ebook img

X-ray emission from the extended disks of spiral galaxies PDF

1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview X-ray emission from the extended disks of spiral galaxies

Mon.Not.R.Astron.Soc.000,1–17(2009) Printed27January2009 (MNLATEXstylefilev2.2) X-ray emission from the extended disks of spiral galaxies R.A. Owen, R.S. Warwick 9 X-ray&ObservationalAstronomyGroup,Dept.ofPhysics&Astronomy,UniversityofLeicester,UniversityRoad,LeicesterLE17RH,U.K. 0 0 2 n 27January2009 a J 7 ABSTRACT 2 WepresentastudyoftheX-raypropertiesofasampleofsixnearbylate-typespiralgalax- ] iesbasedonXMM-Newtonobservations.Sinceourprimaryfocusisonthelinkagebetween A X-rayemissionandstarformationinextended,extranucleargalacticdisks,wehaveselected G galaxieswithnearface-onaspectandsufficientangularextentsoastobereadilyamenableto . investigationwiththemoderatespatialresolutionaffordedbyXMM-Newton.Afterexcluding h regionsineachgalaxydominatedbybrightpointsources,westudyboththemorphologyand p - spectral properties of the residual X-ray emission, comprised of both diffuse emission and o the integrated signal of the fainter discrete source populations. The soft X-ray morphology r generallytracestheinnerspiralarmsandshowsastrongcorrelationwiththedistributionof t s UV light, indicative of a close connection between the X-ray emission and recent star for- a mation.Thesoft(0.3–2keV)X-rayluminositytostarformationrate(SFR)ratiovariesfrom [ 1−5×1039ergs−1(M yr−1)−1,withanindicationthatthelowerrangeofthisratiorelates ⊙ 1 to regionsof lower SFR density.The X-ray spectra are well matched by a two-temperature v thermalmodelwithderivedtemperaturesoftypically∼0.2keVand∼0.65keV,inlinewith 3 publishedresultsforothernormalandstar-forminggalaxies.Thehotcomponentcontributesa 6 higherfractionofthesoftluminosityinthegalaxieswithhighestX-ray/SFRratio,suggesting 2 alinkbetweenplasmatemperatureandX-rayproductionefficiency.Thephysicalproperties 4 of the gas present in the galactic disks are consistent with a clumpy thin-disk distribution, . 1 presumablycomposedofdiffusestructuressuchassuperbubblestogetherwiththeintegrated 0 emissionofunresolveddiscretesourcesincludingyoungsupernovaremnants. 9 0 Keywords: : Galaxies:ISM–galaxies:spiral–X-rays:galaxies v i X r a 1 INTRODUCTION ralgalaxiesisbelievedtoariseingasheatedbyshocksgenerated as a result of supernova explosions and stellar wind interactions ThefirstdetailedstudiesoftheX-rayemissionfromnearby late- (Chevalier&Clegg 1985; Stricklandetal. 2000; Suchkovetal. type galaxies were carried out with the Einstein observatory and 1994;Grimesetal.2005).ThisissupportedbyanalysisoftheX- revealed both individual luminous X-ray sources, as well as an rayspectraofindividualshell-typesupernovaremnants(SNRs)of extended, often complex, underlying structure (Fabbiano 1989). reasonableage,whichareoftencharacterisedbyplasmatempera- In a number of near edge-on star-forming systems. such as M82 turesintherange0.2-0.8keV,similartothevaluesobtainedwhen (Watsonetal. 1984), evidence was also found for hot outflowing studying larger-scale structures in galactic disks. Stricklandetal. winds.ThesuperiorspatialresolutionandenhancedsoftX-rayre- (2004a) showed that the luminosity of the diffuse X-ray emis- sponse of ROSAT greatly extended this work, leading to the de- sion observed in star-forming galaxies is proportional to the rate tection of substantial numbers of discrete sources as well as es- of mechanical energy injection into the ISM from young stars. tablishing a much clearer picture of the diffuse emission compo- Mas-Hesse,Oti-Floranes&Cervino (2008) further found that the nents (e.g. Readetal. 1997). More recently the advent of XMM- ratioofthesoftX-rayluminositytofarinfraredluminosity,taking NewtonandChandra hasextendedour knowledgeofthediscrete thelatterasaproxy forthestar-formationrate(SFR),isstrongly X-ray source populations and the ultrahot ISM in nearby galax- dependentontheefficiencywithwhichmechanicalenergyiscon- ies to unprecedented luminosity and surface brightness thresh- vertedintosoftX-raysandalsotheevolutionarystatusofthestar olds(e.g.Stricklandetal.2004a;Colbertetal.2004;Pietschetal. formationepisode.Thisallarguesforacloseconnectionbetween 2004;Fabbiano2006;Yangetal.2007;Bogda´n&Gilfanov2008; softX-rayemissionandstarformationinlate-typegalaxies. Baueretal.2008). A recent study of a sample of 12 nearby spiral galax- Thediffuse X-rayemission associated withthedisksof spi- ies using Chandra (Tyleretal. 