ebook img

X-ray Binaries PDF

2.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview X-ray Binaries

X-Ray Binaries J.Casares,P.G.Jonker,andG.Israelian 7 1 0 2 n a J 5 Abstract ThischapterdiscussestheimplicationsofX-raybinariesonourknowl- 2 edgeofTypeIbcandTypeIIsupernovae.X-raybinariescontainaccretingneutron stars and stellar–mass black holes which are the end points of massive star evolu- ] E tion.Studyingtheseremnantsthusprovidescluestounderstandingtheevolutionary processes that lead to their formation. We focus here on the distributions of dy- H namicalmasses,spacevelocitiesandchemicalanomaliesoftheircompanionstars. . h These three observational features provide unique information on the physics of p corecollapseandsupernovaeexplosionswithininteractingbinarysystems.Thereis - o suggestiveevidenceforagapbetween≈2-5M(cid:12) intheobservedmassdistribution. r Thismightberelatedtothephysicsofthesupernovaexplosionsalthoughselections t s effectsandpossiblesystematicsmaybeimportant.Thedifferencebetweenneutron a starmassmeasurementsinlow-massX-raybinaries(LMXBs)andpulsarmassesin [ high-mass X-ray binaries (HMXBs) reflect their different accretion histories, with 1 the latter presenting values close to birth masses. On the other hand, black holes v inLMXBsappeartobelimitedto(cid:46)12M becauseofstrongmass-lossduringthe 0 (cid:12) 5 4 J.Casares 7 InstitutodeAstrof´ısicadeCanarias,E–38205LaLaguna,S/CdeTenerife,Spain. 0 DepartamentodeAstrof´ısica,UniversidaddeLaLaguna,E–38206LaLaguna,S/CdeTenerife, . 1 Spain. 0 DepartmentofPhysics,Astrophysics,UniversityofOxford,KebleRoad,OxfordOX13RH,UK 7 e-mail:[email protected] 1 P.G.Jonker : v SRON,NetherlandsInstituteforSpaceResearch,Sorbonnelaan2,3584CA,Utrecht,TheNether- i lands. X DepartmentofAstrophysics/IMAPP,RadboudUniversityNijmegen,P.O.Box9010,6500GL,Ni- r jmegen,TheNetherlands. a e-mail:[email protected] G.Israelian InstitutodeAstrof´ısicadeCanarias,E–38205LaLaguna,S/CdeTenerife,Spain. DepartamentodeAstrof´ısica,UniversidaddeLaLaguna,E–38206LaLaguna,S/CdeTenerife, Spain.e-mail:[email protected] 1 2 J.Casares,P.G.Jonker,andG.Israelian windWolf-Rayetphase.Detailedstudiesofalimitedsampleofblack-holeX-raybi- nariessuggestthatthemoremassiveblackholeshavealowerspacevelocity,which couldbeexplainediftheyformedthroughdirectcollapse.Conversely,theformation oflow-massblackholesthroughasupernovaexplosionimpliesthatlargeescapeve- locities are possible through ensuing natal and/or Blaauw kicks. Finally, chemical abundancestudiesofthecompanionstarsinsevenX-raybinariesindicatetheyare metal-rich(allexceptGROJ1655-40)andpossesslargepeculiarabundancesofα- elements.Comparisonwithsupernovamodelsis,however,notstraightforwardgiven currentuncertaintiesinmodelparameterssuchasmixing. 1 Introduction X-raybinariescontaincompactstellarremnantsaccretingfrom”normal”compan- ionstars.Therefore,theyprovideidealopportunitiesforprobingthecore-collapse ofmassivestarsinabinaryenvironmentandarethusabletoconstrainthephysicsof TypeIbcandTypeIIsupernovae.Thesecompactremnantsarerevealedbypersis- tent/transientX-rayactivitywhichistriggeredbymassaccretion.Observationally, theycomeinthreeflavors–pulsars,neutronstarsandblackholes–thatarepaired withcompanion(donor)starsofawiderangeofmasses.Historically,X-raybinaries havebeenclassifiedaccordingtothedonormassaseitherLowMassX-rayBinaries (LMXBs)orHighMassX-rayBinaries(HMXBs).Theformerarefueledbyaccre- tion discs supplied by a (cid:46)1 M Roche-lobe filling