ebook img

X-Ray Absorption Near Edge Structure of Amino Acids and Peptides PDF

89 Pages·1999·0.56 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview X-Ray Absorption Near Edge Structure of Amino Acids and Peptides

X-Ray Absorption Near Edge Structure of Amino Acids and Peptides AThesisPresented by JanMarkus Boese to TheGraduateSchool inPartialFulfillmentoftheRequirements fortheDegreeof MasterofArts in Physics StateUniversityofNewYork at StonyBrook December 1996 StateUniversityofNewYork at StonyBrook TheGraduateSchool JanMarkus Boese We, the thesis committee for the above candidate for the Master of Arts degree, herebyrecommendacceptance ofthethesis. Chris Jacobsen Professor,PhysicsDepartment DavidFossan Professor,PhysicsDepartment DmitriAverin Professor,PhysicsDepartment Thisthesisisaccepted bytheGraduateSchool. GraduateSchool ii Abstract of the Thesis X-Ray Absorption Near Edge Structure of Amino Acids and Peptides by JanMarkus Boese MasterofArts in Physics StateUniversityofNewYorkat StonyBrook 1996 Carbon edge x-ray absorption near edge structures (XANES) of aminoacids andpeptides havebeen investigatedforthefirst time. The samples have been analyzed in solid form, because their heat sensitiv- itymakesevaporationdifficult. Inordertoobtainquantitativemeasure- mentsusingtransmissionspectroscopy,thesamplehastobeofuniform thickness across the illuminatedspot. For this reason a special sample preparation technique was used, and the spectra were taken using the smallspot size ofthe StonyBrookscanningtransmissionx-ray micro- iii scope, which is operated at the National Synchrotron Light Source at Brookhaven National Laboratory. XANES spectra of six amino acid monomers,four dipeptides and one tripeptidewere compared. The re- sults show that the peptide spectra can be explained as a sum of the spectraofthemonomerstheyconsistof. Thisindicatesthatthepeptide bond has only a weak effect on the spectra. If this is true in general, it shouldbepossibletopredictXANESspectraofproteinsfromthespec- tra of the constituent amino acids. This could be used for estimations inproteinspecific imagingusingx-raymicroscopes. iv ToChristine Contents ListofFigures ix : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ListofTables xii : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Acknowledgements xiii : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 Introduction 1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1.1 X-RayMicroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 XANEScontrast . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background Information 8 : : : : : : : : : : : : : : : : : : : : : : : 2.1 InteractionofX-Rays withMaterial . . . . . . . . . . . . . . . . . 8 2.2 X-RayAbsorptionNear EdgeStructure . . . . . . . . . . . . . . . 11 2.2.1 MolecularOrbitals . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 XANESResonances . . . . . . . . . . . . . . . . . . . . . 16 2.3 AminoAcids andProteins . . . . . . . . . . . . . . . . . . . . . . 23 vi 2.3.1 Chemical StructureofAminoAcids . . . . . . . . . . . . . 23 2.3.2 ThePeptideBond . . . . . . . . . . . . . . . . . . . . . . . 28 3 Experimental Methods 31 : : : : : : : : : : : : : : : : : : : : : : : : : 3.1 MethodsforXANESspectroscopy . . . . . . . . . . . . . . . . . . 31 3.1.1 Gas Phase vs. SolidSamples . . . . . . . . . . . . . . . . . 31 3.1.2 Transmissionvs. ElectronYieldDetection. . . . . . . . . . 32 3.1.3 TheThicknessEffect . . . . . . . . . . . . . . . . . . . . . 34 3.1.4 HigherOrderContamination . . . . . . . . . . . . . . . . . 35 3.2 TheScanning TransmissionX-Ray Microscope . . . . . . . . . . . 36 3.3 SamplePreparation . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 DataAcquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.1 EnergyResolution . . . . . . . . . . . . . . . . . . . . . . 42 3.4.2 Effect ofbeamlineandsamplewindow . . . . . . . . . . . 42 3.4.3 EstimationofRadiationDoseandDamage . . . . . . . . . 45 3.5 DataAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5.1 QuantitativeAnalysis . . . . . . . . . . . . . . . . . . . . . 48 3.5.2 Monochromatorenergydriftcorrection . . . . . . . . . . . 51 3.5.3 Energyscalecalibration . . . . . . . . . . . . . . . . . . . 52 vii 4 Results 54 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.1 Interpretationofthemonomerspectra . . . . . . . . . . . . . . . . 54 4.2 ComparisonofMonomerandPeptideSpectra . . . . . . . . . . . . 57 4.3 SensitivityofXANESimaging . . . . . . . . . . . . . . . . . . . . 65 5 Conclusions and Future work 70 : : : : : : : : : : : : : : : : : : : : : A Sample Preparation Protocol 75 : : : : : : : : : : : : : : : : : : : : : viii List of Figures 1.1 Absorptioncoefficientsofwater andprotein. . . . . . . . . . . . . . 3 1.2 CarbonedgeXANESspectraofDNA,protamine1andprotamine2, takenfrom [1]withpermission . . . . . . . . . . . . . . . . . . . . 6 1.3 Water window image, protein map and DNA map of a bull sperm, takenfrom [1]withpermission . . . . . . . . . . . . . . . . . . . . 7 2.1 Thelinearcombinationofatomicorbitals(LCAO)approximation . 17 2.2 Energylevelsofthemolecularorbitalsofdiatomicmolecules. . . . 18 2.3 Schematic potential and XANES spectra of atoms and molecules. From[2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Structureofthecommonaminoacids. . . . . . . . . . . . . . . . . 23 2.5 Resonancestructuresoftheunprotonatedcarboxyl group. . . . . . . 24 2.6 Twoaminoacidmonomersformadipeptidebydehydration. . . . . 29 2.7 Theresonance structuresofthepeptidebond. . . . . . . . . . . . . 29 3.1 SchematicdiagramofthemaincomponentsoftheSTXM. . . . . . 38 ix 3.2 Resolvingpowerofthemonochromator. . . . . . . . . . . . . . . . 43 3.3 Theoretical undulator spectrum compared to measured spectrum withoutsample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 Spectrum of a silicon nitride sample window. The straight line is thespectrumpredictedfrom atomiccrosssectiondata. . . . . . . . 45 3.5 Repeatedspectratakenatthesamespotdonotshowindicationsfor radiationdamage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.6 Measured XANES spectrum of an amino acid (tyrosine) fitted to atomiccrosssectiondatatoobtainanabsolutemeasureofthemass absorptioncoefficient. . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.7 Correctionforenergydriftofthemonochromator. . . . . . . . . . . 51 3.8 CO calibrationspectrum. . . . . . . . . . . . . . . . . . . . . . . 52 2 4.1 BindingofTFAtoanaminoacid. . . . . . . . . . . . . . . . . . . 56 4.2 CarbonedgeISEELspectrumofTFA. . . . . . . . . . . . . . . . . 57 4.3 Spectra of Glycine and Tyrosine and a weighted sum compared to aspectrumofthedipeptide. . . . . . . . . . . . . . . . . . . . . . . 60 4.4 SpectraofGlycineandTryptophaneandaweightedsumcompared toaspectrumofthedipeptide. . . . . . . . . . . . . . . . . . . . . 61 4.5 Spectra of Histidine and Phenylalanine and a weighted sum com- paredtoaspectrumofthedipeptide. . . . . . . . . . . . . . . . . . 62 x

Description:
X-Ray Absorption Near Edge Structure of Amino. Acids and Peptides. A Thesis Presented by. Jan Markus Boese to. The Graduate School in Partial
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.