Mon.Not.R.Astron.Soc.000,000–000(0000) Printed22January2009 (MNLATEXstylefilev2.2) X-ray observations of the galaxy cluster PKS 0745-191: To the virial radius, and beyond M. R. George,1⋆ A. C. Fabian,1 J. S. Sanders,1 A. J. Young2 and H. R. Russell1 1InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA 2H.H.WillsPhysicsLaboratory,UniversityofBristol,TyndallAvenue,BristolBS81TL 9 0 0 2 Accepted22January2009 n a ABSTRACT J WemeasureX-rayemissionfromtheoutskirtsoftheclusterofgalaxiesPKS0745-191with 2 Suzaku,determiningradialprofiles of density,temperature,entropy,gasfraction,and mass. 2 These measurementsextendbeyondthe virialradiusfor the firsttime, providingnew infor- ] mationaboutclusterassemblyandthediffuseintraclustermediumoutto∼ 1.5r200(r200 ≃ h 1.7Mpc≃15′).Thetemperatureisfoundtodecreasebyroughly70percentfrom0.3−1r200. p We also see a flattening of the entropyprofile near the virialradius and considerthe impli- - cationsthishasfortheassumptionofhydrostaticequilibriumwhenderivingmassestimates. o Weplacetheseobservationsinthecontextofsimulationsandanalyticalmodelstodevelopa r t betterunderstandingofnon-gravitationalphysicsintheoutskirtsofthecluster. s a Keywords: galaxies:clusters:individual:PKS0745-191–X-rays:galaxies:clusters–galax- [ ies:clusters:general 2 v 0 3 1 1 INTRODUCTION symmetry and hydrostatic equililbrium between the gas pres- 1 sure and gravitational potential. Though numerical simulations Theoutskirtsofgalaxyclusterspresentanopportunitytostudythe . predict a decline in temperature towards the virial radius (e.g., 7 formation of largescale structure as it happens. Beyond the core 0 Evrardetal.1996;Frenketal.1999;Lokenetal.2002),observa- wherenon-gravitationalprocessessuchascoolingflowsandfeed- 8 tionsatsmallerradiihaveproducedinconsistentresults.Someanal- backfromactivegalacticnucleicandominateactivity,clustersare 0 yses have found declining profiles (e.g., Markevitchetal. 1998; expectedtobemorerelaxedandtofollowself-similarscalingrela- : DeGrandi&Molendi 2002; Vikhlininetal. 2005; Prattetal. v tions(Kaiser1986).Thevirialradiuscanbethoughtofasaborder 2007),whileothershaveseenascatteringofslopesconsistentwith i betweenregionsofequilibrationandinfall,somergeractivityfrom X flatorevenincreasingprofiles(e.g., Irwinetal.1999;Zhangetal. accretingmaterialmayplayanimportantroleintheouterdynam- r 2004;Arnaudetal.2005).Thesestudiestypicallydonotmeasure ics. a thetemperatureprofilesmuchfurtheroutthanhalfthevirialradius, As the largest virialized systems in the universe, clusters of evenwithChandraandXMM.Differentmethodsofestimatingthe galaxies can be useful in constraining cosmological models. The virialradius,usingeitherscalingrelationsordirectdetermination positionofclustersatthehighendofthemassspectrumandtheir from the mass profile, make comparisons difficult, but very few evolutionfromtheinitialdensityperturbationsmakesthemsensi- measurements havebeen made of cluster gastemperatures out to tive probes of the scale of these fluctuations, σ8, and the density thevirialradius(e.g., Solovyevaetal.2007;Reiprichetal.2008), ofmatterintheuniverse,Ωm (Whiteetal.1993;Ekeetal.1996). andtoourknowledgenonehavebeenreportedbeyondit. Additionally,theevolutionwithredshiftofclusterpropertiessuch Until recently, X-raydetectors have been unable tomeasure asthegasmassfractioncanbeusedtostudyotherportionsofthe thetemperatureoftheintraclustermedium(ICM)outtothevirial cosmicenergydensitybudget(e.g., Allenetal.2008).Forareview radius due to its low surface brightness in the outskirts relative ofthecosmologicalimportanceofgalaxyclusters,seeVoit(2005). to background noise. Typically a mass profile such as that of To understand cluster properties, it is important that the re- Navarro,Frenk&White(1997, NFW)isusedtoextrapolatemass lationships between observables and derived quantities are well- estimatestodistancesgreaterthanthoseobserved.Oneaimofour calibrated. A common example is that temperature and den- work istomeasure properties of theICM out to the virial radius sity profiles can be measured from X-ray spectra and used to inordertocheckthereliabilityofsuchextrapolations.Forourpur- determine a cluster’s mass under the assumptions of spherical poses,weequatethevirialradiuswithr200,theradiuswithinwhich themeantotaldensityis200timesthecriticaldensityoftheuni- verseattheredshiftofthecluster. ⋆ Email: [email protected] - Current address: Department of Astronomy,UniversityofCalifornia,Berkeley,CA94720,USA The low orbit of Suzaku places it within Earth’s mag- (cid:13)c 0000RAS 2 M. R. Georgeet al. netopause, giving it a significantly lower and more stable Table1.Observationalparametersofthefivepointings particle background compared to Chandra and XMM-Newton. Reiprichetal. (2008) have recently leveraged this ability for low surfacebrightnessobservationsintheoutskirtsofA2204,measur- Obs.ID Position Exposure(ks) RA Dec(J2000) ingthetemperaturenearlytor200.Otherclusterobservationswith Suzaku havedemonstrated itscapacity for temperature and abun- 802062010 Center 32.0 116.8852 -19.2901 802062020 NW 32.2 116.6543 -19.2063 dancemeasurements(e.g., Satoetal.2007),providinganoutline 802062030 NE 30.8 116.9737 -19.0727 forsomeofthemethodsusedhere. 802062040 SE 32.9 117.1155 -19.3739 In this work, we present Suzaku observations of PKS 0745- 802062050 SW 33.4 116.7966 -19.5079 191,arelaxed,coolcoreclusterthatisthebrightestinX-raysbe- yond z = 0.1 (Fabianetal. 1985; Edgeetal. 1990; Allenetal. 1996).Previousmeasurementshavefoundameangastemperature intherangeof6.4−8.5keV,dependingonthemodelsusedand regions studied (Chen,Ikebe&Bo¨hringer 2003, and references therein).Allenetal.