2004) has shown strong cor- 2 R.A.Owen &R.S. Warwick Table1.Propertiesofthesampleofgalaxies. Galaxy HubbleTypea Distanceb D25a Inclinationb ForegroundNH c Nucleus (Mpc) (′) (◦) (1020cm−2) NGC300 SA(s)d 2.0 21.8 30 3.6 - M74 SA(s)c 11.0 10.5 7 4.8 - NGC3184 SAB(rs)cd 11.6 7.2 <24 1.0 - M51 SA(s)bc 8.4 7.3 20 1.8 Sy2 M83 SAB(s)c 4.5 12.9 24 3.9 Starburst M101 SAB(rs)cd 7.2 26.9 18 1.1 - a-Hubbletypeandthemajor-axisdiameter(D25)fromtheRC3catalogue(deVaucouleursetal.1991). b-See§4.2forreferences. c-N valuesbasedonDickey&Lockman(1990). H Table2.DetailsoftheXMM-Newtonobservationsofthefivenewgalaxiesinoursample. Galaxy ObservationID StartDate Filtera Targetco-ordinatesb Usefulexposure(ks) (yyyy-mm-dd) pn/MOS1/MOS2 RA(J2000) Dec(J2000) pn MOS1+2 NGC300 0112800201 2000-12-26 M/M/M 00h54m55.0s −37◦41′00′′ 29.4 65.1 0112800101 2001-01-01 M/M/M 40.4 88.4 0305860401 2005-05-22 M/M/M 27.2 64.9 0305860301 2005-11-25 M/M/M 30.4 68.2 M74 0154350101 2002-02-02 T/T/T 01h36m23.9s +15◦45′13′′ 23.3 49.9 0154350201 2003-01-07 T/T/T 23.5 50.2 NGC3184 0028740301 2001-11-02 T/T/T 10h18m40.0s +41◦25′11′′ 19.9 49.9 M51 0112840201 2003-01-15 T/T/T 13h29m51.9s +47◦10′32′′ 18.8 40.6 0212480801 2005-07-01 M/M/M 20.4 56.7 0303420101 2006-05-20 T/T/T 32.3 77.3 0303420201 2006-05-24 T/T/T 14.1 43.0 M83 0110910201 2003-02-18 T/M/M 13h37m00.4s −29◦52′04′′ 18.3 38.2 a-T=thinfilter,M=mediumfilter. b-Assumedpositionofthegalacticnucleus. relation between soft diffuse X-ray emission and sites of re- sourcesandthediffusegalacticemission(§4).Onthebasisofpub- cent star formation in spiral arms traced by mid-infrared and lished source luminosity functions, we estimate the likely contri- Hαemission. A similarinvestigation hasnot been completed us- butionof trulydiffuseemission tothisresidual signal. Wego on ing XMM-Newton, but a number of studies of individual spiral toinvestigatespectralpropertiesofboththebrightsourceandthe galaxies have been reported (Pietschetal. 2001; Takahashietal. unresolved(residual)components(§5).Wealsoconsiderthemor- 2004;Trudolyubovetal.2005;Warwicketal.2007),whichagain phologyoftheresidualemissioninthecontextofthestarformation demonstrate the strong linkage between tracers of star formation evidentinthegalacticdisks(§6).Finallywediscusstheimplication anddiffuseX-rayemission. Furthermore, adual-component ther- ofourresults(§7)andbrieflysummariseourconclusions(§8). malmodel,withcharacteristictemperaturesof∼0.2keVand0.6– 0.7 keV, very often provides a good description of the spectrum of the diffuse X-ray emission. Studies of the point source X-ray 2 GALAXYSAMPLEANDOBSERVATIONS luminosityfunction(XLF)inspiralgalaxies(Tennantetal.2001; Soria&Wu2003;Colbertetal.2004)haveshownthatthebright- In this paper we investigate the large-scale spatial and spectral est point sources contain the bulk of the integrated point source properties of the X-ray emission emanating from the extended luminosity, suggesting that, provided a sufficient number of the disks of six nearby late-type spiral galaxies. The galaxies in brightestpointsourcesareexcluded,itshouldinprinciplebepossi- question are NGC300, M74, NGC3814, M51, M83 and M101, bletoprobetheunderlyingstructureofthegalaxytorelativelylow brief details of which are given in Table 1. In a previous paper levelsofsurfacebrightness. (Warwicketal.2007;hereafterW07),wereportedtheresultsofan In this paper, we focus on the spectral and morphological XMM-Newton study of one of these galaxies, namely M101, and properties of the diffuse X-ray emission emanating from the ex- hereweapplyasimilarmethodologytoextendthesample,thereby tendeddisksoflate-typenormalgalaxies,asdeducedfromXMM- allowing the intercomparison of the galaxy X-ray characteristics Newtonobservations.In§2,weidentifyasampleofnearbygalax- basedonXMM-Newtonobservations. ies with close to face-on disks of sufficient angular extent so as WhendealingwithX-rayspectralimagingdataofonlymod- tobereadilyamenableforstudywithXMM-Newton.Wethenout- erate spatial resolution (as afforded by XMM-Newton), the pres- linethedatareductionmethodsemployed(§3).Usingimageanal- ence of a number of very bright point sources has the potential ysis,wesub-dividethetotalX-rayluminosityofeachgalaxyinto toobscurethepropertiesoftheunderlyinggalaxy.Sinceourgoal thecontributionofspatiallyresolvedbrightsourcesandaresidual is to study the latter rather than the former, we have limited our componentcomprisingtheintegratedemissionofunresolvedpoint galaxy sample to nearby face-on systems of Hubble type Sbc-Sd X-rayemissionfromspiralgalaxies 3 with major-axisD25 extent greater than 7′, thereby ameliorating 3.2 Spatialmaskingofbrightsources the source confusion problem. (Wehave excluded M33 from our study since this galaxy has a D25 diameter of 70′and thus ex- Inordertoproduceaspatialmasktosuppressthebrightsourcecon- taminationitwasnecessary