ebook img

X-ray Luminosities of Optically-Selected Cataclysmic Variables and Application to the Galactic Ridge X-ray Emission PDF

0.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview X-ray Luminosities of Optically-Selected Cataclysmic Variables and Application to the Galactic Ridge X-ray Emission

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed11December 2013 (MNLATEXstylefilev2.2) X-ray Luminosities of Optically-Selected Cataclysmic Variables and Application to the Galactic Ridge X-ray Emission R. C. Reis 1⋆, P. J. Wheatley2†, B. T. Ga¨nsicke2, & J. P. Osborne3 1InstituteofAstronomy,MadingleyRoad,Cambridge,CB30HA 2DepartmentofPhysics,UniversityofWarwick,Coventry,CV47AL 3 3UniversityofLeicester,UniversityRoad,Leicester,LE17RH 1 0 2 n 11December 2013 a J 7 ABSTRACT BystudyingSwiftX-rayspectraofanoptically-selected,non-magneticsampleofnearbycat- ] aclysmic variables (CVs), we show that there is a population with X-ray luminosity much E lowerthanaccountedforin existingstudies.We findanaverage0.5-10.0keVluminosityof H 8×1029ergs−1 which is an order of magnitude lower than observedin previoussamples. . h Lookingattheco-addedX-rayspectrumoftwentyCVs,weshowthatthespectralproperties p ofthisoptically-selected,lowX-rayluminositysample–likelycharacteristicofthedominant - populationofCVs–resemblesthatoftheirbrightercounterpart,aswellastheX-rayemission o originatingintheGalacticridge.ItisarguedthatifthespacedensityofCVsisgreaterthan r t thecurrentestimates,asitisindeedpredictedbypopulationsynthesismodels,thenCVscan s significantlycontributetotheGalacticridgeemission. a [ Keywords: 1 Stars:CataclysmicVariables(CVs)-X-rays:GRXE v 3 1 2 1 1 INTRODUCTION 2009)orii)originatingfromdiffusegasregionssuchasmolecular . clouds illuminated by X-rays from point sources (e.g. Murakami 1 Theserendipitousdetectionin1962ofanalmostuniformCosmic etal.2000)orbombardedbylow-energycosmic-rayelectrons(e.g. 0 X-ray Background (CXB) is regarded as one of the first discov- Yusef-Zadehetal.2002), and/or non-thermal processes inthein- 3 eriesof extrasolar X-rayastronomy (Giacconi et al. 1962) and is 1 terstellar medium (e.g. Dogiel et al. 2002). Theapparent thermal thought to be mostly due to unresolved active galactic nuclei to- : spectrumof theGRXE(Koyama et al.1986) impliesanemitting v getherwithtypeIasupernovae(e.g.Zdziarski1996;Draper&Bal- plasmawithtemperatureofafew keV.Theenergydensityofthis i lantyne 2009; Moretti et al. 2009). A decade later the possibility X hypothetical plasma is over two orders of magnitude higher than ofaGalacticcomponenttothetotalmeasuredCXBwassuggested thatofnormalinterstellarmatteranditstemperatureistoohighfor r (Cooke, Griffiths & Pounds 1970). Ensuing observations showed a ittobegravitationallyboundtotheGalacticplane(Koyamaetal. that this Galacticcomponent tothe X-ray background isconcen- 1996).FurthermoreDogieletal.(2002)showedthattheenergyre- tratedneartheGalacticdisk,coveringacontinuousridgeofwidth quiredtoreplenishtheoutflowingplasmaisashighas1042ergs−1 ∼10deg.extendingalongtheGalacticplanefortensofdegrees– whichisequivalenttothereleaseofkineticenergyfromonesuper- theGalacticRidgeX-rayEmission(GRXE,seee.g.Worralletal. novaoccurringevery30yearsintheGalacticplaneregion.Withan 1982;Warwicketal.1985,1988). expected rateof 2-3 supernovae per century inthewholeGalaxy NumerousauthorshavemodelledtheGRXEspectrumasorig- (Tammann1982),thisleadstotheunlikelyrequirementthatallthe inating from two collisionally-ionised plasma components (e.g., energyassociatedwithsupernovae intheGalaxygoesintoexclu- Koyamaetal.1986,1996;Kanedaetal.1997):Asoftcomponent sivelyheatingthishypotheticaldiffuseplasma. (kT∼0.8keV)possiblyproducedbysupernovashockwaves(e.g. The absence of a plausible heating mechanism to this hy- Kaneda et al. 1997) and a hard (kT∼ 8 keV) component whose pothetical diffuse thermal plasma, and the similarities of the X- originisstillatopicofmuchdiscussion.Severalexplanationsfor ray spectra of the ridge and CVs, led many to believe that the the nature of this hard component have been suggested, amongst ridgeemissionisstillmost likelytoarisefromasyet unresolved them:i)asuperpositionofdiscrete,faintX-raysourcessuchascat- sourcessuchascataclysmicvariables(CVs)andotheraccretingbi- aclysmic variables (Worrall et al. 1982; Revnivtsev et al. 2006a, narysystems(Munoetal.2004;Revnivtsevetal.2007).Anultra- deep (1 Ms) Chandra ACIS-I study of the Galactic centre region ⋆ E-mail:[email protected] (Revnivtsevetal.2009)hassuccessfullyresolvedover80percent † E-mail:[email protected] ofthediffuseemissionintodiscretesourcesat 6–7keV(seealso (cid:13)c 0000RAS 2 Reis etal. Hong2012;Yuasaetal.2012),howeverthenatureofthesesources FortheSwiftsurveypresentedhere,weselected16CVsfrom remainsuncertain(e.g.Warwicketal.2011) andthecontribution SDSSDR5inwhichtheopticalspectrumisdominatedbyemission of CVs to the