(1996)findgoodagreementbetweenthecen- tralmassfromX-raysandthatdeterminedfromastronglylensed arc,buttheresultsofChenetal.(2003)disagree,findingafactor NE NW of2smallermassfromXMMdata(seealso Snowdenetal.2008, forareanalysisoftheXMMdata).Wedescribeourobservationsin thenextsection,followedbydetailsofthespectralanalysisinSec- tion3,andtheresultingprofilesinSection4.InSection5weplace ourfindingsinthecontextofotherclusterstudies,andweconclude thepaperinSection6.Fordistancescales,weusethecosmological parametersH0 = 70kms−1Mpc−1 andΩm = 1−ΩΛ = 0.3, giving an angular scale of 113kpcper arcminute at the cluster’s redshift,z = 0.1028.Theplottedandquotederrorrangesare1σ statisticaluncertaintiesexceptwhereotherwisestated. 2 OBSERVATIONSANDDATAREDUCTION SE SW Suzaku observations of PKS 0745-191 were taken between 2007 May 11-14 in five separate fields of roughly 32ks each. Details of these pointings are listed in Table 1. The central pointing is aimed toward thepeak of the cluster emission and the others are Figure1.Exposure-corrected mosaicofPKS0745-191,smoothedwitha positioned adjacently, with 4’ overlap at each chip edge, as in Gaussian of radius 1’. Background subtraction and vignetting correction Fig. 1. We use only data from the X-ray Imaging Spectrometer havebeenomitted,andcalibrationregionsandpointsourceshavenotyet (XIS: Koyamaetal. 2007). We exclude the back-illuminated de- beenexcised.Ringradiiare2.5’,6’,9.5’,13.5’,18.5’,and24’. tector,XIS1,despiteitshighersensitivityatlowenergies,because italsohasasignificantlyhigherparticlebackgroundlevelthanthe twofront-illuminatedsensors,XIS0andXIS3,whichhavesimilar responses.Thereisanoffsetbetweenthemeasuredtemperaturesof theBIandFIchips,andwediscussthiscontributiontooursystem- atic uncertainties in Section 4.3. We simultaneously analyze data excised with circular regions of radius 2.5′ to remove more than from the two FI sensors to effectively double the exposure time 99per cent of thefluxspreadbythePSF.Detector response ma- while keeping the noise low. Observations were taken in normal tricesandeffectiveareafunctions areconstructedwithxisrmfgen clocking andeditingmodes withspaced-row chargeinjectionon, andxissimarfgen(Ishisakietal.2007),respectively.Thelattertool andthedatahavebeenprocessedwiththeenergyscalecalibration generatesthespectralresponseforagivenskybrightness,account- ofv2.1.6.16.Thedatapreparationdescribedbelowwascarriedout ingfor theknown issueof contamination on theoptical blocking usingXSELECT2.4.1andFTOOLSversion6.5.1fromHEASARC, filter.Uncertaintiesinthiscontaminationshouldnotaffectourre- withinstrumentalparametersfromCALDBupdated2008Septem- sultssignificantly,aswedonotconsiderenergiesbelow1keV.Vi- ber 5. Updates to the calibration parameters released during the gnettingeffectswillbedifferentforclusterandbackgroundemis- preparationofthispaperdonotaffecttheresultsbeyondthestatis- sion components, so we use a uniform surface brightness out to ticaluncertainties. a radius of 20′ when modeling the background emission and in- We performed the standard screening of events files to re- put a β-model surface brightness profile using the parameters of move time intervals during satellite manoeuvres, telemetry satu- Chenetal.(2003)fortheauxiliaryresponsefileappliedtotheclus- ration,andpassagethroughtheSouthAtlanticAnomaly,aswellas teremissionmodel.Wefindthatmodifyingtheparametersofthe elevationangleslessthan5◦ and20◦ fromthenighttimeandday- surface brightness profile used to determine the “effective area” timeEarth.Thelightcurvefortheremainingtimeintervalsissta- withxissimarfgen does not significantlyimpact the output. Thus, ble,showingnosignofflaringorexcessparticlebackground. We wedonotexpectanunresolvedcentralcusporuncertaintiesfrom excludethecornersofthedetectorswhere55Fecalibrationsources theoutwardextrapolationofthesurfacebrightnessprofiletoinflu- lie,andobviouspointsourcesseeninSuzakuorXMMimageswere enceourresults. (cid:13)c 0000RAS,MNRAS000,000–000 PKS 0745-191atthevirialradius 3 2.1 BackgroundSubtractionandModelling outerregionsofPKS0745-191isimprovedwithahighertempera- turecomponent(& 1.5keV),indicativeofclusteremissioncover- Accountingforbackgroundemissioniscriticalwhenobservingre- ingtheentirefield. gions of low surface brightness, and it consists of multiple com- ponents.WesubtractthenonX-raybackground(NXB)ofcharged particlesandgammarayswithxisnxbgen(Tawaetal.2008),which modelsthetrendoftheseeventsfromnightEarthdata,weightedby themagneticcutoffrigidity.TheX-raybackgroundconsistsofsolar windchargeexchange,thermalemissionmainlyfromthehotlocal bubble and the Galactichalo, and the cosmic background (CXB) duetounresolvedpointsources.Chargeexchangecontaminatesthe lowenergyspectrumwithemissionlinesthatcanvaryonatime- scaleof10minutes(Fujimotoetal.2007),whilethediffusether- 3 SPECTRALANALYSIS malemissionandCXBareexpectedtobemorestableandeasily Spectrawereextractedinannularregionsofradii0′−2.5′,2.5′− modeled.AtthelowGalacticlatitudeofthissource(b = 3◦),the 6′,6′ −9.5′,9.5′ −13.5′,13.5′ −18.5′, and > 18.5′, with the softthermalbackgroundcouldvarysignificantlywithposition.We outermostregionreachingtonearly24′.Foreachannuluswede- opttoexcludethehighenergyendofthespectrumwheretheNXB fineaneffectiveradiusthatisapproximatelyanemission-weighted component dominateswithseveral emissionlines,andtoalsoig- mean (McLaughlin 1999), r = [0.5(r3/2 +r3/2)]2/3. These re- norethelowenergyendwherechargeexchangeandlocalthermal in out gionsarecenteredatrightascensionanddeclination07:47:31.325, emissionmuddlethedata,leavingthe1−5keVbandforconsid- -19:17:39.95(J2000),whichiscoincidentwiththecDgalaxyand eration.Sincethecentralregionshavetemperatureshigherthanthe boththepeakandcentroidofX-rayemission.Duetothelowcount