toconstruct acatalogue ofthebright tends well beyond the EPIC field of view; M33 is the subject of sourcesassociatedwitheachgalaxy.Thestartingpointwasapre- a specific XMM-Newton programme utilising multiple pointings liminarysource-listforeachgalaxyderivedfromthesecondXMM- (Pietschetal.2004;Misanovicetal.2006). Newton Serendipitous Source Catalogue (2XMM; Watsonetal. DetailsoftheXMM-NewtonEPICobservationsofthefivenew 2008), encompassing those sources located withinthe galaxy ex- additionstoourgalaxysamplearesummarisedinTable2. traction region (as defined above). Next we determined the net count-rate of each source in the broad-band pn+MOS image1. Thosesourcesforwhichthemeasuredcountratesexceededade- finedcount-rate threshold (specifictoeach galaxy) werethen in- 3 DATAREDUCTION cludedinthefinal“master”source-listforthegalaxy.Inthecaseof ThedatareductionwasbasedonSASv8.0.Thedatasetswereini- bothM83andNGC300twoadditionalsources,notincludedinthe tially screened for periods of high background by accumulating 2XMMcatalogue,butclearlypresentintheimagesatcount-rates full-field10–15keVlightcurves.MOSdatawereexcludedduring abovethethresholdwereadded byhand. Similarlyinthecaseof periods when the10-15 keV count rateaveraged over 100 s bins M51oneadditionalsourcewasadded.Thenumberofsourcesin- exceeded0.2cts−1,andthepndataweresimilarlyexcisedwhen cludedineachmastersource-listisgiveninTable3,togetherwith thepncountrateexceeded2cts−1.AssummarisedinTable2,the thethreshold setting(quotedastheequivalent unabsorbed source exposuretimesaftereventfilteringwithinindividual observations luminosity in the 0.3–6keV band on the basis of a source spec- rangedfrom14to40ksinthepncamera(withtypicallyslightly trumconsistingofpower-lawcontinuumwithΓ=1.7absorbedby greaterexposureintheMOScameras). theGalacticforegroundN ).Atthisstagewealsodeterminedthe H In W07, we discussed how the use of an appropriate spatial countratesforeachsourceinthesoft,mediumandhardbandsby mask greatly reduced the “contamination” arising from the pres- applying theabove processtotheappropriate pn+MOS sub-band enceofrelativelysmallnumbersofluminouspointsourcesinthe images. diskofM101.Hereweemployarefinementofthismaskingtech- Thenextstepinvolvedthecreationofthespatialmask.Tothis niqueinouranalysisoftheXMM-Newtonobservationsoffivefur- end, weproduced asimulatedimageof thepoint sourcespresent thertargetgalaxies. inthebroad-bandpn+MOSobservation.TheMOS-andpn-camera PSFsweremodelled foreachenergybandasasetofsub-images representingthePSFoutto1′fromthesourceposition.Asimulated 3.1 ImageConstruction sub-imageofeachsource(inthreebandsandtwoinstruments)was thenproducedbyscalingtheappropriatePSFimagesoastomatch Thestartingpointofouranalysis,foreachgalaxyandforeachin- theactualimagedata(intermsofthecountratecontainedwithin dividual observation, was thecreation of pn, MOS 1and MOS 2 thenominalsourcecell).Theresultantsetofsub-imageswerethen imagesand associated exposure maps inthreeenergy bands: soft co-addedwithsuitablespatialoffsettingsoastosimulatethesur- (0.3–1keV), medium (1–2keV) and hard (2–6keV). In all cases, facebrightnessdistributioninthebroad-bandpn+MOSimagede- thepixelsizewassetat4′′×4′′.Forboththeimageanalysisand rivingfrombrightpointsourceswithinthegalaxyfield2.Aspatial thesubsequentspectralanalysis,weutilisedsingleanddoublepixel maskwasthenderivedfromthisimagebyapplyinganappropriate eventsinthepncamera(pattern0–4)andsingletoquadrupleevents surfacebrightnesscut. (pattern0–12)intheMOScameras.Theresultingimageswerethen Figure3 shows thesimulated “bright source image” derived flat-fielded by subtraction of a constant background particle rate using the above procedure for M83. In this example, the bright (estimatedfromcountratesrecordedinthecornersoftheCCDde- sourcemaskwasobtainedbyapplyingasurfacebrightnesscutto tectorsnotexposedtothesky)anddivisionbytherelevantexposure the image at a level of 0.07 pn+MOS1+MOS2 ct ks−1 pixel−1, map.Atthesametime,spuriousdatafrombadpixels,hotcolumns leading to a “spillover” fraction, (i.e., the fraction of the bright andchipgapswereexcluded.Wheretherewasmorethanoneob- sourcesignalnotcontainedwithinthemaskedregion)of9%.Simi- servation, the images pertaining to a given instrument and band larsurfacebrightnesscutswereappliedtotheothergalaxiesresult- wereatthispointcombinedintoasinglemosaicedimage.Foreach inginspill-overfractionsintherange9-12%. band, the resultant flat-fielded MOS 1 and MOS 2 images were The derived spatial masks were used to separate the “bright combinedtogivea“MOS”imageandfinallya“pn+MOS”image sourceregion”fromthe“residualemissionregion”inboththespa- wasalsoproducedbysummingtheindividualpnandmosimages