total GRXE luminosity function is still known. A fromacoolwhitedwarf.Thesespectrahavebeenskysubtracted, key uncertainty is the X-ray luminosity function of CVs. Previ- corrected for telluric absorption and spectrophotometrically cali- ous studies were suggestive of mean CV X-ray luminosities of bratedbytheSpectro2dpipeline(Stoughtonetal.2002).Thissam- log(< L >) ∼ 31.5 (Mukai & Shiokawa 1993; Verbunt et al. ple was supplemented by four additional low-mass transfer sys- x 1997) in the hard band (2.0–10.0keV), with at least an order of tems withsimilar optical properties: V455And (Araujo-Betancor magnitudespreadaboutthismeanvalue.WorkdoneonASCAdata etal.2005),PQAnd(Schwarzetal.2004;Pattersonetal.2005a), (Yamauchi etal.1996) concluded thatforCVstobeaccountable REJ1255+266(Watsonetal.1996;Wheatleyetal.2000a;Patter- fortheGRXEthesources’2.0–10.0keVluminositycouldnotbe son et al. 2005c) and ASAS0025+1217 (aka FL Psc, Templeton higherthan2×1033ergs−1.Basedonmodelcalculations,Tanaka etal.2006;Ishiokaetal.2007).Theobjectnamesandcoordinates etal.(1999)showedthattheridgeemissionrequiresaclassofhard ofthe20SwifttargetsarelistedinTable1.Ourtargetsformarepre- sourceswithaluminosityinthe1029−30ergs−1range,thusmak- sentativesampleofspectroscopicallyselectedlow-luminosityCVs ingCVsapparentlytooluminousasaclass. withdistancesintherange∼75−400 pc(seeSect. 4.1). Sazonov et al. (2006) found CVscontributingonly at L & x 1031ergs−1,buttheirsamplewasX-rayselectedandweremostly consistent of magnetic CVs, and thus biased tohigh X-ray lumi- nosities.Ontheotherhand,amorerecentstudybyBycklingetal. (2010) usedadistance-limitedsampleofnon-magnetic CVswith known distances and found systematically low luminosities con- centratedaroundLx ≈1030.5ergs−1.However,eventhissample 3 OBSERVATIONSANDDATAREDUCTION wasbiasedtohigh accretionratesbyrelianceoninhomogeneous selectioncriteriasuchasdwarfnovaoutburst. Oursampleof20optically-selected, non-magnetic CVswereob- Until recently, the population of known CVshas been dom- servedusingtheX-RayTelescope,XRT(0.2-10.0keV) onboard inated by systems discovered because they displayed copious ac- the Swift Gamma-Ray Burst Explorer (Gehrels et al. 2004). The cretionactivity,eitherintheformofoutbursts,orX-rayemission variousobservations,listedinTable1,werereducedusingthetools (Ga¨nsickeetal.2002, 2005a). Incontrasttothis,population syn- providedintheHEASOFTv6.9softwarepackage. Alldatawere thesismodelshavelongpredictedthattheCVpopulationshouldbe extractedinthephotoncounting(PC)modewiththestandardgrade dominated (>95%) by short-period low-luminosity systems with selection(0–12) for thismode. For each observation animage in extremely low-mass donor stars (Kolb 1993; Howell et al. 2001) the 0.2-10.0keV band was obtained from which a spectrum was andthusshouldhaveaverageX-rayluminosities. 1030ergs−1. extractedfromacircularregionofradius47”,correspondingto90 Overthepastyears,theSloanDigitalSkySurvey(SDSS)hasiden- percentofthepointspreadfunctionat1.5keV.Backgroundspectra tifiedasubstantialnumberofCVswhoseopticalspectraaredomi- wereextractedfromanannularregioncentredontheX-raysource natedbyacoolwhitedwarf(e.g.Szkodyetal.2009),implyingvery of inner and outer radius of 50” and 200” respectively. Response low secular average accretion rates (Townsley & Bildsten 2003; files(version10)weredownloaded1andusedforspectralanalysis. Townsley&Ga¨nsicke 2009; Ga¨nsicke etal.2009), andthat have When looking at the spectrum of each individual target we used extremelylow-massdonorstars(Littlefairetal.2006b,2008).This the ftool2 GRPPHA to provide a minimum of 4 counts per bin sampleofoptically-selected,non-magneticCVsprovidethemeans andthusprovidetwoormoreindependentspectralbins.Following to measure the X-ray luminosity of CVs towards the low-end of thisrequirementonlysourceswith8ormorecountswereindivid- their luminosity function and thus to better assess their contribu- ually analysed in this manner. Model fits were minimised using tiontotheGalacticridgeX-rayemission. Cashstatistics(C-statinXSPEC;Cash1979)duetothelownum- InthefollowingsectionswepresentresultsonSwift-XRTob- berofcountsperbin.Allspectralanalyseswereperformedusing servationsmadeonasampleof20CVswhoseopticalspectraare XSPECv12.7.0(Arnaud1996). dominated by the white dwarf, indicative of low accretion rates. The source and background event files were used to calcu- Thesearethesystemsexpectedtodominateinnumbersthepopu- late count-rates, R, for each target in the 0.5-10.0keV energy lationofCVs. band. Thenet counts werecomputed fromthetotalcounts inthe sourceregionlessthebackgroundcount,scaledbytheratioofthe source/background area.Thecount-rateforeachindividual target wascomputedusingthetotallive-timeandtheuncertaintiesareas- 2 TARGETSAMPLE sumedtofollowsimplePoissonstatistics.Table1listthenetcounts for the various observations. In order to analyse the sample as