upper limitoftheenergyband used, wetestthattheyareconsis- ratesinsomechannels,weusetheCash(1979)Cstatistic. tentwithtemperaturesmeasuredina1−8keVband.Systematic We used XSPEC v12.5.0 to simultaneously fit models of the uncertaintiesdue toparticlebackground subtractionat highener- spectra, with data from each pointing grouped by annulus unless gies and Galactic and other low energy background components specifiedotherwise.WefirstsubtracttheNXBspectrafromiden- arediscussedinSection4.3.Weoptforthenarrowerenergyrange ticalregions onthedetector, scaled bytherelativeexposure time tooptimizethesignaltonoiseforwholecluster. ofthenightEarthobservations.Next,wemodelthelocalthermal Sinceclusteremissionfillstheobservedfield,wecannotuse emissionandCXBcomponents,fixedtothebest-fittingvaluesfrom detector regions from these pointings to subtract the remaining theLockmanHoleobservations. Finally,wemodeltheremaining background. Instead, we analyze Suzaku data from the Lockman emission,thatfromthecluster,withanotherMEKALcomponentat Hole (observation ID 102018010) taken only 8 days prior to the thecluster’sredshift,z = 0.1028. Wefixthecolumndensityab- startofourobservations.Despitethelargedifferenceinabsorbing fcoorluthmenLdoecnksmityanmHeoasleurveedrsfurosm4.2H×Im10ap21sc(NmH−3=fo5r.7PK×S10071495c-m19−13; saotrtbhiengcetnhteerc,luNstHer=and3.C6X×B1c0o2m1pcomn−en3t,swtohitchheibselsot-wfietrtinthgavnaltuhee HI measurement butconsistent withthevaluefromXMM’sEPN Kalberlaetal. 2005), ROSAT observations (Snowdenetal. 1997) detectsimilarbackground levelsfrom1−2keVatthetwoposi- (Chenetal.2003).Weallowthemetallicitytovaryinthecenterbut tions. We find that the Lockman Hole data from 0.5−8keV is fixitto0.3Z⊙atlargerradii.Oftheremainingparameters,onlythe temperatureandnormalizationofthethermalICMcomponentare well-modeled by a power law of photon index 1.4, absorbed by allowedtovary. the column density measured by the HI maps, added to an un- Thebroadpoint-spreadfunction(PSF)ofSuzaku,withahalf- absorbed MEKALthermalplasmamodel(Meweetal.1985,1986; powerdiameterof∼2′,willcausesomeemissionfromeachannu- Liedahletal. 1995) at 0.1keV with solar metallicity using the lusontheskytobedistributedintoothersonthedetector.Wecor- relative abundances of Anders&Grevesse (1989), allowing only rectforthiseffectfollowingthemethodofSatoetal.(2007),who the normalizations to vary. The best fitting normalizations in the 1 − 5keV range are 7.26 × 10−4photonskeV−1cm−2s−1 at importantlyshowthatSuzaku’sPSFisnearlyenergy-independent. 1keVfortheCXBand0.78cm−5arcmin−2 forthesoftthermal Weuseacircularlysymmetricβ-modelwiththebest-fittingparam- component.1Wedonotfindanimprovementinthefitwithanother etersof Chenetal. (2003), consistent with the surface brightness profileobservedhere,andamonochromaticenergyof1.5keVto low-temperaturecomponent,asisoftenused(e.g., Vikhlininetal. 2005). We note that in the 1− 5keV band used here, the fit is generate aphoton list that ispropagated witharay-tracing simu- lator(xissim)throughthedetectoroptics.Foreachannulusonthe notevenparticularlysensitivetothenormalizationoftheremain- sky,weusetheratiooffluxlandinginthecorrespondingdetector ingsoftthermalcomponent,butweincludeitasanempiricalde- annulustothefluxineachotherannulustocalculatecross-annuli scriptionofthebackgroundmodeltobeappliedtothePKS0745- normalizationfactors.Inthespectralmodel,weaddathermalcom- 191data.Weattemptedtofittheoutermost regionsofthecluster ponentfromeachannulustoeveryotherannuluswiththetemper- observations witha similar model and an added low-temperature (∼ 0.25keV) Galactic component. The normalizations required ature tied to the original region and the normalization scaled by thesefactors.Therelativecontributionstoeachannulusfromother aremuchhigherthanfortheLockmanHoleandwouldbeincon- annuli, asderived from these PSFcorrection factors and the best sistentwiththeROSAT observationsforthissource.Thefittothe fittingnormalizations, aregiven inTable2.Themodel wasfitted simultaneouslyoverallannuliandresultedinanexcellentfit;theC statistic,thoughnotadirectmeasureofgoodnessoffit,was65413 1 We follow Satoetal. (2007) in dividing the surface brightness nor- using98640binsand98627degreesoffreedom.Thespectraand malization of the thermal component by the solid angle used in the ancillary response file generation, Ω = 20′, so that Norm = models are shown in Figs. 2 and 3. We note that the individual 10−20R nenHdV/{4π(1 + z)2DA2}/Ω in cm−5arcmin−2, where spectraarefittedsimultaneously,andareonlycombinedbyannu- DAistheangulardiameterdistancetothecluster. larregionsinthesefiguresforvisualclarity. (cid:13)c 0000RAS,MNRAS000,000–000 4 M. R. Georgeet al. 0’-2.5’ 2.5’-6’ 6’-9.5’ 9.5’-13.5’ 13.5’-18.5’ 18.5’-24’ 0’-2.5’ 89.9 19.3 2.6 0.4 <0.05 0.1 2.5’-6’ 9.7 66.8 5.7 0.6 0.1 0.1 6’-9.5’ 0.3 13.1 84.4 7.8 0.6 0.1 9.5’-13.5’ 0.1 0.5 6.5 78.5 7.3 0.8 13.5’-18.5’ <0.05 0.1 0.5 11.9 84.1 10.9 18.5’-24’ <0.05 0.1 0.3 0.7 7.8 88.1 Table2.RelativefluxcontributionsduetoPSFspreading.Valuescorrespondtothefractionoffluxmeasuredinthedetectorregion(columns)originatingfrom theclusterregion(rows),i.e.,ofthefluxmeasuredintheoutermostannulus,weexpect88.1%tocomefromthecorrespondingregioninthesky,andonly 0.1%tohaveoriginatedinthecentralprojectedregion. profilecansimilarlybefitwithapowerlaw,excludingthecentral regionagainforuniformity,withindexα =−2.23±0.01.Ifwe n assumeapolytropic distributionfor anideal gas, P ∝ nHkT ∝ nΓ,thenwefindΓ=1+(α /α )=1.42±0.03.Thisvalueis H T n higherthanthatfoundforcoolingflowclustersdeterminedbye.g., DeGrandi&Molendi(2002),whomeasuredΓ≃1.2intheradial range0.2r180 <r.0.6r180. Gaswithhighentropyrises,sotheradialentropyprofileisex- pectedtoincrease.Puzzlingly,theentropyprofileweobserverises fromthecenterandthenappearstoleveloffbeyond∼10′,putting itontheborderofconvectiveinstability.Wewilldiscusspossible explanationsforthisbehaviorinlatersections. 