tialandspectralanalysis.Inordertostudythespatialdistributionof (withappropriate scaling inregions affected by chip gaps, where theresidualemission(see§6),asimulatedimagerepresentativeof therewasincompletecoverageinoneoftheinstrumentchannels). Figures 1 & 2 show the soft-band images derived for each ofthefivenew galaxies,together withthecorresponding datafor M101fromW07.InthecaseofM74,NGC3184,M51andM83our 1 Thepn+MOS1+MOS2count-rateabovethelocalbackgroundwasdeter- analysispertainstocircularregionscentredonthegalacticnucleus minedwithinacellof16′′radiuscentredonthesourceposition.Acorrec- of diameter equal to the major-axis D25 dimension, whereas for tionfactorwasthenappliedtoallowforthesignalcontainedinthewingsof thepointspreadfunction(PSF)extendingbeyondthenominalsourcecell. NGC300,giventherelativelylowX-raysurfacebrightness,were- 2 Asafinaliteration,countrateswereextractedfromthesimulatedimages strictourattentiontoacentral10′diameterregion(0.46oftheD25 withina16′′ cellcentredoneachsourcepositionandcomparedtothose extent).SimilarlyforM101theX-rayanalysisreportedinW07ap- obtainedfromtheactualdata,withanydifferencesattributabletothePSF pliestoacentral20′diameterregion(0.74oftheD25 dimension). spreadingofsignalfromadjacentsources.Basedonthisanalysis,thenomi- Hereafter werefer tothese galaxy-centred circular regions asthe nalsourcecountrateswereadjustedtocompensateforthissourceconfusion “X-rayextractionregions”. effectandanewversionofthesimulatedimageswasproduced. 4 R.A.Owen &R.S. Warwick Figure 1. Comparison of the soft X-ray and far-ultraviolet images of three galaxies. Left-hand panels: Adaptively smoothed versions of the XMM- Newton pn+MOS images inthe soft(0.3-1 keV) band. The amplitude scaling in all cases is logarithmic with the contour levels representing factor two stepsinthesoftX-raysurfacebrightness.Right-handpanels:TheGALEXFUV(λ =2267A˚)imageonthesamespatialscaleastheX-raydata(except eff forNGC3184wheretheUVdataarefromtheXMM-NewtonOpticalMonitorintheUVW1(≈ 2680A˚)band.Theamplitudescalingisagainlogarithmic. ThecontoursshowthesoftX-raymorphologyforcomparisonpurposes.Toppanels:NGC300.Thecirclehasadiameterof10′.Middlepanels:M74.The circlehasadiameterof10.5′.Bottompanels:NGC3184.Thecirclehasadiameterof7.2′. X-rayemissionfromspiralgalaxies 5 Figure2.AsforFig.1.Toppanels:M51.Thecirclehasadiameterof7.3′.Middlepanels:M83.Thecirclehasadiameterof12.9′.Bottompanels:M101. Thecirclehasadiameterof20′. 6 R.A.Owen &R.S. Warwick Figure3. Leftpanel:Themodelled“brightsource”imageconstructedforM83fromasetofcount-ratescaledPSFsub-images.Asourcemaskwasproduced bythresholdingthisimageatasurfacebrightnesslevelsuchthat91%ofthesourcesignalwascontainedwithintheresultingmask.Rightpanel:Thesoft-band imageoftheresidualemissioninM83obtainedfromthefullimagebysubtractingthebrightsourcemodelandthenapplyingthespatialmask.Muchofthe “contamination”duetobrightsourcesissuppressedbythisprocess.Inbothpanelsthecirclehasadiameterof12.9′. Table3.CharacteristicsofthebrightX-raysourcepopulationineachgalaxy. Galaxy X-rayRegiona ThresholdLXb Numberin NumberofhighLXsources (′) (1037ergs−1) SourceList (LX>5×1038ergs−1) NGC300 10.0 0.2 22 0 M74 10.5 5.0 20 4 NGC3184 7.2 6.0 18 4 M51 7.3 4.0 26 6 M83 12.9 2.0 40 2 a-Diameterofthe“X-rayextractionregion”. b-NominalLXthresholdappliedinthe0.3–6keVbandindefiningsample. thesoftbanddatawassubtractedfromthecorrespondingpn+MOS from ideal, because the sky X-ray background in the soft band image and thesource mask imposed - see Figure3.Thisprocess variesfrom fieldtofield, and thisis avital component of theto- servestotosuppressmuchofthe“contamination”arisingfromthe tal background signal we wish to subtract. Instead, we extracted brightestsourcesinthegalaxy,includingthebulkofthespillover spectra from both an annulus surrounding the defined galaxy re- into the residual galaxy region. Note that a slightly different ap- gionandalsofromthecornerregionsofeachdetectornotexposed proachisnecessaryinthespectralanalysis;herewetakeaccount to the sky. By using an appropriate scaling of these spectra, us- ofthebrightsourcesignalspillingintotheresidualemissionregion ingthemethoddetailedinW07,anappropriatemodelbackground by including an appropriate fraction of the bright source spectral spectrumcanthenbeproduced.TheSAStoolsarfgenandrmfgen modelinthespectralfitoftheresidualemission-see§5.2. wereusedtoproduceappropriateAuxiliaryResponseFile(ARF) andResponseMatrixFile(RMF)filesforthesourceandresidual galaxyregions.Finally,thecountsrecordedinadjacent(raw)spec- tral channels were summed to give a minimum of 20 counts per 3.3 SpectralExtraction spectralbininthefinalsetofspectra. The soft-band images shown inFig. 