a TheSloanDigitalSkySurvey(SDSS;Yorketal.2000)isanimag- group,inSect.4.2weco-addedalltheindividualspectrausingthe ingandspectroscopicsurveyofthehighGalacticlatitudeskyvis- ftool XSELECT. For the co-added spectrum, a minimum of 20 iblefromtheNorthernhemisphere. Webasedourtargetselection onDataRelease5(DR5),whichcoveredover8,000deg2ofthesky countsperbinwereusedandmodelfitswereminimisedusingχ2 statistics. and performed spectroscopy on over 1million objects (Adelman- McCarthyetal.2006).Althoughtheprinciplegoalofthissurvey istosurveythelarge-scaledistributionofgalaxiesandquasars,it hasalsoprovidedvastamountofdataonstars.DuetoCVshaving non-stellar colours they are serendipitously discovered by SDSS. Szkody et al. (2011) have identified close to 300 CVs, of which ∼ 45haveaverylowmassaccretionrateandarethusdominated 1 http://heasarc.nasa.gov/docs/heasarc/caldb/data/swift/xrt/index.html bythewhitedwarf. 2 http://heasarc.gsfc.nasa.gov/ftools/ (cid:13)c 0000RAS,MNRAS000,000–000 The LuminosityFunctionofCVs and theGRXE 3 Table1.Systemproperties Target RA(2000) Dec(2000) Porb g Live Counts ModelFluxa Distanceb Distancec Luminosity References time(s) [0.5–10keV] ×10−13 [0.5–10.0keV] (min) mag. ergcm−2s−1 (pc) (pc) ×1029(ergs−1) SDSS0131–0901 013132.39 -090122.3 81.5 18.3 4940 23.9 2.0±0.5 240 219±72 13.8±6.4 1 SDSS0137–0912 013701.06 -091234.9 79.7 18.7 4493 16.2 1.5±0.4 230 263±86 9.4±4.6 2 SDSS0843+2751 084303.99 +275149.7 85.5 18.9 476 <1d <0.3 240 288±95 <1.8 3,4 SDSS0904+0355 090403.48 +035501.2 86.0 19.3 5670 16.8 1.2±0.3 260 347±114 9.9±4.8 5 SDSS0904+4402 090452.09 +440255.4 19.4 4367 1.0 0.09±0.01 320 363±119 1.2±0.5 6 SDSS0919+0857 091945.11 +085710.0 81.3 18.2 167 <1d <2 220 209±69 <11 6,7 SDSS1137+0148 113722.25 +014858.6 109.6 18.7 3798 11.8 1.3±0.4 220 263±86 7.4±0.4 8 SDSS1238–0339 123813.73 -033933.0 80.5 17.8 4106 40.3 4.1±0.8 180 174±57 15.7±7.0 9 SDSS1339+4847 133947.12 +484727.5 82.5 17.7 4051 16.7 1.7±0.5 170 166±54 5.9±2.8 10 SDSS1457+5148 145758.21 +514807.9 77.92 19.6 6293 14.8 1.0±0.3 320 398±131 11.9±5.8 11 SDSS1501+5501 150137.22 +550123.4 81.9 19.4 4800 11.6 1.0±0.3 300 363±119 10.7±5.5 12 SDSS1507+5230 150722.33 +523039.8 66.6 18.3 7002 15.6 0.9±0.3 225 219±72 5.6±2.7 12,13,14 SDSS1556–0009 155644.24 -000950.2 106.7 18.0 7463 42.8 2.4±0.4 135 191±63 5.2±2.3 7,15 SDSS1610–0102 161033.64 -010223.3 80.5 19.0 9400 18.8 0.8±0.2 240 302±99 5.7±2.7 16,17 SDSS1702+3229 170213.26 +322954.1 144.1 17.9 6840 25.7 1.5±0.4 180 - 6.0±2.8 18,19 SDSS2048–0610 204817.85 -061044.8 87.3 19.4 14734 68.6 1.9±0.3 270 363±119 16.8±7.3 20,21 ASAS0025+1217 002511.07 +121712.1 ≃80 17.4v 3309 53.8 6.7±1.2 125 145±47 12.6±5.5 22,23 PQAND 022929.54 +400240.2 ≃80 19.0v 13215 16.5 0.5±0.1 150±50 302±99 1.4±1.0 24,25 RE1255+266 125510.56 +264226.9 ≃120? 19.2 4298 8.8 0.8±0.3 180±50 326±107 3.3±2.2 26,27 V455And 233401.45 +392141.0 81.1 16.5v 8666 16.0 0.8±0.2 90±15 95±31 0.7±0.3 28 Notes:aFluxeswerecalculatedassumingtheflux–countraterelationshipgiveninthetext(seeSect.4.3.1)inthe0.5–10keVrange.bdistancesobtainedby modellingtheopticalSDSSspectra,asdescribedintheSect.4.1,withuncertaintiesof20%,exceptforthelastfourtargets,wherepublisheddistanceestimates aregiven.ThedistanceslistedinthiscolumnareusedintheX-rayanalysis.cdistancesobtainedfrom<Mg>=11.6±0.7(Gaensickeetal.2009),except forSDSS1702+3229,whoseperiodistoolongtoadoptthisabsolutemagnitude.v V-bandmagnitude.d 1σupperlimit.References:1 Southworthetal. (2007);2Pretoriusetal.(2004);3Pattersonetal.(1998);4 Katoetal.(2004);5Woudtetal.(2005);6Dillonetal.(2008);7Thorstensenetal.inprep; 8 Pattersonetal.(2003);9 Zharikovetal.(2006);10 Ga¨nsickeetal.(2006b);11 Uthasetal.(2012);12 Littlefairetal.(2008);13 Littlefairetal.(2007); 14Pattersonetal.(2008);15Woudtetal.(2004);16Woudt&Warner(2004);17Copperwheatetal.(2009);18Littlefairetal.(2006a);19Boydetal.(2006); 20 Woudtetal.(2005);21 Dillonetal.inprep;22 Templetonetal.(2006);23 Ishiokaetal.(2007);24 Pattersonetal.(2005b);25 Vanlandingham etal. (2005);26Wheatleyetal.(2000b);27Pattersonetal.(2005d);28Araujo-Betancoretal.(2005) Figure1.Threecomponentsmodel(whitedwarf,opticallythindisc,secondarystar)oftheaverageopticalspectrumofSDSS1339+4842(left,Sp(2)=M8, Twd =12500K,Td =6500K,Σd =1.7×10−2gcm−2andd=170pc)andSDSS1137+0148(right,Sp(2)=M6.5,Twd =13000K,Td =6500K, Σd = 3.5×10−2gcm−2andd= 220pc).Theobserveddataareshowningrey,theindividualthreecomponentsasdottedblacklines,andthesummed modelassolidblackline. 