX-ray occurringintheAGN.Inparticular,weconsidertwoGaussianlines spectraofMrk509showevidenceforthepresenceofbroademis- for the Fe Kα and Kβ emission plus a neutral reflection compo- sionlineswithFWHMof 11000kms−1 (Krissetal.2000). The nent (PEXRAVin XSPEC) witha reflection fraction R = 1 (con- origin of these UV and soft–X lines is still highly debated, nev- sistentwiththeconstraintsgivenbytheSuzaku pindata).TheFe ertheless they may indicate that the BLR region is stratified, i.e. Kα line has an equivalent width of 1 keV above the reflection thattheselinesarenotproducedintheopticalBLRbutinthein- continuum. Moreover, we fit the broad ionized Fe K line with a ner part of a stratified BLR region (see also Kaastra et al. 2002; fullyself–consistent relativisticioniseddiscreflectioncomponent Costantinietal.2007),possiblyascloseas2000r fromthecen- g (reflion model in Xspec; Ross & Fabian 2005, convolved with a ter(about 0.012pc, beingthemassoftheblackholeinMrk509 LAORkernel;KDBLURinXspec). MBH ≃1.43±0.12×108 M⊙ Petersonetal.2004;Marzianietal. Thestatisticspreventsusfromconstrainingtheparametersof 2003). Nevertheless, if the line isproduced in the innermost part (cid:13)c 0000RAS,MNRAS000,1–?? 8 G. Pontiet al. ofastratifiedBLR,itwouldrequireeitherahighercoveringfrac- abilitybetweentheXMM-NewtonandSuzakuobservationspoints tion or a higher column density than generally derived from the towardsanoriginwithinMrk509. optical and ultraviolet bands. Simulations by Leahy & Creighton An hint of variability is observed around 6.7 keV both in (1993)showthatabout70percentofthesky,asseenbythecen- the XMM-Newton data and by comparing the XMM-Newton and tralsource,hastobecoveredinordertoproducetheFeKαline, Suzaku spectra. This could be due in principle to variability in ifthebroadlinecloudshavecolumndensitiesofabout1023cm−2, theredwingof theionizedemissionline.However, thetotalrms whilethetypicalvaluesfortheBLRcloudscoveringfractionsare spectrum shows a peak of variability that is consistent with be- oftheorderof10–25percent(Davidson&Netzer1979;Goad& ingnarrow,thusitmaysuggestanalternativeexplanation.Indeed, Koratkar1998).Alternatively,theFeKαlinemaybeproducedby theobserveddifferencebetweentheXMM-NewtonandSuzakuFe reflectionbytheouterpartoftheaccretiondisc. K line shapes could be due to a further ionized absorption com- ponent, present only the XMM-Newton observations, with a col- umn density N =5.4+4.8×1021 cm−2 and ionization parameter H −4.4 6.2 IonizedFeemissionlines log(ξ)=2.04+0.43.Whenthestructureat6.7keVisfittedwithsuch −0.60 acomponent,anabsorptionstructureappearsaround7.3keV,nev- ThespectrumofMrk509showsemissionfromionizediron,con- erthelessitsequivalentwidthisnotstrongenoughtoreproducethe sistentwitheitherFeXXVorFeXXVI,implyingphotoionizedgas total absorption feature; moreover, it appears at slightly different outflowingorinflowingrespectively.Alternatively,theionizedFe energy,notcompletelyfittingthe∼7.3keVline.Thus,theabsorp- Kemission maybeproduced byreflectionfromtheinner part of tion structures at 6.7 and the one at 7.3 keV may be connected theaccretiondisc. and they may be indicative of another absorption screen. If this Infact,boththeXMM-NewtonandtheSuzakudataareconsis- furtherlowerionizationabsorptioncomponentispresent,different tentwiththetwoscenarios, evenifaslightlybetter