star while HMXBs are mostly (cid:12) feddirectlyfromthewindsofa(cid:38)10M companion.TheydisplaydistinctGalactic (cid:12) distributions associated with Population I and Population II objects, with HMXBs lying along the Galactic plane and LMXBs clustering towards the Galactic bulge and in globular clusters [32] (Fig. 1 ). A handful of X-ray binaries with ≈1−3 M Roche-lobefillingcompanionsaresometimesreferredtoasIntermediateMass (cid:12) X-rayBinaries(IMXBs).ForacomprehensivereviewonX-raybinarieswereferto [9]. The type of X-ray activity observed is determined by (i) the mass transfer rate fromthedonor,(ii)themagneticfieldofthecompactstar,and(iii)theX-rayheating oftheaccretiondiscbytheaccretionluminosity.Theinterplaybetweenthesethree quantitiesexplainswhyblackholeremnantsaremostlyfoundintransientLMXBs, neutronstarsinpersistentLMXBsandpulsarsinHMXBs.Inrecentyearswehave seen the discovery of pulsars with millisecond spin periods in transient LMXBs. These are considered a missing link in X-ray binary evolution, with neutron stars beingspunupbysustainedaccretiontobecomerecycledpulsars[1,85].Adetailed review of X-ray binary evolution with the variety of evolutionary paths and end productscanbefoundinChap.7.13ofthisbook. X-ray binaries present ideal laboratories for examining the physics of the su- pernovaexplosionswhichformedtheircompactobjects.Theorbitalmotionofthe stellar companions can be used to weigh the masses of the supernova remnants. X-RayBinaries 3 Abundance anomalies are often seen in the companion star atmospheres, demon- strating chemical pollution by the supernova ejecta. And the spatial motion of the binarypossessesinformationonthekickvelocityimpartedbytheexplosionitself. Thesethreetopics(dynamicalmasses,kickvelocitiesandchemicalanomalies)and theirimpactonourunderstandingofTypeIbcandTypeIIsupernovaearethescope ofthischapterandwillbepresentedinturn. Fig.1 GalacticdistributionofHMXBs(top)andLMXBs(bottom).OpencirclesindicateLMXBs inGlobularClusters.From[81]. 2 RemnantMasses Thedistributionofmassesofcompactremnantscontainstheimprintsofthephysics of the supernova explosions. Various aspects, such as the explosion energy, mass cut, amount of fallback or the explosion mechanism itself are important for the finalremnantmassdistribution.Bybuildingthemassspectrumofcompactobjects in X-ray binaries we can therefore obtain new insights onto the physics of core- collapse in Type Ibc and Type II supernovae. In principle, precise masses can be extractedfromeclipsingdouble-linespectroscopicbinariesusingsimplegeometry andKepler’slawsbutthisisnotoftenthecaseinX-raybinaries.Notethatneutron star masses in binary radio pulsars are already covered in Chap. 7.4 of this book andhencearenotdiscussedhere.Itshouldalsobenotedthattheaccretionprocess 4 J.Casares,P.G.Jonker,andG.Israelian responsibleforlightinguptheX-raybinariescaninprinciplechangesignificantly theneutronstarmassinsystemswheresufficienttimeisavailablesuchasneutron starsinoldLMXBs.Ontheotherhand,theaccretedmassistoolowtoaltertheBH mass significantly and similarly, the neutron star mass in short lived HMXBs can alsonotbechangedsignificantly. 