4 ANALYSISANDRESULTS (1997, 1999, 2006b), here we provide only a brief summary. The white dwarf is represented by model spectra computed with the TLUSTY/SYNSPEC codes of Lanz & Hubeny (1995), with 4.1 Distanceestimates a fixed radius R = 8.7 × 108cm implied by the Hamada wd In order to calculate the luminosity distribution of the sample it & Salpeter (1961) mass-radius relation for an assumed mass of wasnecessarytoobtainanapproximatedistancetoeachindividual Mwd = 0.6M⊙. The secondary star is represented by observed source.Thiswasdonefollowingtwodifferentapproaches. templatescoveringspectraltypes(Sp(2))M0.5toM9fromBeuer- Thefirstmethodconsistsoffittingathree-component model mann et al. (1998) and L0 to L8 from Kirkpatrick et al. (2000, accounting for the flux contributions of the white dwarf, the ac- 1999). TheradiusofthesecondarystarisestimatedfromRoche- cretion disc, and the companion star to the optical spectra of lobe geometry, and depends primarily on the orbital period. Or- the 16 CVs for which SDSS spectroscopy is available. A de- bitalperiodmeasurementsareavailableformostofthetargets(Ta- taileddescriptionofthisapproachcanbefoundinGa¨nsickeetal. (cid:13)c 0000RAS,MNRAS000,000–000 4 Reis etal. 1 0 0. V V nts/sec/ke 10−3 nts/sec/ke 10−3 u u o o d c d c ormalize 10−4 ormalize 10−4 N N 2 5 Ratio 11.5 Ratio 11. 5 0. 1 2 5 0.5 1 2 5 Energy (keV) Energy (keV) Figure2.Swift-XRTX-raybackgroundsubtractedspectrumofcombinedsources.Left:Data/modelofsimpleone-temperaturethermalplasmawithatem- peratureof∼6keV.Thismodelprovidedapoorfitwithχ2/ν =31.3/19andexhibitedresidualatenergies <1.2keV.Right:Data/modelratiofortwo- ∼ temperaturethermalplasmawithtemperaturesof8+10and0.62+0.16keVaswellasphotoelectricabsorption.Thisprovidedthebestfit(χ2/ν=11.3/17) −3 −0.24 forthecombineddata. ble1),anditisapparentthatmostofthesystemsarelocatedclose (MEKAL model in XSPEC; Mewe et al. 1986; Liedahl et al. tothe80minperiod minimum,for whichweadopt R = 8.6× 1995) havingatemperatureof≈ 6keV(Model 1;Table2).This 2 109cm. For SDSS1137+0148 (RZLeo), SDSS1556–0009, and model provides a poor fit with χ2/ν = 31.3/19 and exhibited SDSS1702+3229, weassume1.28×1010 cm,1.17×1010 cm, residualatenergies <1keV.Amuchimprovedfitwasachievedby ∼ and 1.53 ×1010 cm, respectively. Free parameters in the three- theadditionofasecondthermalplasmamodel(inasimilarman- component model are the white dwarf temperature T , the dis- ner to e.g. van Teeseling & Verbunt 1994; Wheatley et al. 1996) wd tance d, the temperature T and column density Σ of the disk, absorbedbyaneutralhydrogencolumn(WABS3;Model2,Fig.2, d d as well as the spectral type of the secondary star. The parame- right), however, it was found that the value of N is degenerate H ters were varied in a forward-modelling approach until all three with the plasma temperature. Nonetheless, for a typical value of spectral components in the observed spectrum were consistently N =4×1020cm−2 (Baskillet al.2005), wefindatemperature H reproduced,Fig.1showstwoexamplefits(SDSS1137+0148 and of0.62+0.16keV,consistentwiththevaluesfoundbyBaskilletal. −0.24 SDSS1337+0148), and Table1 lists the distances determined by (2005)forasampleof34CVsusingasimilarmodel.Wehavethus thesefits.Theuncertaintyofthedistancesdeterminedinthisway fixedthevalueofN to4×1020cm−2whenestimatingtheerrors H is estimated to be ≃ 20% (see Howell et al. 2002; Szkody et al. presentedinTable2. 2002;Ga¨nsickeetal.2005b,2006a,b,foradetaileddescriptionof Thebestfittingmodelforthissampleoflow-luminosityCVs themethodemployedhereandassociateduncertainties.). ishereinterpretedasatwocollisionally-ionisedplasmawithtem- FourofourtargetshavenoSDSSspectrum,andTable1lists peraturesof8+10 and0.62+0.16keV.Ofcourse, thefact thatwe −3 −0.24 previouslypublisheddistanceestimatesandreferences. havetwotemperaturesdoesnotnecessarilyimplythepresenceof Asasecondmethodofestimatingthedistancestoourtargets two discrete components in the X-ray spectrum as this likely a weadoptedthemeanabsolutemagnitudeforshort-periodCVswith simpleapproximationtocommoncoolingflowmodelswhichsuc- white dwarf dominated spectra, < Mg >= 11.6 ± 0.7, which cessfullyrepresentthespectraofmoreluminousCVs(e.g.Wheat- Ga¨nsicke et al. (2009) established largely based on systems for ley et al. 1996; Mukai et al. 2003; Baskill et al. 2005; Byckling which ultraviolet spectroscopy is available, and which leads to a et al. 2010). The results presented here for the spectral proper- ∼ 30% uncertainty in the distance. The distances corresponding tiesofoursampleofnon-magnetic,lowluminosityCVsareagain totheobservedgandV magnitudesarealsolistedinTable1,with consistent with that of the Galactic ridge emission (e.g. Koyama theexceptionofSDSS1702+3229,whoseorbitalperiodistoolong etal.1986;Kanedaetal.1997).Usingthebest-fitmodel,acount- toqualifyforthismethod.Forallsystems,bothdistanceestimates rateof4.0±0.2×10−3s−1resultedina0.5–10keVunabsorbed agreewithinthequotederrors.Wenotethatanindependentanaly- energy flux4 of 1.6 ±0.2×10−13ergcm−2s−1. These values sisofHSTspectroscopyofSDSS1507+5230ledtoadistancees- were used as conversion factors between the 0.5–10keV count timateof250±50pc,(Uthasetal.2011)entirelyconsistentwith rate and flux in the following section. We note here that for the bothofourownvalues(Table1). only object common in both our sample and that of Byckling For the determination of the X-ray luminosities carried out et al. (2010) (namely ASAS0025+12), the luminosity found here in §4.3, we adopted the distances based on our three-component ofL0.5−10 = (1.3±0.6)×1030ergs−1 (Table1),basedonthe model for the 16 systems with SDSS spectra, and the published methodologydescribedabove,isfullyconsistentwiththevalueof distancesfortheremainingfoursystems. L2−10 =(1.6+−30..88)×1030ergs−1foundintheirwork,evenwhen consideringthedifferentenergyrangeusedinthiswork. 