fit(∆χ2=5.5 absorption feature would be expected (due to the low ionization and 9.7 for XMM-Newton and Suzaku, respectively) is obtained and high column density) at lower energies. Smith et al. (2007) in the case of broad line. Moreover in the case of narrow emis- analyzed the RGS data and detected two absorption components sion lines the emitting gas should have a significant outflow (for withphysicalparameterssimilar(log(ξ)=2.14+0.19 and3.26+0.18; rFeespXeXctViv,evly∼)3o5r00inaflnodw2(6f0o0rkFme Xs−X1VfoI,rvX∼M4M50-N0ekwmtosn−a1n)dwSiuthzavkeu-, NH=0.75+−00..1191and5.5+−11..34×1021cm−2)toth−e0.o1n2esthatwe−i0n.f2e7r, strengtheningthisinterpretation.Thereisalsoevidenceforanother, locitieshigherthanwhatgenerallyobserved(Reynoldsetal.2004; higherionization,mildlyrelativistic,andvariableionizedcompo- Longinottietal.2007;butseealsoBianchietal.2008thatdetect nentintheXMMdata.Thestudyofthismoreextremecomponent an outflow of v=900+500 km s−1). On the other hand, the high −700 isaddressedinanotherpaper(Cappietal.,inpreparation). radiativeefficiencyofthesource(η=0.12;Woo&Urry2002)sug- The observation of highly ionized matter in the core of gests that the accretion disc is stable down to the innermost re- Mrk509isinlinewithitshighBHmassandaccretionrate.Infact, gions around the BH, where the reflection component should be weremindthatattheEddingtonlimittheradiationpressureequals shaped by relativisticeffects. For these reasons, although an out- the gravitational pull, however the densities of the matter lowers flowingemittinggasisnotexcluded, thebroadlineinterpretation withtheBHmass(Shakura&Sunyaev1976).Thustheionization seemsfavoured. Infact, theprofileof thelineiscompatible with ofthematerialsurroundinghighaccretionrateandBHmassAGNs, being shaped by relativistic effects, consistent with its origin be- suchasMrk509,shouldbehigherthannormal.Westress,however, inginthesurfaceofanaccretiondisc,invicinityofablackhole. thatinordertodetailthephysicalparametersoftheionisedemit- Nevertheless, the width of the line is not a compelling evidence. ter/absorber,furtherlongobservationsarerequired. Theobserved broadening ofthelinecanbereproduced alsowith theComptonizationprocessoccurringintheupperlayeroftheion- izedaccretiondisc.Moreover,westressthatthemainevidencesfor 7 CONCLUSIONS thepresence of abroadFeK linecomesfromthemeansummed spectrum. The process of summing spectra, although is a power- The Fe K band of Mrk 509 shows a rich variety of emis- fulwaytoextractinformation,mightbedangerousinpresenceof sion/absorption components. The XMM-Newton and Suzaku data spectral variability and when applied toobservations taken many showsevidenceforthepresenceof: years apart. Thus, the final answer on the origin of these ionized • a resolved, although not very broad, (σ ∼0.07 keV) neutral lineswillbeobtainedwitheitherahigherresolutionobservationor FeKαlineandassociatedFeKβ emission.Thewidthoftheline withsignificantlylongerXMM-Newtonexposures. suggeststhatthe6.4keVlineisproduced intheouterpartofthe accretion disc (the broad line region or torus emission seem un- likely).Themeasuredreflectionfractionisconsistent inthiscase 6.3 IonizedFeabsorptionlines with the intensity of the line, while a covering factor or column The XMM-Newton data indicate the presence of a