2.1 PulsarMassesinHMXBs Pulsarsineclipsingbinariespresent,inprinciple,thebestprospectsforaccuratede- terminationofremnantmasses.TheDopplershiftofthedonor’sphotosphericlines, combined with timing delays of the neutron star pulse, allows us to measure the projectedorbitalvelocitiesofthetwobinarycomponents(K andK respectively) opt X thus making them double-lined binaries. If the pulsar is eclipsed by the massive donor(a≈40%chanceinincipientRoche-lobeoverflowingsystems)thenthein- clinationangleiisgivenby (cid:112) 1−(R /a)2 opt sini= (1) cosθ whereθ istheeclipsehalf-angle,athebinaryseparationandR thestellarradius. opt Thelattercanbeapproximatedbysomefractionβ ≤1oftheeffectiveRochelobe radius R , also known as the stellar ”filling factor”, while R /a is purely a Lopt Lopt functionofthebinarymassratioQ=M /M =K /K andthedegreeofstellar X opt opt X synchronizationΩ (usuallyΩ ≈1).Thestellarmassescanthenbesolvedfromthe massfunctionequations K3P(1−e2)3/2 M = X (1+Q)2 (2) opt 2πGsin3i K3 P(1−e2)3/2(cid:18) 1(cid:19)2 opt M = 1+ (3) X 2πGsin3i Q wherePstandsforthebinaryperiodandetheorbitaleccentricity.Thismethodhas producedninepulsarmasseswithrelativelyhighprecisionwhichwelistinTable1. Themajorsourceofuncertaintyarisesfromthecombinedeffectofvariablestellar wind,tidalpulsationsandX-rayirradiationwhichdistorttheabsorptionprofilesand hence the radial velocity curve of the optical companion (e.g. [62, 68]). Although notapulsar,wehavealsoincludedinthissectionaremnantmassdeterminationfor the eclipsing HMXB 4U 1700-37. With a mass significantly higher than the nine HMXBs pulsars, the nature of the compact object in this system is unclear and a low-mass black hole cannot be dismissed. In any case, the quoted mass should be regarded as somewhat less secure because it rests upon the spectroscopic mass of theopticalcompanion(see[11]fordetails). X-RayBinaries 5 Interestingly, the largest known population of pulsar X-ray binaries (over 100) belongtothesubclassofBe/X-raybinaries[66].Thesesystemsgenerallyhavevery wideandeccentricorbits,withtheneutronstaraccretingmaterialfromthecircum- stellarBediscduringperiastronpassagesorthroughepisodicdiscinstabilityevents. Unfortunately, the scarcity of eclipsing systems and the very long orbital periods makesreliablemassdeterminationinBe/X-raybinariesextremelydifficult. Table1 PulsarandNeutronStar(NS)massesinX-rayBinaries† Object X-rayBinaryClass Remnant Mass(M(cid:12)) References OAO1657-415 HMXB/persistent X-raypulsar 1.42±0.26 [43] SAX18027-2016 ,, ,, 1.2-1.9 [42] EXO1722-363 ,, ,, 1.55±0.45 [41] 4U1538-52 ,, ,, 1.00±0.10 SMCX-1 ,, ,, 1.04±0.09 VelX-1 ,, ,, 1.77±0.08 LMCX-4 ,, ,, 1.29±0.05 CenX-3 ,, ,, 1.49±0.08 4U1700-37 ,, ? 2.44±0.27 [11] HerX-1 IMXB/persistent X-raypulsar 1.07±0.36 CygX-2 LMXB/persistent NS 1.71±0.21 [6] V395Car ,, ,, 1.44±0.10 ScoX-1 ,, ,, <1.73 [44] XTEJ2123-058 LMXB/transient ,, 1.46+0.30 [78] −0.39 CenX-4 ,, ,, 1.94+0.37 [71] −0.85 4U1822-371 ,, X-raypulsar 1.52-1.85 [53] XTEJ1814-338 ,, msec,, 2.0+0.7 [83] −0.5 SAXJ1808.4-3658 ,, ,,,, <1.4 HETE1900.1-2455 ,, ,,,, <2.4 †Adoptedfrom[89]and[63],unlessotherwisestatedinthereferencecolumn. 2.2 NeutronStarMassesinLMXBs NeutronstarsinLMXBsdonotusuallypulse(with4U1822-371andahandfulof millisecondpulsarsastheonlyexceptions)andtheirradialvelocitycurvesarethus notavailable.Onlythemassfunctionofthecompactstarisattainablethroughthe radialvelocitycurveoftheopticalcompanion(eq.3).Inthesecasesitisstillpos- sible to derive reliable masses by exploiting the fact that the low-mass donor star overflowsitsRochelobeandissynchronizedinacircularorbit(whichinturnim- pliesΩ =1,e=1).Thisisreasonableassumptiongiventhelonglifetimesandshort circularizationtimescalesexpectedinLMXBs[87].Onthisbasis,thebroadeningof thedonorabsorptionlinesVsinidependsonbinarymassratioq=Q−1 