4.2 Spectralanalysis In order to investigate the spectral nature of the twenty optically selectedCVsweco-addedtheirindividual spectrausingtheftool XSELECT. The combined spectrum was then grouped so as to 3 Using the standard BCMC cross-sections (Balucinska-Church & Mc- provideaminimumoftwentycountsper energybinandthusen- Cammon1992)andANGRabundances(Anders&Grevesse1989). abletheuseofχ2statistics.Figure2(left)showstheaveragespec- 4 UnabsorbedfluxobtainedusingtheXSPECmodelCFLUXconvolved trum fitted with a simple one-temperature thermal plasma model withModel2fromTable2. (cid:13)c 0000RAS,MNRAS000,000–000 The LuminosityFunctionofCVs and theGRXE 5 Figure3.Left:Histogramofcountsdetectedintheenergyband0.5–10.0keV. Right:Sameasbeforebutforthefluxobtainedusingtherate–fluxconversion factorasdescribedinSect.4.3.1. Table2.Modelparametersforthecombinedsourcespectra. Parameter Model1 Model2 NH(×1020cm−2) – 4 kT1keV 5.8+−21..02 8+−130 Norm1(×10−5) 8.2+−00..87 7.2±0.8 kT2keV – 0.62+−00..1264 Norm2(×10−5) – 0.8±0.3 χ2/ν 31.3/19 11.3/17 Notes–Model1isthesingle-temperaturethermalplasmamodelMEKAL inXSPEC.Model2assumesatwo-temperaturethermalplasmawithpho- toelectricabsorption(WABS(MEKAL+MEKAL)inXSPEC).Thevalue ofNHwasfrozenat4×1020cm−2.Thequotederrorcorrespondstoa90 percentconfidencelevelforoneparameterofinterest(∆χ2=2.71). 4.3 X-rayphotometry 4.3.1 Energyfluxes Figure4.X-rayluminositydistributionforasampleofoptically-selected Ahistogramofthenumberofsourcesasafunctionofthecountsin CVs (blue). Only sources with observed fluxes consistently greater than the0.5–10.0keVenergyrangeisshowninFig.3(Left).Inorderto zeroareincludedinthehistogram.Themagentaandcyanarrowsshowsthe obtainanestimateoftheenergyflux(in ergcm−2s−1)weused upperlimitsforSDSS0843+2751andSDSS0919+0857respectively. The thespectralmodeldescribedintheprevioussectiontocomputean meanGaussiandistribution(solidblue)has< log(L0.5−10) >= 29.78 with a variance of 0.16. For comparison with previous, X-ray selected averageconversionfactorbetweencount-rate(R)andenergyfluxin surveys, we show in green the (renormalised) Gaussian distribution ob- therange0.5−10keV.Wefind(Sect.4.2)thatforthecombined tained for the 46 sources catalogued by the ROSAT all sky survey (de- spectrum of all twenty sources, a two-temperature optically thin rived from Verbunt et al. 1997 scaled to the 0.5-10keV range used in plasmamodelabsorbedbyaneutralhydrogencolumnequivalentto thiswork.Thisillustrative, X-rayselected, distribution hasameanvalue NH≈4×1020cm−2yieldsaconversionfactorfortheunabsorbed of< log(L2−10) >= 30.96andavarianceof0.78,clearlyhigherthan energyfluxofF(0.5−10) =(4.1±0.4)×10−11×R ergcm−2s−1, oursample. whereRisthecount-rateinthe0.5–10keVenergyband.Asacon- sistencycheck weused thismodel tofittheindividual spectraof the4observationswithover40counts(seeTable2)allowingonly amultiplicativeconstanttovary.Thisresultedinvaluesforthecon- versionfactorvaryingfromapproximately3.8to4.6×10−11,in SDSS0843+2751andSDSS0919+0857werenotusedinthecon- agreementwiththevalueabove.Thefluxesforthevarioustargets structionofthehistogramduethesourceshavingacountratecon- obtainedasdescribedarealsolistedinTable1andshowninFig.3 sistentwithzero,possiblyresultingfromtheirshortexposuretime (Right). (see Table 1). However the upper limits to their luminosities are displayed with magenta and cyan arrows respectively. The solid redlineshowstheGaussiandistributionforthemean(0.5–10keV) 4.3.2 Luminositydistribution log-luminositywith< log(L0.5−10) >= 29.78andavarianceof Table1liststhecalculated0.5–10.0keVluminositiesofalltwenty 0.16.Forcomparison,inFig.4weshowingreenthe(renormalised) sources.Thelargeerrorinthesevaluesaretheresultofpropagated luminositydistributionobtainedfromtheX-rayselectedROSATall errors in both the distance and flux. A histogram of the number skysurveycataloguefromVerbuntetal.(1997)afterscalingtothe of sources as a function of log-luminosity is displayed in Fig. 4. 0.5-10keVrangeusedhereassumingModel2(outlinedinTable2 anddescribedin§4.2). (cid:13)c 0000RAS,MNRAS000,000–000 6 Reis etal. Figure5.Left: X-rayluminosity (0.5-10keV)versus orbital periods forthe samplepresented inthis work (red)andthat ofByckling etal. (2010, their Fig.7)(black).The2-10keVfluxquotedinthelatterwasconvertedtothe0.5-10keVrangeusingthemodeldetailedinTable2.Right:Cumulativesource distributionasafunctionofX-rayluminosityforoursample(red)andforthatpresentedinBycklingetal.