highly ion- density higher than generally observed would be required if the ized absorption component, the best fit column density being linewereproducedintheBLRorthetorus; N =5.8+5.2×1022 cm−2 andionizationlog(ξ)=5.15+1.25.More- • both the Suzaku and the XMM-Newton data show an excess H −4.8 −0.52 over, fittingtheabsorption withthis model, it results that the ab- due to ionized Fe K emission. Both datasets show a superior fit sorberhastobeblueshiftedby0.0484+0.012c.Theblueshiftcorre- whenabroadionizedlinecomingfromthecentralpartsoftheac- −0.013 spondstoanoutflowvelocityof∼14000kms−1.Thestructureim- cretion disc is considered. The data are inconsistent with narrow pliesasignificantblueshiftiftheabsorberislocatedinthecoreof emissionfromadistantscatteringmaterialatrest,whileitcannot Mrk509but,consideringthesystemicvelocityofthegalaxy,itsen- beexcludedifthegasisoutflowing(v∼3500kms−1) ergyisalsoconsistentwithalocalabsorber(McKernanetal.2004; • bothEPIC–pnandMOSdatashowanabsorptionlineat∼7.3 2005;Risalitietal.2005;Youngetal.2005;Miniuttietal.2007; keV,presentinthesummedspectrumofallXMM-Newtonobserva- but seealso Reeveset al. 2008). Nevertheless, the observed vari- tionsonly.Thiscomponentconfirmsthepresenceofhighlyionized, (cid:13)c 0000RAS,MNRAS000,1–?? 9 outflowing(v∼14000 s−1),gasalongthelineofsight. Thecom- Kaastra,J.S.,Steenbrugge,K.C.,Raassen,A.J.J.,vanderMeer, parisonbetweenXMM-NewtonandSuzakusuggestsavariabilityof R.L.J.,Brinkman,A.C.,Liedahl,D.A.,Behar,E.,&deRosa, thiscomponent; A.2002,A&A,386,427 • ahintofanenhancementofvariability-bothbyconsidering Kriss,G.A.,etal.2000,ApJ,538,L17 theXMM-Newtondataaloneandbycomparisonbetweenthetwo Magdziarz,P.,&Zdziarski,A.A.1995,MNRAS,273,837 datasets-at∼6.7keVthatcouldbeeitherduetothehighvariabil- Malizia,A.,Bassani,L.,Zhang,S.N.,Dean,A.J.,Paciesas,W.S., ityoftheredwingofthebroadionizedFeKline,possiblyasso- &Palumbo,G.G.C.1999,ApJ,519,637 ciatedwithavariationoftheionisationofthedisc,ortoasecond Maraschi,L.,&Haardt,F.1997,IAUColloq.163:AccretionPhe- ionizedabsorptionline. nomenaandRelatedOutflows,121,101 Marziani,P.,Sulentic,J.W.,Zamanov,R.,Calvani,M.,Dultzin- Hacyan,D.,Bachev,R.,&Zwitter,T.2003,ApJS,145,199 Matt,G.,Fabian,A.C.,&Ross,R.R.1996,MNRAS,278,1111 ACKNOWLEDGMENTS McHardy, I.M.,Papadakis, I.E.,&Uttley,P.1998, TheActive Thispaper isbasedonobservations obtained withXMM-Newton, X-raySky:ResultsfromBeppoSAXandRXTE,509 anESAsciencemissionwithinstrumentsandcontributionsdirectly McKernan,B.,Yaqoob,T.,&Reynolds,C.S.2004,ApJ,617,232 fundedbyESAMemberStatesandNASA.Thisworkwaspartly McKernan, B., Yaqoob, T., & Reynolds, C. S. 2005, MNRAS, supported by the ANR under grant number ANR-06-JCJC-0047. 361,1337 GP,CVandSBthankforsupport theItalianSpaceAgency(con- Miller, L., Turner, T. J., Reeves, J. N., George, I. M., Kraemer, tracts ASI–INAF I/023/05/0 and ASI I/088/06/0). GM acknowl- S.B.,&Wingert,B.2007,A&A,463,131 edge funding from Ministerio de Ciencia e Innovacio´n through a Miniutti,G.,etal.2007,PASJ,59,315 Ramo´n y Cajal contract. GP thanks Regis Terrier, Andrea Gold- Molendi,S.,Bianchi,S.,&Matt,G.2003,MNRAS,343,L1 wurm and Fabio Mattana for useful discussion. We would like Nandra,K.2006,MNRAS,368,L62 to thank the anonymous referee for the detailed reading of the Nandra,K.,O’Neill,P.M.,George,I.M.,&Reeves,J.N.2007, manuscript