1 &2 demonstrate theexis- tenceof anextended emission component inaddition tothepop- ulation of bright point sources. On the basis of the approach de- scribed earlier, we extracted the integrated spectrum of both the 4 OVERVIEWOFTHEGALACTICX-RAYPROPERTIES brightsourceregion(boundedbythespatialmask)andtheresidual 4.1 Thecontributionofluminouspointsources emissionregion(correspondingtothefullX-rayextractionregion lessthemaskedarea). Byapplicationofthespatialmaskdescribedearlier,weareableto The relatively large extent and complicated shapes of the measure the count rates (net of background) in the soft, medium bright source and residual emission regions makes the evaluation andhardbandimagesassociatedwithboththe“bright sourcere- of the background subtraction somewhat more complicated than gions” and the “residual emission regions” (hereafter we refer to with most XMM-Newton data. In this context, the use of “blank- thelatterasthe“residualgalaxy”).Table4summarisestheresults sky”XMMfieldstoproduceabackground spectrumwouldbefar foreachofthefivenewgalaxiesinoursample.Herewehavecon- X-rayemissionfromspiralgalaxies 7 Table4.ContributionofpointsourcestothetotalX-rayluminosity. Galaxy Spillover/Area Component LX(1039ergs−1) Factors(%) (0.3-1keV) (1-2keV) (2-6keV) (0.3-6keV) NGC300 12/7 BrightSources 0.19 0.07 0.25 0.51 UnresolvedSources [0.02] [0.01] [0.03] ResidualGalaxy 0.05 - - 0.05 TotalMeasured 0.24 0.07 0.25 0.56 M74 11/24 BrightSources 1.4 1.3 3.0 5.7 UnresolvedSources [0.5] [0.4] [0.8] ResidualGalaxy 1.4 0.7 - 2.1 TotalMeasured 2.8 2.0 3.0 7.8 NGC3184 9/22 BrightSources 1.2 1.4 3.4 6.0 UnresolvedSources [0.6] [0.5] [0.9] ResidualGalaxy 2.0 0.5 - 2.5 TotalMeasured 3.2 1.9 3.4 8.5 M51 12/24 BrightSources 6.8 3.8 6.5 17.1 UnresolvedSources [0.5] [0.4] [0.8] ResidualGalaxy 6.3 0.9 - 7.2 TotalMeasured 13.1 4.7 6.5 22.3 M83 9/30 BrightSources 2.5 2.0 3.1 7.6 UnresolvedSources [0.5] [0.4] [0.9] ResidualGalaxy 3.3 0.7 - 4.0 TotalMeasured 5.8 2.7 3.1 11.6 vertedthemeasuredcountratestoequivalentfluxesinthebandon duetothelowSFRdensityinthisGalaxyratherthanbeingsimply thebasisofaspecificspectralmodelandthentransposedfromflux aconsequence ofamorestringentsourcerejectionthreshold. For toluminosityusingthedistancesquotedinTable1.Forthebright M74,NGC3184,M51andM83abroadlysimilarsourcedetection sourceregionsweassumeaspectralmodelconsistingofapower- thresholdtransposestoluminositythresholdsforsourceexclusion lawcontinuumwithphotonindexΓ = 1.7modifiedbythefore- rangingfrom2.0×1037 ergs−1(forM83)upto6.0×1037 ergs−1 ground absorption in our Galaxy. For the residual galaxy we use (forNGC3184).Thelikelycontributionofunresolvedsourcesto the model which best fitsthe actual spectrum of this component, theresidualgalaxyemissionineachcaseisinvestigatedbelowand asderivedin§5.2.ThequotedX-rayluminosities(LX)havebeen acorrectiontoafixedluminositythresholdisappliedlater inthe corrected for foreground absorption, that is they are unabsorbed analysis(see§7). values. TheLXvaluesreportedinTable4havebeencorrectedfortwo Asafurtherexerciseitispossibletoestimatethelikelycon- furthereffects.Thefirstisthespilloverofbrightsourcefluxintothe tribution to the residual galaxy emission of an unresolved popu- residual galaxy region (discussed earlier). The second correction lation of somewhat less luminous sources with spectral charac- relatestothefact thatthebrightsource maskobscuresasizeable teristicsand distribution similar to the sources represented in the fractionofthegalaxydisk.Tocorrectforthis,wehavescaledupthe brightsourcelist.HerewemakeuseofrecentresultsfromChan- residual galaxycomponent byafactor derived frominterpolating dra, which show that the discrete source luminosity function ap- theazimuthally-averagedbrightnessdistribution(asrepresentedby propriate to the disk regions of spiral galaxies typical takes the the radial distributions of the X-ray surface brightness discussed form of a power-law with a slope in the range −0.5 to −0.8 (in in§6)intothemaskedregions.Thespilloverfractionandthearea the cumulative form). For example, Tennantetal. (2001) quote a correctionfactorapplicabletoeachgalaxyarelistedinTable4. slope of −0.5 for the disk sources in M81, whereas Doaneetal. The results in Table 4 demonstrate that whereas the set of (2004) measure −0.6 for NGC 3184 and Penceetal. (2001) re- very luminous sources represented by our bright source sample port−0.8forM101.Soria&Wu(2003)examinethelogN–log provide the dominant contribution to the total galactic X-ray lu- SrelationforrelativelyfaintHMXBsinthediskofM83andfind minosityabove2keV,atlowerenergies,andparticularlybelow1 a broken power-law provides a reasonable fit to the data, with a keV, thesplit between thebright source and residual galaxy con- low-luminosityindexof−0.6.AlsoColbertetal.