(2010,theirFig.6)(black).Thedashedlineshows thepowerlawN(>L)=k(L/Lt)−α,wherek=2.39×10−7pc−3andLt=3×1030ergs−1asperBycklingetal.(2010). 5 DISCUSSION X-rayluminosityfunctioninanoptically-selectedsampleofCVs havingparallax-baseddistancemeasurements.Inthatstudy,theau- SuggestionsthattheGalacticridgeX-rayemissionisdiffusecame thorsfindapeakintheluminosityfunctionat∼1030−31ergs−1, about due to failure in fully resolving the emission into point systematicallylower thanprevious –X-rayselected–studiesbut sources (e.g. Ebisawa et al. 2001). Non-magnetic CVs have also stillmoreluminousthantheresultfoundhere.Figure5(left)shows beendismissedasamaincontributor totheGRXE(e.g.Sazonov theBycklingetal.(2010)sample(black)togetherwithourresults et al. 2006; Revnivtsev et al. 2006b) due to suggestions that the (red)fortheLuminosity–Orbitalperiodplane.Itisclearthatweare overall population is too luminous, with a mean X-ray luminos- probingadifferentparameterspacetoBycklingetal.(2010),with itygreaterthan∼ 1031ergs−1 (e.g.Eracleousetal.1991;Rich- overallloworbitalperiodsasexpectedformoreevolved,andthus man1996;Verbuntetal.1997;Baskilletal.2005).Wearguehere intrinsicallyfainter,systems.WealsoshowinFig.5(right)thecu- that the latter is likely a result of a selection bias in their X-ray mulativedistribution–LogN(>L )whereL istheluminos- Vol Vol luminosity function caused by the predominant use of X-ray se- itypercubicparsecvolumeasafunctionofLogL.Forthesample lected samples. By studying an optically-selected sample of non- of Byckling et al. (2010), we assume a volume out to 200 pc, in magnetic,intrinsicallyfaintCVs,wefindapopulationoflowX-ray accordancetothepreviousauthors.Forthesamplepresentedhere, luminosityCVs,havinganaverageluminosityof< L0.5−10 >= thefurthestobjectislocated∼400pcaway(Table2).However,as 8×1029ergs−1 whichstillresemblestheX-rayspectrumofthe oursampleisnotcompleteouttothisradius,weestimateacorrec- GalacticRidge.Thispopulation,iffoundtoexistinlargenumbers, tionfactorbynotingthatSDSScovered8,000deg2 (∼ 20%;see couldbeastrongcontributortotheoverallGRXEbelow∼10keV. §2)oftheskyandoursampleuses16outofthe30lowluminosity The X-ray spectra of CVs are often characterised by a two- systemsdetectedinDR5.Asthesizeofthepopulation presented temperature plasma model (see e.g. Mukai & Shiokawa 1993; here is still highly uncertain, the normalisation of the logN–logS Baskill et al. 2005). In Sect. 4.2 we showed that the combined plot,andwithitthespacedensityofthesesystems,shouldbeinter- spectrum of this sample of twenty low-luminosity CVs has the pretedwithextremecaution. Nonetheless, theseresultsshow that same spectral characteristics as that of the better known, high- the sample presented in this work fills the gap between the only luminosity CVs (Fig. 2). This two-temperature spectrum closely low-luminosityoutlier(GWLibatL2−10 ∼ 5×1028ergs−1)in resemblesthatoftheGalacticridgeX-rayemission(Mukai&Sh- thesampleofBycklingetal.(2010),andthepeakoftheirdistribu- iokawa 1993). Eighteen out of the twenty sources in our sample tionat∼1030−31ergs−1. weredetected withSwiftXRTand werefound tohave X-raylu- It was shown by Pretorius et al. (2007) and Pretorius & minositiesintherange1028−30ergs−1.Figure4showsthisdis- Knigge(2012)thatthevastmajorityofCVscouldbefainterthan tributiontogetherwiththeupperlimitofthetwosourceshavinga ∼5×1029ergs−1–andthusyetundetected–basedonthelim- countrateconsistentwithzero.Thepeakofthedistributionforthe itstotheirCVspacedensityasfoundfromROSATsurveys.Muno optically-selectedsampleusedhereisconsiderablylowerthanthat etal.(2004)showedthattoaccountforthediffuseemissionwithin presented by Verbunt et al. (1997) of < log(L2.0−10) >= 30.8 20pc of the Galactic centre, approximately 0.2% of stellar mass (showningreeninFig.4),especiallyafter considering thelarger wouldhavetobehardX-raysourceswithL >3×1029ergs−1. x energyrangeusedhere(Fig.3).Thisdifferenceisclearlyaresult Thetotalstellarmasswithin20pcoftheGalaxycentreisestimated ofthedifferentbiasesintheselectionofthetwosamples. as≈108M⊙(Launhardtetal.2002)andhence≈2×105sources Byckling et al. (2010) presented a thorough analysis of the wouldbeneededinthatregion.Thisisequivalenttoasourceden- (cid:13)c 0000RAS,MNRAS000,000–000 The LuminosityFunctionofCVs and theGRXE 7 sityof∼ 6pc−3 assumingasphericalregionofradius20pc.By REFERENCES scalingaccordingtothemassmodelofLaunhardtetal.