according to[82] 6 J.Casares,P.G.Jonker,andG.Israelian Vsini/K (cid:39)0.462q(1/3)(1+q)(2/3) (4) opt while its orbital light curve (governed by tidal distortions) correlates with incli- nation. Therefore, the detection of the faint donor star in LMXBs ensures a full dynamical solution which makes this technique feasible for transient LMXBs in quiescence(i.e.whenaccretionishaltedandX-rayemissionisweak)orpersistent LMXBswithlongorbitalperiodsandthusluminouscompanionstars. In the case of persistent LMXBs with short periods (cid:46)1 d the companion star is totally overwhelmed by the accretion luminosity. However, some constraints on stellarmassescanstillbederivedthroughtheBowentechniquewhichemploysflu- orescencelinesexcitedontheX-rayheatedfaceofthedonorstar[75].Theradial velocitycurvesoftheBowenlinesarebiasedbecausetheyarisefromtheirradiated faceofthestarinsteadofitscenterofmass.Therefore,aK-correctionneedstobe appliedinordertorecoverthetruevelocitysemi-amplitudeK .TheK-correction opt parametrizesthedisplacementofthecenteroflightwithrespecttothedonor’scen- terofmassthroughthemassratioanddiscflaringangleα,withthelatterdictating thesizeofthediscshadowprojectedovertheirradiateddonor[52].Extrainforma- tiononqandα isthusrequiredtomeasuretherealK .Furtherlimitstoneutron opt starmassescanbesetifthebinaryinclinationiswellconstrainedthrougheclipses (e.g. 4U 1822-371). It is interesting to note that the Bowen technique, despite its limitations, has enabled the first dynamical constraints in persistent LMXBs since theirdiscovery50yearsago.ThebestneutronstarmassesinLMXBsobtainedby meansofthesetechniquesarealsolistedinTable1. 2.3 BlackHoleMasses ThegreatmajorityofaccretingblackholesarefoundintransientLMXBs/IMXBs, as proved by dynamical studies. Relatively precise masses have been measured in quiescence through exploiting the photometric and spectroscopic detection of the companion star. These are listed in Table 2. Only in the case of GX 339-4 is the constraintontheblackholemassaidedbytheBowentechnique.Insomecasesun- certaintiesarequitelargeowingtopossiblesystematicsaffectingthedetermination ofthebinaryinclinationangle.Inothers,onlyarobustlowerlimittotheblackhole mass is secured by the spectroscopic mass function combined with the absence of X-rayeclipses. FiveadditionalblackholeshavenowbeenestablishedinHMXBs.Althoughthe companionstarunderfillsitsRochelobeinthesesystems,extrainformationonthe stellarradiusisgrantedbyveryprecisedistancedeterminations((cid:46)5%e.g.through VLBI parallax for Cyg X-1) coupled with the observed apparent brightness and effective temperature. Furthermore, in the case of M33 X-7, eclipses of the X-ray sourcebythedonorstarprovideadditionaltightconstraintsontheinclinationwhich resultsinoneofthelargestaccuratelyknownblackholemasses. X-RayBinaries 7 Table2 BlackHoleMassesinX-rayBinaries† Object X-rayBinaryClass Mass(M(cid:12)) References GRS1915+105 LMXB/transient 12.4+2.0 [65] −1.8 V404Cyg ,, 9.0+0.2 −0.6 BWCir ,, >7.0 GX339-4 ,, >6.0 XTEJ1550-564 ,, 7.8−15.6 H1705-250 ,, 4.9−7.9 GS1124-684 ,, 11.0+2.1 [88] −1.4 GS2000+250 ,, 5.5−8.8 A0620-00 ,, 6.6±0.3 XTEJ1650-500 ,, 4.0−7.3 GRS1009-45 ,, >3.6 †Adopted XTEJ1859+226 ,, >5.42 GROJ0422+32 ,, >1.6 XTEJ1118+480 ,, 6.9−8.2 XTEJ1819.3-2525 IMXB/transient 6.4±0.6 [40] GROJ1655-40 ,, 5.4±0.3 4U1543-475 ,, 2.7−7.5 CygX-1 HMXB/persistent 14.8±1.0 LMCX-1 ,, 10.9±1.4 LMCX-3 ,, 7.0±0.6 [58] M33X-7 ,, 15.7±1.5 MWC656 HMXB/transient(?) 