(2004)measure tributionsismorebalanced,albeitwiththeexceptionofNGC300. asimilarrangeofpower-lawslopesforthesourceluminosityfunc- Forthelattergalaxy,wewereabletosetamuchlowerthreshold tionwithinarelativelylargesampleofspiralgalaxies.Theflatness forbrightsourceremovalthanwaspossiblefortheothergalaxies ofthisformmeansthatrelativelysmallnumbersofveryluminous inthesample(onaccountoftherelativelyproximityofNGC300 sources provide the bulk of the integrated luminosity residing in -seeTable1).InotherwordsahigherfractionoftheintegratedX- discretesources.Furthermore,inthecontextofprovidingarough rayfluxfrompointsourceswasresolvedinthisgalaxy.However, estimateof the contribution of unresolved sources tothe residual weshowlater(see§6)thatthelowsurfacebrightnessinferredfor galaxysignal,itimpliesthatwecan,inprinciple,extrapolatebelow theunderlyingdiffuseX-rayemissioninNGC300ismostlylikely oursourcedetectionthresholdtoarbitrarilyfaintlevels(assuming 8 R.A.Owen &R.S. Warwick ofcoursethattheslopeoftheluminosityfunctionremainsconstant (Freedmanetal.2001).ManylargeHIIregionsarevisiblethrough- overanappropriatelywiderangeofsourceluminosity). out the galaxy, and there is evidence that the galaxy has experi- Herewemaketheassumptionthattheslopeofthesourcelu- enced many episodes of star formation. However, star formation minosityfunctionis−0.6acrossthesetofgalaxiesandoverawide in the central regions appears to be suppressed in recent times, luminosityrange.Wethenusethenumberofbrightsourcesactu- with a small population of stars present in the central arcminute allyobservedinthegalaxyfromthethresholdluminosityuptoa ofthegalaxywithagesbelow1Gyr(Davidge1998).Thereisclear fixeduppercut-off(sethereasLX=5×1038ergs−1-seeTable evidence of spiral structure, although thecontrast between “arm” 3), to define the normalization of the source luminosity function and“off-arm”regionsinthegalaxyislow.InX-raysNGC300has for that particular galaxy. We first calculate the integrated emis- beenstudiedbyROSAT(Read&Pietsch2001)andmorerecently sionofunresolvedsourcesinthebroad0.3-6keVbandandthen, by XMM-Newton (Carpanoetal. 2005). Carpanoetal. (2005) re- onthebasisofthebrightsourcespectralmodelnotedearlier,split portthepresenceofdiffuseemissioninthegalacticdiskofNGC this intosoft-, medium- and hard-band contributions. The entries 300withLX<1038ergs−1andtemperaturesof≈0.2and≈0.8 inTable4undertheheading“unresolvedsources”summarisesthe keV. In the current paper we determine the aggregate luminosity resultsonagalaxybygalaxybasis.Inthesoftband,whichisthe ofthe20brightestpointsourceswithinthecentral5′ ofNGC300 focusofourattentionindescribingtheX-raymorphologyandthe to be LX≈ 5×1038ergs−1, in agreement with earlier studies. linkage of X-ray emission to star formation, the potential contri- We estimate the X-ray luminosity of the residual emission to be bution of unresolved, but relatively luminous, source populations ≈ 5×1037ergs−1 (0.3–1 keV). The surface brightness of this to the measured residual galaxy emission ranges from as low as componentisextremelylowbutappearstotraceacentralbar-like ∼10%inM51upto∼40%inNGC300.Byimplicationthebulk structureandtoextendouttoatleastadistanceof2.5kpc(4′). oftheresidualgalaxyluminosityinthisbandmustresideinsome combination of: (i) truly diffuse X-ray emission associated with 4.2.2 M74 thegalaxydiskpresumablyresultingfromtheenergyinputofsu- pernovaandstellarwindsand(ii)theintegratedemissionofpop- M74 (NGC 628) is an SA(s)c spiral seen almost face-on (i = ulationsofrelativelysoftspectrum,lower-luminositysourcessuch 7◦; Shostak&vanderKruit 1984) at a distance of 11 Mpc assupernova remnants, cataclysmicvariables, activebinaries and (GildePazetal.2007).Thenuclear regionof thegalaxyischar- stellarcoronalsources,populationswhicharenotwellrepresented acterised by strong HII emission with no evidence for the pres- inthebright-source(i.e.,highLX)samples.Thereisalsoapoten- ence of an AGN. A grand-design twin-armed spiral structure tial contribution from a putative extended galactic halo, which is is observed. In X-rays M74 has been studied by both Chan- oftenseeninedge-ongalaxies;however theface-onaspectofthe dra (Kraussetal. 