4.2 Massprofiles To derive a mass profile, we assume that the gas properties are spherically symmetric and that the cluster is in hydrostatic equi- librium.Balancingthethermalpressuregradientagainstthegravi- tationalpotential,weobtainanexpressionforthetotalgravitating Figure2.DataandspectralfitsincludingPSF-correctionforeachannular massintermsoftemperatureanddensity: region,illustratingthesofteningofthespectrawithincreasingradius.The r9e.g5i′o−ns1p3lo.5tt′ed(baluree)0,′1−3.52′.5−′ (1b8l.a5c′k)(,cy2a.n5)′,−an6d′>(re1d8),.56′′(−ma9g.e5n′ta()g.reDeant)a, M(<r)= −kr2 TdnH +nHdT . (1) havebeenrebinnedtoaminimumsignificance of5σ foreachpoint,and GµmHnH „ dr dr« eachspectrumhasbeenarbitrarilyrenormalizedforvisualclarity. Weassumethat thetotaldensitydistributioncanbedescribed by anNFWprofile, ρ(r)= ρ0 , (2) 4 RESULTS r/rs(1+(r/rs))2 4.1 Temperature,density,andentropyprofiles whereρ0isadensitynormalizationandrsisascaleradiusrelated tothecluster’sconcentration,c200 ≡r200/rs. Temperatureanddensityprofilesaretheprimarydataproductsof Following an approach similar to that of Schmidt&Allen X-rayobservationsofclusters,fromwhichotherpropertiesinclud- (2007),weuseanNFWmodel andtheobserved gasdensitydis- ing entropy, mass, and gas fraction profiles can be derived. We tributiontopredictatemperatureineachannulus,beginningwith obtain the density fromthe normalization of the best-fittingther- theoutermostbin.Densitygradientsaretakenlinearlybetweenthe malplasmamodelwhichisproportionaltotheemissionmeasure, radialbins,whichreducesthecorrelationinuncertaintiesbetween nenHdV, where ne ≈ 1.2nH for typical abundances. We use non-adjacent datapointsthatarecreatedwithotherinterpolations Rthe simpifying assumption of constant density within each annu- such as cubic splines, as some authors use (see Voigt&Fabian lus, and estimate the volume as that of the intersection between 2006, for a discussion). This approach could be improved with cylindical and spherical shells with shared inner and outer radii, more radial bins, but the wide PSF of Suzaku and the low count V =(4π/3)(ro2ut−ri2n)3/2,scaledbythefractionoftheprojected rateintheclusteroutskirtslimitusfromusingthinnerannularre- annulus observed. With the density and temperature determined, gions. Toensure that theoutermost temperature value isrobustly wecancalculatetheentropyprofile,K =kT/n2/3.Eachofthese estimated,wetakethemedianoutervalueoftheprofilesthatbest e profilesisshowninFig.4. fit100MonteCarlorealizationsoftheobservedtemperaturepro- The cool core, though blurred by thewide PSF,isseen asa file,normallydistributedwithinitserrorbars.Themodeltempera- decrease intemperature near the center. The more novel result is tureprofilesaresimilarifwebeginattheinnermostregion,sothe theclearly-observeddeclineintemperatureintheoutskirtsofthe resultisnotparticularlysensitivetotheboundaryvalues.Iterating cluster.Excludingthecore,thisdeclinecanbefitwithapowerlaw over a range of NFW parameters, we select the mass model that T(r) = T0rαT withindexαT = −0.94±0.06.Thegasdensity producesthetemperaturesthatbestfittheobservedprofile. (cid:13)c 0000RAS,MNRAS000,000–000 PKS 0745-191atthevirialradius 5 Figure4.Projectedtemperature,density,andentropyprofiles.Thevertical dashedlineshowsourestimateofr200,derivedinSection4.2. InordertoresolvetheregionwithintheNFWscaleradius,we supplementtheSuzakudatawithanarchival20ksChandraobser- vation(ID2427)takenwiththeACIS-SdetectorinVFAINTmode. ThesedatawerereducedfollowingthedescriptionofO’Deaetal. (2008), with spectra extracted in circular annuli and deprojected usingthemethodofSanders&Fabian(2007).Afterusingtheout- ermost Chandra annulus to subtract contaminating flux from in- nerregionsitisomittedfromfurtheranalysissinceitmaycontain externalclusteremission,leavingsixregionstoreplacetheinner- mostSuzaku bin,wherethetemperatureanddensityisinreason- ableagreement withtheChandra data. Weuse Chandra data for itssharperPSF,buttheXMMtemperatureprofileinSnowdenetal. (2008)isalsoconsistentatthesmallerradiiofthatobservation. Themodel temperature profile,shown inFig. 5, does not fit thedataverywelloverallannuli,andthebestfittotheobserved temperatures(χ2 ≈39for7degreesoffreedom)isobtainedafter ignoring the outermost Suzaku bin which is beyond the virial ra- diuswheretheassumptionofhydrostaticequilibiriumisexpected tofail,andtheChandraregionsinthecoolcorewithin∼70kpcof thecenterwherethegasislikelytobemultiply-phased.Themain deviation in our data from this acceptable temperature fit arises fromthe2.5′ −6′ Suzakuannulus.Possibleexplanationsinclude aPSF-correctionthatcouldbetoolarge,across-calibrationissue betweenChandraandSuzaku,orevennon-gravitationalheatingin thatregion. Theresultingmassprofilehasbest-fittingNFWparametersof c200 = 7.5+−10..19 and rs = 230+−4400kpc, producing a virial radius r200 = c200rs = 1.72±0.06Mpc,or 15.2′ andmassM200 = 200ρc(z)(4π/3)(r200)3 = 6.4±0.6×1014M⊙ . We estimate Figure 3. Same as Fig. 2, but with residuals to show the quality of the the total uncertainty on the virial mass, including systematics, of spectralfits,andwiththeLockmanHolebackgroundspectrumincludedfor 30%, which isdescribed further inthenext section. Wecompare comparison.Countlevelshavenotbeenrenormalizedandwenotethatthe thesevalueswithprevious determinationsinTable3andplot the regionshavedifferentareasandexposuretimes.Dottedanddashedcurves representthebackground(CXB+thermal)andclusteremissionmodels,re- s(cid:13)cpe0ct0iv0e0lyR.AS,MNRAS000,000–000 6 M. R. Georgeet al. Figure5.Chandra(redtriangles)andSuzaku(blackcrosses)temperature Figure7.GasfractionprofileforPKS0745-191,theratioofthedottedto valuesusedinmassfittinganalysis,alongwithmatchingtemperaturesfor solidcurvesinFig.6,with1σstatisticalerrorrangeingray.Dottedlines bestfittingNFWprofile(bluecircles). showthe1σrangearoundthevalueofΩb/ΩmfromKomatsuetal.