(2002)with a stellar density inthe inner 20pcof 1000M⊙pc−3 and alocal Adelman-McCarthy J. K., Agu¨eros M. A., Allam S. S., et al., 2006,ApJS,162,38 stellardensityof0.1M⊙pc−3 thesourcedensityinthe20pcre- gioncorrespondstoalocaldensityof≈6×10−4pc−3,whichis Anders E., Grevesse N., 1989, Geochimica et Cosmochimica Acta,53,197 significantly higher thanthat found inmost current observational Araujo-BetancorS.,Ga¨nsickeB.T.,HagenH.,etal.,2005,A&A, campaigns. However, population synthesis based on the standard 430,629 CV evolution scenario indeed predict space densities which are largerthanthecurrentobservedvalues,rangingfrom∼10−5pc−3 Arnaud K. A., 1996, in Astronomical Data Analysis Software (Politano1996)toafew∼10−4pc−3(deKool1992).Thesemod- andSystemsV,editedbyG.H.Jacoby&J.Barnes,vol.101of AstronomicalSocietyofthePacificConferenceSeries,17–+ elsfurtherpredictthatthepopulationshouldbedominatedbyshort Balucinska-ChurchM.,McCammonD.,1992,ApJ,400,699 periodsystems(seee.g.Kolb1993;Kolb&Stehle1996),similar BaskillD.S.,WheatleyP.J.,OsborneJ.P.,2005,MNRAS,357, tothepopulationpresentedinthiswork(seeFig.5).Interestingly, 626 theupperlimitonlow-luminosityCVs–theundetectedpopulation Beuermann K.,BaraffeI.,KolbU.,WeichholdM.,1998, A&A, inPretorius&Knigge(2012)–doesindeedaddfurtherempirical 339,518 credence to population syntheses models (see Fig. 4 of Pretorius Boyd D., Oksanen A., Henden A., 2006, Journal of the British &Knigge2012). If population syntheses models arecorrect then AstronomicalAssociation,116,187 the population density for CVs should be greater than observed, andCVshavingluminositiesofafew1029ergs−1couldthusbea Byckling K., Mukai K., Thorstensen J. R., Osborne J. P., 2010, MNRAS,408,2298 majorcontributortotheGRXE. CashW.,1979,ApJ,228,939 Itisnowestablishedthatintermediatepolars(IP)areimpor- tantcontributortotheGRXEaboveL ∼1030ergs−1(e.g.Hong CookeB.A.,GriffithsR.E.,PoundsK.A.,1970,in Non-Solar x 2012,andreferencestherein).However,IPsareboththeoretically X-andGamma-RayAstronomy,editedbyL.Gratton,vol.37of andempiricallyknowntobelongtothebrightestandrarestendof IAUSymposium,280–+ the CV population. In a volume limited sample, IPs represent at CopperwheatC.M.,MarshT.R.,DhillonV.S.,etal.,2009,MN- bestafewpercenttheentireCVpopulation(Downesetal.2001, RAS,393,157 2006). deKoolM.,1992,A&A,261,188 Dillon M., Ga¨nsicke B.T., Aungwerojwit A.,et al.,2008, MN- 6 CONCLUSIONS RAS,386,1568 DogielV.A.,InoueH.,MasaiK.,Scho¨nfelderV.,StrongA.W., Using Swift-XRT, a sample of twenty optically selected, non- 2002,ApJ,581,1061 magnetic CVs were observed and their X-ray luminosities (0.5- DownesR.A.,WebbinkR.F.,SharaM.M.,RitterH.,KolbU., 10.0 keV) determined. The sources luminosities were found to DuerbeckH.W.,2001,PASP,113,764 range between 1028 to 1031ergs−1 with an average value of DownesR.A.,WebbinkR.F.,SharaM.M.,RitterH.,KolbU., 8 × 1029ergs−1. Cataclysmic variables towards the low lumi- DuerbeckH.W.,2006,VizieROnlineDataCatalog,5123,0 nosity range would not have been detected by the various Chan- DraperA.R.,BallantyneD.R.,2009,ApJ,707,778 drasurveysoftheGalacticcentre,wheretheirlimitingsensitivity EbisawaK.,MaedaY.,KanedaH.,YamauchiS.,2001,Science, is L0.5−7keV ∼ 1030ergs−1 at a distance of 8kpc (Revnivtsev 293,1633 etal.2009).Spectralanalysesweremadeoftheaverageco-added EracleousM.,HalpernJ.,PattersonJ.,1991,ApJ,382,290 spectrum. Theresult isconsistent withatwo-temperature plasma Ga¨nsickeB.T.,BeuermannK.,ThomasH.,1997,MNRAS,289, at ∼ 0.6keV and ∼ 8keV, similarly to that of the well studied 388 high-luminositypopulation.Thesimilaritybetweenthespectraof Ga¨nsickeB.T.,DillonM.,SouthworthJ.,etal.,2009,MNRAS, thepointsourcesandthatoftheGRXEsuggeststhatthisemission 397,2170 couldindeedbeproducedbyCVs.Thepresentworkdemonstrates Ga¨nsicke B. T., Hagen H., Engels D., 2002, in The Physics the use of optical selection in order to remove X-ray luminosity of Cataclysmic Variables and Related Objects, edited by biasinCVs.Thestudyofalargeropticallyselectedsamplewould B.T.Ga¨nsicke,K.Beuermann,&K.Reinsch,vol.261of As- be advantageous in better understanding the luminosity function tronomicalSocietyofthePacificConferenceSeries,190–+ of CVs, however in order to determine the absolute contribution Ga¨nsicke B. T., Long K. S., Barstow M. A., Hubeny I., 2006a, ofCVstowardstheGRXEonealsoneedstodeterminethecorre- ApJ,639,1039 spondingpopulationdensityfunction. Ga¨nsickeB.T.,MarshT.R.,EdgeA.,etal.,2005a,MNRAS,361, 141 Ga¨nsickeB.T.,Rodr´ıguez-GilP.,MarshT.R.,etal.,2006b,MN- ACKNOWLEDGEMENTS RAS,365,969 RCR thanks the Michigan Society of Fellows and NASA. RCR Ga¨nsicke B. T., Sion E. M., Beuermann K., Fabian D., Cheng issupported byNASA through theEinsteinFellowshipProgram, F.H.,KrautterJ.,1999,A&A,347,178 grantnumberPF1-120087andisamemberoftheMichiganSoci- Ga¨nsickeB.T.,SzkodyP.,HowellS.B.,SionE.M.,2005b,ApJ, etyofFellows.PJWandBTGacknowledgesupportfromtheUK 629,451 STFCintheformofaRollingGrant.JPOacknowledgesthesup- GehrelsN.,ChincariniG.,GiommiP.,etal.,2004,ApJ,611,1005 port of the UK Space Agency. This work also made use of data GiacconiR.,GurskyH.,PaoliniF.R.,RossiB.B.,1962,Physical supplied by the UK Swift Science Data Centre at the University ReviewLetters,9,439 ofLeicester.Wealsothanktheanonymousrefereeforhis/hercon- HamadaT.,SalpeterE.E.,1961,ApJ,134,683 