2005) and XMM-Newton (Soria&Kong 2002; presentgalaxiessuggeststhataveryextendedhalocomponentwill Soria,Pian&Mazzali2004),albeitwithlittleattention,todate,on bedifficulttodistinguishfromthecomponentsconfinedtothedisk. thediffuseX-raycomponent.Inthepresentanalysisweconfirmthe presenceofanextensivediscretesourcepopulationinM74withan aggregateluminosityinthe20brightestpointsourcesamountingto 4.2 X-raycharacteristicsoftheindividualgalaxies 5.7×1039ergs−1.TheunderlyingresidualX-rayemissionhasa Figures1&2comparethegalaxymorphologyobservedinsoftX- luminosityof2.1×1039ergs−1.Thiscomponenttracestheinner rayswiththatmeasuredinthefarultravioletFUV(λ ≈ 2267 spiralarmstructureandisevidentouttoadistanceof9kpc(3′), eff A˚)bandbyGALEX3,althoughinthecaseofNGC3184weusethe atwhichpointitfallsbelowthebackgroundlevel. XMM-NewtonOpticalMonitorUVW1(≈2680A˚)imagerecorded inthesameobservationastheX-raydata(seeTable2)tomakethis 4.2.3 NGC3184 comparison.InallcasesthetheUVimageswerelightlysmoothed with a circular gaussian mask with σ = 4′′. In a number of the NGC3184 is an SAB(rs)cd barred spiral seen at low inclination galaxies, particularly M74, M83 and M101, the X-ray emission (i < 24◦; Lyon-Meudon Extragalactic Database [LEDA]4) at a traces segments of the inner spiral arms which are delineated as distanceof11.6Mpc(Leonardetal.2002).Thenuclearregionof verypronouncedfeaturesintheFUVimages.Inallcasesthecen- the galaxy isdominated by HII emission with no compelling ev- tralconcentrationofthesoftX-rayemissionanditsfall-offwithin- idence for an AGN (Doaneetal. 2004). Grand-design twin spi- creasinggalactocentricradiusisquitewellmatchedtothesurface ral arms are observed, although the contrast in brightness be- brightnessdistributionmeasuredintheFUVchannel.Thisgeneral tween“arm”and“off-arm”regionsinthegalaxyislow.InX-rays correlationofsoftX-rayandFUVlightimmediatelyestablishesthe NGC3184hasbeenstudiedbyChandrawithanemphasisonboth closeconnectionofasignificantcomponentoftheX-rayemission thepointsourcepopulation(Colbertetal.2004)andthediffuseX- withrecent star-formationinthese late-type systems. Weexplore rayemittinggas(Doaneetal.2004;Tyleretal.2004).Thediffuse thelinkagebetweentheX-rayemissionandstar-formationinmore X-rayemissionshowsastrongcorrelationwithregionswhichare detailin§6.Herewebrieflycommentoneachofthesegalaxies,in brightinHα(Tyleretal.2004).Doaneetal.(2004)reportthepres- thecontextoftheirextendedX-rayemittingcomponents. ence of diffuse X-ray emission concentrated in areas of younger stellarpopulationsandstar-formingregions,withasurfacebright- ness five times greater in spiral arm regions than in off-arm re- 4.2.1 NGC300 gions. The spectrum of the diffuse emission in the galactic disk NGC300 is an SA(s)d spiral seen at low inclination (i = canbewellfittedwithatwo-temperaturethermalmodelwithkTof 30◦; deVaucouleursetal. 1991) at a distance of 2.0 Mpc 0.13keVand0.43keV(Doaneetal.2004).Inthepresentstudywe measuretheaggregateluminosityofthe18brightestpointsources 3 The GALEX images were obtained from the public archive at http://galex.stsci.edu/GR2/ 4 athttp://leda.univ-lyon1.fr X-rayemissionfromspiralgalaxies 9 tobe≈6×1039ergs−1,consistentwithearlierChandraestimates fromthebrightnuclearregionoutalongthetwinspiralarmstoa (Colbertetal.2004).TheresidualX-rayemissionhasanX-raylu- galactocentricdistanceofabout4kpc(3′).ExtendedX-rayemis- minosityof2.5×1039ergs−1 andextendsfromthenucleusout sionofrelativelylowsurfacebrightnesscanthenbefurthertraced toadistanceof8kpc(2.5′). outto∼8kpc.TheX-rayluminosityoftheresidualcomponentis 4×1039ergs−1. 4.2.4 M51 M51 (NGC5194) is an SA(s)bc spiral seen almost face- 5 SPECTRALANALYSIS on (i = 20◦; Tully 1974) at a distance of 8.4 Mpc (Feldmeier,Ciardullo&Jacoby 1997). It hosts a low-luminosity Usingthemethodologyoutlinedin§3.3,spectraldatasetswereob- activegalacticnucleus,whichshowsopticalemissionlinesandis tainedforboththebright-sourceandtheresidual-galaxyregionsfor classifiedasaSeyfert2(Stauffer1982;Ho,Filippenko&Sargent fourgalaxies,namelyM74,NGC3184,M51andM83.Forsimplic- 1997). M51 is interacting tidally with a companion SB0/a ity,webasedouranalysisonasingleobservationforeachgalaxy, galaxy (NGC5195), and both systems are seen to con- namelytheobservationwiththedeepestpnexposure(seeTable2). tain starburst activity. There is grand-design twin-arm spi- Duetolimitedsignal-to-noiseintheMOSchannels, wefocuson ral structure present. In X-rays M51 has been studied by the spectra derived from the EPIC pn camera, except in the case Einstein (Palumboetal. 1985), ROSAT (Marstonetal. 1995; ofM83,wherebothpnandMOSspectrawerefullyutilisedandin Ehleetal. 1995), ASCA (Terashimaetal. 1998) and more re- M74wherebothdatasetswereemployedinthespectralinvestiga- centlybyChandra(Terashima&Wilson2004;Colbertetal.2004; tionofitsbright-sourceregion.Unfortunatelytheresidual-galaxy Tyleretal.2004)andXMM-Newton(Dewanganetal.2005).Stud- emissioninNGC300wastoofaintfordetailedspectralanalysisto ies have also been carried out at higher X-ray energies by Bep- bemerited.Thespectralfittingwascarriedoutusingthesoftware poSAX(Fukazawaetal.2001).ThediffuseX-rayemissioniswell packageXSPECVersion12.4. correlatedwiththeradiocontinuumandmid-infraredemissiondis- tributed in the spiral arms establishing a clear link with star for- 5.1 Spectraofthebright-sourceregions mation (Ehleetal. 