(2008). Theverticaldashedlineshowsourestimateofr200,derivedinSection4.2. adopt.Schmidt&Allen(2007)foundanevenlargervalueforthe virialradius,fittinganNFWprofiletoChandradatainthecentral region to obtain r200 ≈ 2.2Mpc. One issue withpast NFW fits usedtocalculatethevirialradiusisthatthedataoftendonotextend eventotheNFWscaleradius,letalonethevirialradius. Wecancompareourmassprofilewiththeprojectedmassde- termined from a strong lensing arc of radius 34.5kpc seen with Hubble imagery by Allenetal. (1996). Updating their mass esti- mateforthecircularlensmodeltoaccountforthecurrentcosmo- logicalparameters,weexpectamassof6.4×1012M⊙ projected withinacylinderalongthelineofsightofthecenterofthecluster witharadius of thelensing arc, which isconsistent withthesta- tisticalandsystematicuncertaintiesofourbest-fittingNFWmodel whenintegratingthemassinthecylinderouttor200.Wenotethat this includes an extrapolation of our profile into the core region Figure6.Cumulative profilesofgasmass(dottedlowercurve)andtotal wherewehaveexcluded datafromour fitbecause of nonthermal gravitational mass (solid upper curve) with 1σ statistical error ranges in gray.Thesingleerrorbarshowsthe30%systematicuncertaintyonM200 processes. Whileitisreassuringtoseethisreasonableagreement andthe vertical dashedline showsourestimate ofr200,derived inSec- betweenseparatemassestimates,wecautionthatcomparisons of tion4.2. thistypeofwide-fieldX-rayanalysiswithstronglensingdataonly involveasmallfractionofthetotalclustermass.Weaklensinganal- yses,whichcanprovidemassprojectionsoveramuchbroaderarea, massprofileinFig.6,alongwiththecumulativegasmassprofile willprovideimportantcomparisonsforvirialmassestimates. obtainedfromthepower-lawfittotheSuzakugasdensityprofile. InFig.7,weplotthegasfractionprofile,definedasthefrac- TheNFWconcentrationishigherthanpreviousestimates,and tionofmasswithinagivenradiuscomposedofX-rayemittinggas. the virial mass we determine is lower, due in part to the smaller Thegasfractionappearstoriseslightlyattheouterradii,consis- virialradiusfoundinthiswork.Reiprich&Bo¨hringer(2002),who tentwiththeprofileobservedforPKS0745-191inROSATdataby usedanisothermalfittoROSAT andASCAdataandfoundavalue Allenetal.(1996).Thevaluesofthefgasprofileintheoutskirtsof of 1.95±0.03Mpc updated to the cosmological parameters we thisclusteraresimilartorecentmeasurementsofthemeancosmic baryonfraction(Komatsuetal.2008). c200 M200(1014M⊙) Reference 4.3 Uncertainties 3.83+0.52 18.6+3.5 Allenetal.(2003) −0.27 −4.0 5.12+0.40 10.0+1.2 Pointecouteauetal.(2005) A number of systematic uncertainties could add contributions to −0.40 −1.2 5.46+3.22 9.7+52.2 Voigt&Fabian(2006) our error budget beyond the statistical ranges plotted. We sum- −2.88 −8.5 5.86+1.56 11.82+4.70 Schmidt&Allen(2007) marize our estimates of several of these systematic uncertainties −1.07 −3.55 7.5+1.1 6.4+0.6 Thiswork tothetemperatureprofile,includingtheeffectsofPSF-correction −0.9 −0.6 and renormalization of background components, in Table 4. The Table 3. Concentration and virial mass determinations for PKS 0745- changesduetothePSF-correctionaremostlysmall,withthemain 191,compiledbyComerford&Natarajan(2007)withvaluesforthiswork effectbeinga∼ 12percentincreaseintemperatureinthesecond added. innermostannulusafteraccountingforemissionfromthecoolgas in the core that has scattered outward. There is a significant un- (cid:13)c 0000RAS,MNRAS000,000–000 PKS 0745-191atthevirialradius 7 Radius kT Stat. NoPSF NXB CXB Gal. NH Z (’) (keV) ±3% ±10% ±50% ±10% 0.2−0.4Z⊙ 0–2.5 6.92 +0.12 +0.08 <0.005 <0.005 <0.005 0.68 <0.005 −0.12 2.5–6.0 7.85 +0.45 −0.82 <0.005 <0.005 0.01 0.90 0.02 −0.39 6.0–9.5 4.90 +0.30 −0.01 0.02 0.04 0.03 0.41 0.05 −0.27 9.5–13.5 3.22 +0.47 −0.05 0.14 0.14 0.06 0.28 0.07 −0.36 13.5–18.5 2.15 +0.19 +0.09 0.06 0.17 0.06 0.15 0.11 −0.18 >18.5 2.07 +0.25 +0.02 0.10 0.21 0.06 0.13 0.12 −0.23 Table4.EstimateduncertaintiesintheradialtemperatureprofileduetoremovingPSF-correctionsorchangingnormalizationsofbackgroundcomponentsand spectralmodelparameterswithintherangesgiven.Eachparameterisvariedindependentlyandwepresentonlythemaximumoftheupwardanddownward temperatureshifts(in keV)forclarity.Best-fittingPSF-correctedtemperaturesandtheirstatisticaluncertaintiesareincludedforcomparison. certaintyinthetemperatureofthecentralregionbecauseSuzaku’s PSF blurs the steep gradient of the cool core. As Reiprichetal. (2008)pointsout,theapproachtoPSF-correctionsdescribedinthe previoussectiondoesnotfullyaccountforthisblurringwithinthe centralregion,howeverourmethodprovidesareasonableapprox- imationtothecorrectionsneeded. To ensure that the background models used do not signifi- cantlyimpacttheresults,wevarythenormalizationsofthesecom- ponentsandmeasurethedeviationsproducedintemperature.The uncertaintyintheNXBis∼3percent(Tawaetal.2008),andfrom ananalysis of ROSAT databy Carrera,Fabian&Barcons (1997), weestimatethatthecosmicvarianceduetopointsourceclustering intheCXBis∼ 10per centover thisfieldof view.Wealsotest theeffectofmetallicityfrom0.2−0.4Z⊙intheouterannuliand arangeof±10percentinthecolumndensity.Eachofthesevari- ationsresultsinachange intemperatureof. 