3.8−5.6 [7] from[8]unlessotherwisestatedinthereferencecolumn.LowerlimitsforBWCir,GRS1009-45, XTEJ1859+226andGROJ0422+32arebasedontheabsenceofeclipses,combinedwithupdated determinationsofthemassfunctionandq(whenavailable).ThelowerlimitonGX339-4isbased onthelackofX-rayeclipsesplusconstraintsprovidedbytheK-correction. NotethatwehaveexcludedmassmeasurementsforthetwoextragalacticHMXBs NGC300X–1andIC10X–1.Thisisbecausetheserelyonradialvelocitycurves oftheHeIIλ4686windemissionlineandanassumedmassfortheWolf-Rayetstar. Differentgroupshavereportedconflictingresultswhichrangefromcanonicalneu- tronstarstothelargestblackholemassesmeasuredsofarandarehenceunreliable. ThetableincludesMWC656,thefirstblackholecompaniontoaBestar[7].Here theblackholemassreliesonthespectroscopicmassoftheopticalcompanionand theradialvelocitycurvesofthetwostars,extractedfromthedynamicsofcircum- stellargaseousdiscs.Acriticalreviewofblackholemassdeterminations,including potentialsystematiceffects,ispresentedin[8]. 2.4 TheMassSpectrum.ImplicationsforSupernovaeModels Figure 2 presents the observed masses of neutron star and black hole remnants in X-raybinaries,asinTables1and2.Notethatwehavehereexcludedneutronstar 8 J.Casares,P.G.Jonker,andG.Israelian 88 66 44 22 00 00 55 1100 1155 Fig.2 Top:compactremnantmassesmeasuredinX-raybinaries.Neutronstarsandblackholesare indicatedinblackandredcolours,respectively.4U1700-37isplottedindotted-stylelinebecause thenatureofthecompactstarisuncertain.ThehorizontaldottedlinedividesLXMBs/IMXBsfrom HMXBs.Bottom:Observeddistributionofneutronstarsandblackholemasses. massesinradiopulsarsandbinarymillisecondpulsarsasthesearecoveredbyChap. 7.4. The bottom panel displays the number distributions of neutron stars (black) and black holes (red) masses, excluding upper/lower limits. Three main features seem to be drawn from the plot, namely (1) neutron star masses tend to be larger in LMXBs/IMXBs (mass average of 1.54±0.16 M ) than in HMXBs (1.34±0.26 (cid:12) M ),(2)adearthofremnantsorgapappearsbetween∼2-5M ,and(3)themost (cid:12) (cid:12) massiveblackholes(∼15M )arefoundinHMXBs. (cid:12) Feature(1),althoughtentative,couldbeamanifestationofthepulsarrecycling scenario.Thedifferenceinneutronstarmasses,ifconfirmed,wouldstemfromdif- ferentbinaryevolutionhistories,withneutronstarsinLMXBshavingexperienced significant accretion over extended periods of time. This interpretation would be further supported by indications that pulsar mass decreases with spin period [89]. NeutronstarsinHMXBsarelittlemodifiedbyaccretionand,thus,theirmassesare expectedtolieclosertotheirbirthvalues.Andindeed,boththemeananddispersion X-RayBinaries 9 oftheneutronstarmassdistributioninHMXBsarefoundtoagreewiththeoretical expectationsofcore-collapsesupernovae[60].Constraintsonneutronstarforming supernovae do seem to be provided by two distinct populations of X-ray pulsars in Be/X-ray binaries; short P pulsars with short orbital periods and low eccen- spin tricitieswouldbeproducedbyelectron-capturesupernovaewhilelongP pulsars spin with long orbital periods and high eccentricities in iron-core-collapse supernovae [33].Theformerpulsarsarenaturallyexpectedtobelessmassive((cid:46)1.3M )but, (cid:12) unfortunately, this cannot yet be tested because of the lack of precise neutron star massdeterminationsinBe/X-raybinaries. Feature (2) is a statiscally robust property of the mass spectrum (see [15] and referencestherein).Thelackofcompactremnantsbetween∼2-5M