andfor thecomments thatgreatlyimprovedtheread- MNRAS,382,194 abilityofthepaper. Page,M.J.,Davis,S.W.,&Salvi,N.J.2003,MNRAS,343,1241 Palmeri, P., Mendoza, C., Kallman, T. R., Bautista, M. A., & Mele´ndez,M.2003,A&A,410,359 Palmeri,P.,Mendoza,C.,Kallman,T.R.,&Bautista,M.A.2003, REFERENCES A&A,403,1175 Ashton, C. E.,Page, M. J.,Blustin, A. J.,Puchnarewicz, E. M., Papadakis,I.E.,Kazanas,D.,&Akylas,A.2005,ApJ,631,727 Branduardi-Raymont,G.,Mason,K.O.,Co´rdova,F.A.,&Pried- Peterson,B.M.,etal.2004,ApJ,613,682 horsky,W.C.2004,MNRAS,355,73 Petrucci,P.O.,etal.2007,A&A,470,889 Avni,Y.1976,ApJ,210,642 Ponti, G., Cappi, M., Dadina, M., & Malaguti, G. 2004, A&A, Basko,M.M.1978,ApJ,223,268 417,451 Bianchi,S.,&Matt,G.2002,A&A,387,76 Ponti,G.,Miniutti,G.,Cappi,M.,Maraschi,L.,Fabian,A.C.,& Bianchi,S.,Balestra,I.,Matt,G.,Guainazzi,M.,&Perola,G.C. Iwasawa,K.2006,MNRAS,368,903 2003,A&A,402,141 Pounds, K., Reeves, J., O’Brien, P., Page, K., Turner, M., & Bianchi,S.,Matt,G.,Balestra,I.,Guainazzi,M.,&Perola,G.C. Nayakshin,S.2001,ApJ,559,181 2004,A&A,422,65 Poutanen,J.,&Fabian,A.C.1999,MNRAS,306,L31 Bianchi,S.,Matt,G.,Nicastro,F.,Porquet,D.,&Dubau,J.2005, Reeves, J.,Done, C.,Pounds, K.,Terashima, Y.,Hayashida, K., MNRAS,357,599 Anabuki,N.,Uchino,M.,&Turner,M.2008,MNRAS,385,L108 Bianchi, S., La Franca, F., Matt, G., Guainazzi, M., Jimenez Reynolds, C. S.,Brenneman, L. W.,Wilms,J., &Kaiser, M. E. Bailo´n,E.,Longinotti,A.L.,Nicastro,F.,&Pentericci,L.2008, 2004,MNRAS,352,205 MNRAS,389,L52 Revnivtsev,M.,Borozdin,K.,&Emelyanov,A.1999,A&A,344, Costantini,E.,etal.2007,A&A,461,121 L25 Dadina, M., Cappi, M., Malaguti, G., Ponti, G., & de Rosa, A. Revnivtsev, M., Sazonov, S., Jahoda, K., & Gilfanov, M. 2004, 2005,A&A,442,461 A&A,418,927 Davidson,K.,&Netzer,H.1979,ReviewsofModernPhysics,51, Risaliti,G.,Bianchi,S.,Matt,G.,Baldi,A.,Elvis,M.,Fabbiano, 715 G.,&Zezas,A.2005,ApJ,630,L129 DeRosa,A.,Piro,L.,Matt,G.,&Perola,G.C.2004,A&A,413, Ross,R.R.,&Fabian,A.C.2005,MNRAS,358,211 895 Sazonov,S.,Revnivtsev,M.,Krivonos,R.,Churazov,E.,&Sun- Dickey,J.M.,&Lockman,F.J.1990,ARA&A,28,215 yaev,R.2007,A&A,462,57 Goad,M.,&Koratkar,A.1998,ApJ,495,718 Shakura,N.I.,&Sunyaev,R.A.1976,MNRAS,175,613 Guainazzi,M.,Bianchi,S.,&Dovcˇiak,M.2006,Astronomische Shih,D.C.,Iwasawa, K.,&Fabian,A.C.2003, MNRAS,341, Nachrichten,327,1032 973 Haardt,F.,Maraschi,L.,&Ghisellini,G.1997,ApJ,476,620 Smith, R. A. N., Page, M. J., & Branduardi-Raymont, G. 2007, Iwasawa,K.,Miniutti,G.,&Fabian,A.C.2004,MNRAS,355, A&A,461,135 1073 Tombesi,F.,deMarco,B.,Iwasawa,K.,Cappi,M.,Dadina,M., Leahy,D.A.,&Creighton,J.1993,MNRAS,263,314 Ponti, G., Miniutti, G., & Palumbo, G. G. C. 2007, A&A, 467, Longinotti, A. L., Bianchi, S., Santos-Lleo, M., Rodr´ıguez- 1057 Pascual,P.,Guainazzi,M.,Cardaci,M.,&Pollock,A.M.T.2007, Woo,J.-H.,&Urry,C.M.2002,ApJ,579,530 A&A,470,73 Young,A.J.,Lee,J.C.,Fabian,A.C.,Reynolds,C.S.,Gibson, (cid:13)c 0000RAS,MNRAS000,1–?? 10 G. Pontietal. R.R.,&Canizares,C.R.2005,ApJ,631,733 Yaqoob, T., McKernan, B., Kraemer, S. B., Crenshaw, D. M., Gabel,J.R.,George,I.M.,&Turner,T.J.2003,ApJ,582,105 Yaqoob,T.,&Padmanabhan,U.2004,ApJ,604,63 Zdziarski, A. A., Lubinski, P., & Smith, D. A. 1999, MNRAS, 303,L11 Zdziarski, A. A., Lubin´ski, P., Gilfanov, M., & Revnivtsev, M. 2003,MNRAS,342,355 (cid:13)c 0000RAS,MNRAS000,1–??