10per cent forall Figure8.ComparisonbetweenChandra(redtriangles)andSuzaku(black annuli,andtheindividualsystematicuncertaintiesaresmallerthan crosses)densityprofiles.Errorbarsaresmallerthantheplotsymbols. thePoissonuncertaintiesforallbutthecolumndensity’seffecton thecentralregionswherethecountrateishigh.Finally,thenormal- izationofthelocalthermalcomponent,whichcouldvarythemost direction is consistently above or below the average temperature acrosstheclusterfieldofviewbecauseofthelowGalacticlatitude, ordensityforeveryannulus.Scatterthatislargerthanthestatisti- actuallyhasaverysmalleffectontemperaturefitsabove1keV. caluncertaintiescouldbeattributedtoremainingpointsourcesor Without spectral deprojection, the data from each annulus minorasymmetryinthecluster. will be contaminated by emission from regions at larger radii. TheentropyseenintheoutermostradialbinoftheNWpoint- But because the density profile falls so steeply and the ther- ing is significantly lower than nearby regions, mainly due to the mal bremsstrahlung emission scales as the square of the density, temperature drop seen there. However, scatter between pointings the only noticeable effect is in the cluster core (e.g., Fig. 3 of orindividualoutliersareunabletoexplaintheobservedflattening Sanders&Fabian2007).Thisregioniswellwithinourinnermost oftheentropyprofileinthesummedannuli.Weplotapowerlaw radialbin,sowedonotexpectsignificanterrorsduetothelackof risingasr1.1tocomparewiththeentropyprofilepredictedbyan- deprojectionoftheSuzakudata. alyticalmodelsofaccretionshockheatingandseeninsomeobser- As an additional check on the reliability of our temperature vations as well as numerical simulations (Tozzi&Norman 2001; anddensityprofiles,wecomparethevaluesfromSuzakuwiththe Ponmanetal.2003;Voitetal.2005).Asmallnumberofobjectsin Chandra observations used in the mass estimate. The high spa- thesampleofPonmanetal.(2003)haveentropycurvesthatdonot tial resolution of Chandra allows for our central region to be di- risewithradius.Theobservedandexpectedprofilesagreeatsmall vided into several annuli, with the average temperature in agree- radii,risingoutofthecore,butthereisaclearentropydeficitinthe mentwiththeSuzakuvalue.AsshowninFig.8,thedensityprofiles outskirtsofthecluster,perhapsindicativeofinfallinggaswhichis arealsoreasonablyconsistentbetweenthetwoobservatories,with not dynamically stable. Our background model would haveto be aslightlysteepeningslopeatthelargerradiiseenbySuzaku. offbyanorderofmagnitude,orthecolumndensitychangedbya We can check the assumption of spherical symmetry used factorof2,toincreasetheentropyintheoutskirtstothepredicted when deriving the mass profile, seeing if the emission is at least values. circularlysymmetricbyconsideringtheprojectedprofilesineach For the estimates of the virial radius and mass, the method ofthepointingsseparately.Fig.9showsthetemperature,density, offittinganNFWmodeltoourtemperatureprofileisanadditional andentropyprofilesforeachpointing.HerewedonotincludePSF- sourceofuncertainty.Wehaveexcludedtheinnerandouterregions correctionsinordertokeepeachsetofobservationsindependent. wheretheassumptionofhydrostaticequilibriumislikelytobreak Theuncertaintiesarelargerwhensplittingupthedata,butthere- down, but several variations of thetemperatureprofilewiththese sults from the separate pointings broadly overlap, and no single pointsincludedor excludedproduce valuesfor r200 consistent to (cid:13)c 0000RAS,MNRAS000,000–000 8 M. R. Georgeet al. 400 350 c)300 p k s ( u di250 a R e al Sc200 150 100 5 6 7 8 9 10 11 Concentration Figure10.Likelihoodcontoursfortheconcentrationandscaleradiuspa- rametersoftheNFWfits,drawnat∆χ2 = 2.30,6.17,and11.80,corre- spondingtothe1σ,2σ,and3σ confidence intervals, respectively. Thick redcontours show theconstraints fromthe combination ofChandraand Suzakudata,excludingtheclustercoreandtheoutermostannuluswhichis beyondthevirialradius.Thinbluecontoursshowtheconstraintswithout theSuzakudataforcomparison. 5 DISCUSSION Figure9.Comparisonoftemperature,density,andentropyprofilesineach direction.ThetemperatureintheNEdirectionisnotwell-constrainedfrom Thesearethefirstwell-constrainedmeasurementsofthegastem- 9.5′ − 13.5′ due to a large amount of area excluded because of point peratureprofilebeyond r200 forarichandrelaxedcluster, which sources, sothetemperature andentropy points arenotplotted inthis re- wecannowcomparewithmodelpredictionsandsimulations.We gion.Slightoffsetsareaddedtobinradiiforclarity.Thedottedcurveinthe see that there is a clear decline in temperature between 0.3 − bottompanelshowsK∝r1.1.Theverticaldashedlineshowsourestimate ofr200,derivedinSection4.2. 1.5r200, consistent with recent observational trends at growing radii(Vikhlininetal.2005;Prattetal.2007;Reiprichetal.2008) andsuggestingthatconductiondoesnotplayasignificantroleon typical cluster time-scales. Roncarellietal. (2006) measured the ∼ 10 per cent. Similarvalues arealso obtained when using only magnitudeofthetemperaturedropinhydrodynamicalsimulations, theSuzakudata,whichhasalargeuncertaintyinthecentraltem- findinga40percentdeclinefrom0.3−1r200,thesamesizefound peratureduetoPSF-blurring.Thewideradialspanofthisdataset intheanalyticaltreatmentofOstriker,Bode&Babul(2005).The provides significantly tighter constraints on the NFW parameters dropobservedinPKS0745-191overthisradialrangeiscloserto thancouldbeobtainedwiththeChandradataalone,asshownin 70percent,butthegeneralshapesoftheprofilesaresimilar. Fig. 10. Data from the cluster core are still excluded in the con- Theobservedentropyprofiledeviatesfromexpectationsnear tours plotted, though they might be used in a typical analysis. In the virial radius. Tozzi&Norman (2001) describe the effects on either case withonly Chandra data, the NFW scale radius is not entropy of the accretion phases, including adiabatic infall, shock well-constrainedsincethedatadonotextendoutthatfar,andthe