contrastswith (cid:12) numericalsimulationsofsupernovaexplosionsby[16]thatleadtocontinuousdis- tributionsandtypicalexponentialdecays.Thesesimulations,however,arebasedon single star populations with a heuristic treatment of binarity through Wolf-Rayet winds following common envelope evolution. In order to accommodate the evi- denceofamassgap,adiscontinuousdependenceofexplosionenergywithprogen- itor mass seems unavoidable. In this context, it has been proposed that convection (Rayleigh-Taylor)instabilities,growingwithin200msaftercorebounce,cansuc- cessfullyrevivethesupernovashockandtriggertheexplosion,therebycausingthe gap (see Fig. 3, but see also [79] for a different interpretation based on neutrino- driven explosion models). Alternatively, a gap can be produced if red super-giant starsof≈17-25M sufferafailedsupernovaexplosion,leavingaremnantwiththe (cid:12) mass of the He core while ejecting the weakly bound H envelope [34]. This inter- pretationappearsattractivebecauseinturnitprovidesanexplanationforthedeficit ofhigh-massprogenitorsseeninpre-explosionimagesofTypeIIpsupernovae[73]. On the other hand, it fails to account for the peculiar abundance of α-elements detectedinthecompanionstarswhichdemandssignificantcontaminationfromsu- pernovaejecta(seeSect.4).Itisalsounclearhowverywidebinarieswithsuchred supergiantscanevolvetoformthecompactblackholebinariesthatweseetoday. Feature (3) most likely reflects different binary evolutionary paths, with black holes in LMXBs being limited to (cid:46)12 M by severe mass loss from the Wolf- (cid:12) Rayetprogenitorafterthecommonenvelopephase[16].Conversely,blackholesin HMXBscangrowfrommoremassivestars,especiallyinlow-metallicityenviron- mentssuchasinthecaseofM33X-7.Furthermore,itispossiblethattheprogenitor starevolvesthroughtheHeburningphasestillembeddedintheHenvelope(caseC masstransfer),thussufferinglesswindmass-loss[4].However,itshouldbenoted that some aspects of binary and massive stellar evolution (e.g. radial expansion, windmass-lossrates,efficiencyofcommonenvelopeejection)arestillquiteuncer- tain, which certainly limits our understanding of the formation of X-ray binaries. Atthispoint,theimpactofsystematicuncertaintiesinthedeterminationofbinary inclinationanglesshouldalsobestressed,asexemplifiedbythelargedispersionof valuesreportedbyindependentgroupsonindividualsystems(see[8]).Ignoringthe role of systematics can lead to overestimated black hole masses and hence a bias intheobserveddistribution[35].Inaddition,thesampleofX-raybinarieswithdy- 10 J.Casares,P.G.Jonker,andG.Israelian Fig.3 ObservedmassdistributionofcompactobjectsinX-raybinaries(top),comparedtotheo- reticaldistributionscomputedfordifferentsupernovamodels(bottom).Themassgapcanbere- producedonlyifturbulentinstabilitiesgrowrapidly.Slowgrowinginstabilitiesleadtosignificant fallbackthatwouldfillthemassgap.From[2]. namicalmassdeterminationsisalmostcertainlypronetocomplexselectioneffects (both evolutionary and observational) not completely understood. For instance, it maybepossiblethatlow-massblackholesbecomeunboundbythesupernovaex- plosionorarehiddeninveryfaint(butpersistent)X-raybinaries.ThesystemMWC 656mightbeitselfamemberofahiddenpopulationofveryfaintlow-massblack holes. More observational work is required to enlarge the sample of secure black holemassesbeforetheobserveddistributioncanbedefinitivelyusedtoilluminate thepropertiesofthesupernovaengine.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.