structivecomments. HongJ.,2012,ArXive-prints (cid:13)c 0000RAS,MNRAS000,000–000 8 Reis etal. HowellS.B.,Ga¨nsickeB.T.,SzkodyP.,SionE.M.,2002,ApJ, SazonovS.,RevnivtsevM.,GilfanovM.,ChurazovE.,Sunyaev 575,419 R.,2006,A&A,450,117 HowellS.B.,NelsonL.A.,RappaportS.,2001,ApJ,550,897 Schwarz G. J., Barman T., SilvestriN., et al., 2004, PASP,116, IshiokaR.,SekiguchiK.,MaeharaH.,2007,PASJ,59,929 1111 KanedaH.,MakishimaK.,YamauchiS.,KoyamaK.,Matsuzaki SouthworthJ.,MarshT.R.,Ga¨nsickeB.T.,etal.,2007,MNRAS, K.,YamasakiN.Y.,1997,ApJ,491,638 382,1145 KatoT.,NogamiD.,MatsumotoK.,BabaH.,2004,PASJ,56,109 Stoughton C.,Lupton R.H.,Bernardi M.,et al.,2002, AJ,123, KirkpatrickJ.D.,ReidI.N.,LiebertJ.,etal.,1999,ApJ,519,802 485 KirkpatrickJ.D.,ReidI.N.,LiebertJ.,etal.,2000,AJ,120,447 SzkodyP.,AndersonS.F.,BrooksK.,etal.,2011,AJ,142,181 KolbU.,1993,A&A,271,149 SzkodyP.,AndersonS.F.,HaydenM.,etal.,2009,AJ,137,4011 KolbU.,StehleR.,1996,MNRAS,282,1454 SzkodyP.,Ga¨nsickeB.T.,SionE.M.,HowellS.B.,2002,ApJ, KoyamaK.,MaedaY.,SonobeT.,TakeshimaT.,TanakaY.,Ya- 574,950 mauchiS.,1996,PASJ,48,249 TammannG.A.,1982,in NATOASICProc.90:Supernovae:A KoyamaK.,MakishimaK.,TanakaY.,TsunemiH.,1986,PASJ, SurveyofCurrentResearch,editedbyM.J.Rees&R.J.Stone- 38,121 ham,371–403 LanzT.,HubenyI.,1995,ApJ,439,905 Tanaka Y., Miyaji T., Hasinger G., 1999, Astronomische LaunhardtR.,ZylkaR.,MezgerP.G.,2002,A&A,384,112 Nachrichten,320,181 LiedahlD.A.,OsterheldA.L.,GoldsteinW.H.,1995,ApJ,438, TempletonM.R.,LeamanR.,SzkodyP.,etal.,2006,PASP,118, L115 236 LittlefairS.P.,DhillonV.S.,MarshT.R.,etal.,2008,MNRAS, TownsleyD.M.,BildstenL.,2003,ApJ,596,L227 388,1582 TownsleyD.M.,Ga¨nsickeB.T.,2009,ApJ,693,1007 LittlefairS.P.,DhillonV.S.,MarshT.R.,Ga¨nsickeB.T.,2006a, Uthas H., Knigge C., Long K. S., Patterson J., Thorstensen J., MNRAS,371,1435 2011,MNRAS,414,L85 LittlefairS.P.,DhillonV.S.,MarshT.R.,Ga¨nsickeB.T.,Baraffe UthasH.,PattersonJ.,KempJ.,etal.,2012,MNRAS,420,379 I.,WatsonC.A.,2007,MNRAS,381,827 vanTeeselingA.,VerbuntF.,1994,A&A,292,519 LittlefairS.P.,DhillonV.S.,MarshT.R.,Ga¨nsickeB.T.,South- VanlandinghamK.M.,SchwarzG.J.,HowellS.B.,2005,PASP, worthJ.,WatsonC.A.,2006b,Science,314,1578 117,928 MeweR.,LemenJ.R.,vandenOordG.H.J.,1986,A&AS,65, VerbuntF.,Bunk W.H.,RitterH.,PfeffermannE.,1997, A&A, 511 327,602 MorettiA.,PaganiC.,CusumanoG.,etal.,2009,A&A,493,501 WarwickR.S.,NortonA.J.,TurnerM.J.L.,WatsonM.G.,Will- Mukai K.,Kinkhabwala A.,PetersonJ.R.,Kahn S.M., Paerels ingaleR.,1988,MNRAS,232,551 F.,2003,ApJ,586,L77 WarwickR.S.,Pe´rez-Ram´ırezD.,BycklingK.,2011,MNRAS, MukaiK.,ShiokawaK.,1993,ApJ,418,863 413,595 MunoM.P.,BaganoffF.K.,BautzM.W.,etal.,2004,ApJ,613, Warwick R. S., Turner M. J. L., Watson M. G., Willingale R., 326 1985,Nat,317,218 MurakamiH.,KoyamaK.,SakanoM.,TsujimotoM.,MaedaY., WatsonM.G.,MarshT.R.,FenderR.P.,etal.,1996,MNRAS, 2000,ApJ,534,283 281,1016 Patterson J., Kemp J., Skillman D. R., et al., 1998, PASP, 110, WheatleyP.J.,BurleighM.R.,WatsonM.G.,2000a, MNRAS, 1290 317,343 Patterson J., Thorstensen J. R., Armstrong E., Henden A. A., WheatleyP.J.,BurleighM.R.,WatsonM.G.,2000b,MNRAS, HynesR.I.,2005a,PASP,117,922 317,343 Patterson J., Thorstensen J. R., Armstrong E., Henden A. A., WheatleyP.J.,VerbuntF.,BelloniT.,etal.,1996,A&A,307,137 HynesR.I.,2005b,PASP,117,922 Worrall D. M., Marshall F. E., Boldt E. A., Swank J. H., 1982, PattersonJ.,ThorstensenJ.R.,KempJ.,2005c,PASP,117,427 ApJ,255,111 PattersonJ.,ThorstensenJ.R.,KempJ.,2005d,PASP,117,427 WoudtP.A.,WarnerB.,2004,MNRAS,348,599 PattersonJ.,ThorstensenJ.R.,KempJ.,etal.,2003,PASP,115, Woudt P. A., Warner B., Pretorius M. L., 2004, MNRAS, 351, 1308 1015 PattersonJ.,ThorstensenJ.R.,KniggeC.,2008,PASP,120,510 Woudt P. A., Warner B., Pretorius M. L., Dale D., 2005, in PolitanoM.,1996,ApJ,465,338 TheAstrophysicsofCataclysmicVariablesandRelatedObjects, PretoriusM.L.,KniggeC.,2012,MNRAS,419,1442 editedbyJ.-M.Hameury&J.-P.Lasota,vol.330of Astronom- Pretorius M. L.,Knigge C., O’Donoghue D., Henry J. P.,Gioia icalSocietyofthePacificConferenceSeries,325–+ I.M.,MullisC.R.,2007,MNRAS,382,1279 YamauchiS.,KanedaH.,KoyamaK.,etal.,1996,PASJ,48,L15 Pretorius M. L., Woudt P. A., Warner B., Bolt G., Patterson J., YorkD.G.,AdelmanJ.,AndersonJr.J.E.,etal.,2000,AJ,120, ArmstrongE.,2004,MNRAS,352,1056 1579 RevnivtsevM.,MolkovS.,SazonovS.,2006a,MNRAS,373,L11 YuasaT.,MakishimaK.,NakazawaK.,2012,ApJ,753,129 Revnivtsev M.,Sazonov S.,Churazov E.,FormanW.,Vikhlinin Yusef-ZadehF.,LawC.,WardleM.,2002,ApJ,568,L121 A.,SunyaevR.,2009,Nat,458,1142 ZdziarskiA.A.,1996,MNRAS,281,L9 Revnivtsev M.,SazonovS.,GilfanovM.,ChurazovE.,Sunyaev Zharikov S. V., Tovmassian G. H., Napiwotzki R., Michel R., R.,2006b,A&A,452,169 NeustroevV.,2006,A&A,449,645 RevnivtsevM.,SazonovS.,SunyaevR.,2007,ProgressofTheo- reticalPhysicsSupplement,169,125 RichmanH.R.,1996,ApJ,462,404 (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.