heating,andadiabaticcompressionfollowedbycoolingwithinthe resultingestimateforr200,andthusM200,wouldbesignificantly halo.Interestingly,weseeevidenceforanaccretionshockbeyond largerthanthevaluesweobtain.Wecanalsoincludethesystematic thevirialradiusinonedirection(NWpointinginFig.9),sugges- uncertaintiesinthetemperatureprofilewithinthisprocessoffitting tiveofcoolmaterialfallinginwardalongafilament.Thechangein overNFWparameterspace.Evenwithdifferencesof0.5−1keV entropyintheouterannulusofthisregionisnotseenintheother betweentheFIandBIsensorswhichhavesimilarlyshapedbutoff- directions, though the values there are still lower than would be settemperature profiles,changes inthebest fittingvalueof R200 expectedfromthetypicalincreaseofK ∝r1.1. areof order 10%,giving asystematicuncertaintyof 30% forthe Thesharperdeclineintemperaturethanpredictedandtheflat- determinationofM200. tening of the entropy profile in the outskirts suggest a need for We can also estimate the cluster mass independently of any nonthermalpressuresupportinordertomaintaindynamicstability. model parametrization by plugging our density and temperature ThenumericalsimulationsofEke,Navarro&Frenk(1998)showa profilesdirectlyintoEquation1andcalculatinggradientsfromthe significantriseintheratioofbulkkineticenergytothermalenergy finitedifferencequotientsofadjacentpoints.Atlargeradii,thecu- beginningwithinthevirialradius.Mergeractivityincreasesthetur- mulativemassestimateusingthismethodactuallydecreases,indi- bulent pressure, and even though PKS 0745-191 appears relaxed cating that the hydrostatic assumption fails, and the uncertainties morphologically,itshouldstillbeaccretingmatterintheoutskirts. arelargebecausespatialgradientsaretakenbetweenpointssepa- Wenotethattheinfalltime-scale,t ∼ (r3/GM)1/2,isoforder f ratedbythewidethicknessofannularbins.However,atthevirial 1Gyr at the virial radius, and the time-scale set by the speed of radiusnear15′,themassestimateagreeswiththatderivedfromthe sound,ts∼(r2mH/ΓkT)1/2,isseveraltimeslarger. NFWmodeltowithin∼30percent. Neumann(2005),studyingthesummedprofilesof14nearby (cid:13)c 0000RAS,MNRAS000,000–000 PKS 0745-191atthevirialradius 9 Abell clusters beyond r200, argues that the ICM at large radii maynotbeinhydrostaticequilibrium,andthatcool gasnot seen in X-rays could increasingly dominate the baryon content in the outskirts.Afshordietal.(2007)stackedWMAPobservationsofa largesampleofmassiveclustersandfoundadeficitinthermalen- ergyintheoutskirtsfromtheSunyaev-Zel’dovichprofile,alsoar- guingforcoolphaseoftheICM.Itisnotwellunderstoodhowthese different phases would mix, and complicated gas physics would likely result. The assumption of hydrostatic equilibrium fails be- yondthevirialradius,asseenbythepoorertemperaturefitsfrom massmodelingwhentheoutermosttemperaturevalueisincluded. ItisnotobvioustowhatextenttheICMwithinthevirialradiusis not in equilibrium, but the entropy and temperature profiles sug- gestthatnonthermal physicsmaybeimportantintheoutskirtsof thiscluster. In Fig. 11, we plot the observed temperature profile against Figure 11. Suzaku temperature profile, normalized by the emission- twomodels.Thefirstistheexpectedtemperatureifthegascontent weightedmeanandcomparedwithmodelprofiles.Thesolidcurveshows tracedtheNFWdistributionofdarkmatter,withaKeplerianveloc- theparametrizationofEquation3,alsorescaledbytheemission-weighted ityprofile,i.e.,T(r)∝v(r)2 ∝M(<r)/r.Thesecondandmore meantemperature thatweobserve.Thedotted curveshowsthetempera- realisticcaseisfortheprojectedX-raytemperatureofgasarranged tureforgastracinganNFWdistribution,whilethedashedcurveshowsa polytropicallyandinhydrostaticequilibriumwithanNFWgravita- polytropicprofileinhydrostaticequilibriumwithanNFWpotential.Both modelsarenormalizedtomatchthemaximumobservedtemperature. tionalpotential,asderivedbySuto,Sasaki&Makino(1998).The outertemperatureswehaveobservedarelowerthanthoseexpected for reasonable valuesof themodel parameters2.Additionally, we canfittheobservedtemperatureprofileusingasimpleparametriza- (Chenetal.2003),but similar tothe ROSAT value of Allenetal. tion (1996). The trend of fgas rising with radius is also seen in other clusters and in simulations (e.g., Vikhlininetal. 2006; Ekeetal. r α r β T(r)=T1 1+ keV (3) 1998), since the gas density distribution is less centrally concen- „r « „ r « s s tratedthanthat for collisionlessdarkmatter.Theoutermost mea- withbest-fittingparametersT1 =135,α=2.4,β =−4.1,where suredvalueoffgas isconsistentwiththemeancosmicbaryonra- rs is the scale radius from the best-fitting NFW profile. We note tioderivedfromWMAPdataandothercosmologicalobservations, thatthenormalizationisrelatedtothevalueofthetemperatureat Ωb/Ωm =0.165±0.006(Komatsuetal.2008). thisradius,T1=T(rs)/2β. Apossibleexplanationforthedeficitofthermalenergyseen atlargeradiiisthatinfallingmatterhasretainedsomeofitskinetic 6 SUMMARY energyinbulkmotion.Ifthereisincreasingpressuresupportfrom bulkmotion,turbulence,orothernonthermalprocessesintheouter We have presented the first measurements of the gas beyond the regionsofthecluster,thenthegravitationalpotentialandthustotal virialradiusfromarichandapparentlyrelaxedgalaxycluster.The mass would be incorrectly estimated when assuming hydrostatic temperatureprofileshowsasignificantdeclineatouterradii,while equilibrium.Thiseffectwoulddependonthechangesinboththe the entropy profile levels off. The spatially resolved temperature temperature and its gradient, making estimation of the true mass anddensitymeasurementsouttoandbeyondthevirialradiuspro- difficult. duce improved constraints on the mass and gas fraction profiles, Alternatively, the peak temperature, seen in the second- thoughtheobservedtemperatureprofiledoesshowdeviationsfrom