1995; Tyleretal. 2004). Terashima&Wilson (2004) find that the diffuse X-ray emission in the southern ex- The spectra representative of the bright-source regions in M74, tranuclear cloud is well fitted with a single-temperature thermal NGC3184, M51 and M83 were well fitted with either a simple model with kT of 0.58 keV. The current analysis confirms the power-lawcontinuumorapower-lawcontinuumplusanadditional general properties of the galaxy established by the ROSAT and solar-abundancethermalplasmacomponent(theMEKALmodelin Chandra observations. The aggregate luminosity of the brightest XSPEC).Thebest-fitphotonindiceswereallintherange1.55–1.9 25pointsourcesinM51is1.7×1040ergs−1 (0.3–6keV),28% withthetemperatureofthethermalemissiontypically≈0.65keV. ofwhichisattributabletothenuclearsource.Ouranalysisreveals Fig.4showsthemeasuredspectra,thebest-fittingmodelandresid- residual soft X-ray emission extending from the bright nucleus ualχ2 tothesebestfits.Similarly,Table5summarisesthedetails alongthespiralarmsouttoadistanceof5kpc(2.5′).Lowersur- ofthebest-fittingmodels.Aftercorrectingforthefluxspilloverbe- facebrightnessemissionfromtheextendeddiskisobservedoutto yond the spatial mask, the inferred luminosities in the integrated aradialdistanceof9kpcinalldirections,withfurtherX-rayemis- bright-sourcespectrawerefoundtobeingeneral agreementwith sionjoiningM51toitscompaniongalaxy.TheX-rayluminosityof theestimatesquotedpreviouslybasedontheimageanalysis.The theresidualcomponentis7.2×1039ergs−1. photon index observed is typical of the spectra of HMXB and LMXB found in the Local Group (Grimmetal. 2007). The ther- malemissionassociatedwiththebright-sourceregionsisofsimilar 4.2.5 M83 temperaturetothe“hot”componentobservedintheresidual-galaxy M83 (NGC 5236) is an SAB(s)c barred spiral seen at low in- emission(seebelow).However,wherethiscomponentisdetected clination (i = 24◦; Talbot,Jensen&Dufour 1979) at a dis- inthebright-sourcespectra,namelyinNGC3184,M51andM83, tance of 4.5 Mpc (Thimetal. 2003). It harbours an active nu- itappearsataproportionatelyhigherlevelthanmightbeinferred clear region undergoing a violent starburst, a circumnuclear star- basedonasimpleareascalingwithrespecttotheresidual-galaxy burstandgrand-design twin-armedspiralstructure.Therearenu- emission. merous sites of active star-formation coincident with the spi- ral arms (Vogleretal. 2005). In X-rays M83 has been stud- ied by Einstein (Trinchierietal. 1984), ROSAT (Ehleetal. 1998; 5.2 Spectraoftheresidual-galaxyregions Immleretal. 1999), ASCA (Okada,Mitsuda&Dotani 1997 and Previouslyweestimatedthat9-12percentofthecountsfromthe more recently by Chandra (Soria&Wu 2002; Soria&Wu2003; bright sources overspill into the residual-galaxy regions. In car- Colbertetal.2004;Tyleretal.2004).Onanarcminutescaleboth rying out the spectral analysis of the latter we have correct for theROSATandChandra X-rayobservations traceapparently dif- this spillover effect, by including an appropriate fraction of the fuseemissionassociated withtheinner spiral-arms(Immleretal. best-fit bright-source model as a fixed component of the spectral 1999;Soria&Wu2003;Tyleretal.2004).Immleretal.(1999)re- model. Visual inspection of the residual-galaxy spectra revealed port the diffuse emission associated with a cluster of bright HII almost no emission above 1.5 keV in any of the galaxies. It was regionsembeddedinthesouth-westernspiralarmashavingatwo- further found that thermal models comprising either one or two temperature thermal characteristic withkT of 0.26 keV and 0.95 solar-abundance5 MEKAL components provided a reasonable fit keV.Inthepresent analysiswemeasuretheaggregateluminosity ofthebrightpointsourcesinM83tobeL =7.6×1039ergs−1, X whichincludesacontributionof3.1×1039ergs−1fromthecen- 5 Ingeneralthequalityofthespectrawereinsufficienttoallowusefulcon- tral region. The XMM-Newton soft band image traces emission traints to beplaced onthe metal abundances inthe thermal plasmas. As 10 R.A.Owen &R.S. Warwick Figure4.TheEPICspectraforfourgalaxies.Left-handpanels:Thespectraofthebright-sourceregions.Right-handpanels:Thespectraoftheresidual-galaxy regions.Inallcasesthesolidlinecorrespondstothebest-fitspectralmodel(seetext).Theχ2residualswithrespecttothebest-fittingmodelarealsoshown.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.