innermostannulus, couldbeinflatedduetononthermal processes that expected from cluster gas in hydrostatic equilibrium with an such as shock heating during infall. AGN heating is thought to NFWmassprofile. playanimportant roleincool coreclusters,andsome excessen- Observations of the outskirts of clusters offer a direct probe ergy could also heat the gas beyond the core. More observations oftheirassemblyhistory.Theapparentshockfrontinonedirection are needed of this cluster and others to determine how well the makesitclearthatthisclusterisstillaccretingmaterial,likelyalong self-similar scaling relations, which depend on the dominance of afilament.Evidencefornonthermalpressuresupportsuggeststhat gravitationalprocessincreatingequilibrium,applyouttothevirial bulk motions from merger activity could be making a significant radius. contributiontothegasenergyintheoutskirtsofthiscluster. The gas fraction we obtain is more consistent withprevious PKS 0745-191 is an ideal candidate for such observations, results. At r200, fgas = 0.13, lower than that found with XMM givenitsdistanceandluminosity.Theangularsizefitsreasonably withinafewpointingsandthecountrateishighenoughforgood spectral statistics. The low and well-constrained background lev- 2 WesettheparameterBp,definedbySutoetal.(1998),equaltounity, elsofSuzakuarecrucialforlowsurfacebrightnessmeasurements andusethepolytropicindexderivedfromthebest-fittingpowerlawstoour likethosepresentedhereandbyReiprichetal.(2008).Weexpect dataexcluding thecentral region, Γ = 1.5.Itispossibletoobtain tem- that as the number of cluster observations in the Suzaku archive peratureprofilesthatdeclineassteeplyastheobservedonebyincreasing increases, these types of analyses will be able to probe the self- thevalueofBp,thoughthiswouldrequiretruncatingthegasdistribution shortlybeyondtheregionswehavemeasured.FortherangeΓ=1.1−2, similarityoftheoutskirtsofclusters.Morestudiesatthevirialra- thepolytropicindexuseddoesnothaveasignificanteffectontheshapeof dius, including X-ray observations, gravitational lensing, the SZ thescaledprofile. effect,andnumericalsimulations,willprovideabetterunderstand- (cid:13)c 0000RAS,MNRAS000,000–000 10 M. R.Georgeet al. ingoftheregimewherehydrostaticequilibriumbreaksdownand PointecouteauE.,ArnaudM.,PrattG.W.,2005,A&A,435,1 clustersarestillbeingassembled. PonmanT.J.,SandersonA.J.R.,FinoguenovA.,2003,MNRAS, 343,331 PrattG.W.,Bo¨hringerH.,CrostonJ.H.,ArnaudM.,BorganiS., FinoguenovA.,TempleR.F.,2007,A&A,461,71 ACKNOWLEDGMENTS ReiprichT.H.,Bo¨hringerH.,2002,ApJ,567,716 WethankJamesGraham,ThomasReiprich,SteveAllen,Richard ReiprichT.H.,etal.,2008,preprint(arxiv:0806.2920) Mushotzky, and Mark Bautz for helpful discussions and Roder- RoncarelliM.,EttoriS.,DolagK.,MoscardiniL.,BorganiS.,Mu- ickJohnstoneformuchassistance.MRGacknowledgesaHerschel ranteG.,2006,MNRAS,373,1339 SmithScholarship, HRR issupported by STFC,and ACFthanks SandersJ.S.,FabianA.C.,2007,MNRAS,381,1381 theRoyalSocietyforsupport.Thisresearchhasmadeuseofdata SatoK.,etal.,2007,PASJ,59,299 obtainedfromtheSuzakusatellite,acollaborativemissionbetween SchmidtR.W.,AllenS.W.,2007,MNRAS,379,209 thespaceagenciesofJapan(JAXA)andtheUSA(NASA). SnowdenS.L.,etal.,1997,ApJ,485,125 SnowdenS.L.,MushotzkyR.F.,KuntzK.D.,DavisD.S.,2008, A&A,478,615 SolovyevaL.,AnokhinS.,SauvageotJ.L.,TeyssierR.,Neumann REFERENCES D.,2007,A&A,476,63 AfshordiN.,LinY.-T.,NagaiD.,SandersonA.J.R.,2007,MN- SutoY.,SasakiS.,MakinoN.,1998,ApJ,509,544 RAS,378,293 TawaN.,etal.,2008,PASJ,60,11 AllenS.W.,FabianA.C.,KneibJ.P.,1996,MNRAS,279,615 TozziP.,NormanC.,2001,ApJ,546,63 Allen S. W., Rapetti D. A., Schmidt R. W., Ebeling H., Morris VikhlininA.,KravtsovA.,FormanW.,JonesC.,MarkevitchM., R.G.,FabianA.C.,2008,MNRAS,383,879 MurrayS.S.,VanSpeybroeckL.,2006,ApJ,640,691 AllenS.W.,SchmidtR.W.,FabianA.C.,EbelingH.,2003,MN- VikhlininA.,MarkevitchM.,MurrayS.S.,JonesC.,FormanW., RAS,342,287 VanSpeybroeckL.,2005,ApJ,628,655 Anders E.,Grevesse N.,1989, Geochim. Cosmochim. Acta, 53, VoigtL.M.,FabianA.C.,2006,MNRAS,368,518 197 VoitG.M.,2005,Rev.Mod.Phys.,77,207 ArnaudM.,PointecouteauE.,PrattG.W.,2005,A&A,441,893 VoitG.M.,KayS.T.,BryanG.L.,2005,MNRAS,364,909 CarreraF.J.,FabianA.C.,BarconsX.,1997,MNRAS,285,820 WhiteS.D.M., NavarroJ. F.,EvrardA. E.,FrenkC.S.,1993, CashW.,1979,ApJ,228,939 Nat,366,429 ChenY.,IkebeY.,Bo¨hringerH.,2003,A&A,407,41 ZhangY.-Y.,FinoguenovA.,Bo¨hringerH.,IkebeY.,Matsushita ComerfordJ.M.,NatarajanP.,2007,MNRAS,379,190 K.,SchueckerP.,2004,A&A,413,49 DeGrandiS.,MolendiS.,2002,ApJ,567,163 Edge A. C., Stewart G. C., Fabian A. C., Arnaud K. A., 1990, MNRAS,245,559 EkeV.R.,ColeS.,FrenkC.S.,1996,MNRAS,282,263 EkeV.R.,NavarroJ.F.,FrenkC.S.,1998,ApJ,503,569 EvrardA.E.,MetzlerC.A.,NavarroJ.F.,1996,ApJ,469,494 FabianA.C.,etal.,1985,MNRAS,216,923 FrenkC.S.,etal.,1999,ApJ,525,554 FujimotoR.,etal.,2007,PASJ,59,133 IrwinJ.A.,BregmanJ.N.,EvrardA.E.,1999,ApJ,519,518 IshisakiY.,etal.,2007,PASJ,59,113 KaiserN.,1986,MNRAS,222,323 KalberlaP.M.W.,BurtonW.B.,HartmannD.,ArnalE.M.,Ba- jajaE.,MorrasR.,Po¨ppelW.G.L.,2005,A&A,440,775 KomatsuE.,etal.,2008,preprint(arxiv:0803.0547) KoyamaK.,etal.,2007,PASJ,59,23 LiedahlD.A.,OsterheldA.L.,GoldsteinW.H.,1995,ApJ,438, L115 LokenC.,NormanM.L.,NelsonE.,BurnsJ.,BryanG.L.,Motl P.,2002,ApJ,579,571 MarkevitchM.,FormanW.R.,SarazinC.L.,VikhlininA.,1998, ApJ,503,77 McLaughlinD.E.,1999,AJ,117,2398 MeweR.,GronenschildE.H.B.M.,vandenOordG.H.J.,1985, A&AS,62,197 MeweR.,LemenJ.R.,vandenOordG.H.J.,1986,A&AS,65, 511 NavarroJ.F.,FrenkC.S.,WhiteS.D.M.,1997,ApJ,490,493 NeumannD.M.,2005,A&A,439,465 O’DeaC.P.,etal.,2008,ApJ,681,1035 OstrikerJ.P.,BodeP.,BabulA.,2005,ApJ,634,964 (cid:13)c 0000RAS,MNRAS000,000–000