Wrinkling of thin sheets under tension Rita Valente de Carvalho Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor: Prof. Nuno Miguel Rosa Pereira Silvestre Examination Committee Chairperson: Prof. Filipe Szolnoky Ramos Pinto Cunha Supervisor: Prof. Nuno Miguel Rosa Pereira Silvestre Member of the Committee: Prof. Miguel António Lopes de Matos Neves November 2015 Abstract Wrinkling of thin membranes has become a huge concern in aerospace engineering due to the widespread of membrane structures in aerospace applications. The wrinkling of these lightweight structures is often observed and deteriorates their surface accuracy. Being thought that surface accuracy is a fundamental requirement in the manipulation and design of the membranes, it is necessary to evaluate the wrinkling of these materials in order to control and mitigate the wrinkling phenomenon. In this work, a study of the wrinkling phenomenon in thin rectangular sheets subjected to uniaxial tension is presented, including the wrinkle profile, the stress field and several parameters that influence this phenomenon. First, experimental tests on specimens with different thicknesses and plane dimensions are performed. Using a tri-dimensional digital image correlation technique (VIC-3D), the images of a rectangular 𝐾𝑎𝑝𝑡𝑜𝑛 𝐻𝑁® sheet in tension are captured to investigate the evolution of the wrinkles, in terms of amplitude and wavelength. Then, a numerical study using the commercial finite element package ABAQUS is made based on the physical model of the membrane, with the aim to assess the growth, the evolution and the characteristics of the wrinkles. For that, a buckling and geometrically nonlinear analyses of the membranes are performed, using thin-shell elements. After that, the numerical validation of the results is made through the comparison with the numerical solutions available in published literature as well as the comparison with the experimental data obtained in this dissertation. Finally, some concluding remarks and future developments are described. Key words: wrinkling, membrane, buckling, finite element method, non-linear analysis. i ii Resumo O enrugamento de membranas finas tem-se tornado uma preocupação em engenharia aeroespacial dada a vasta utilização destas estruturas em aplicações aeroespaciais. O enrugamento da membrana é frequentemente observado, degradando a precisão da superfície do material, a qual constitui um requisito fundamental na utilização e dimensionamento destas estruturas. Neste contexto é necessário avaliar o enrugamento nestes materiais para controlo e mitigação desse fenómeno. Neste trabalho, o estudo do fenómeno de enrugamento em folhas finas retangulares sujeitas a forças de tensão uniaxial é apresentado, incluindo o perfil das rugas presentes na membrana, bem como, o campo de tensões envolvido e diversos parâmetros que afetam este fenómeno. Primeiramente, são feitos testes experimentais a provetes de diferentes espessuras e dimensões. Usando uma técnica tridimensional digital de correlação de imagem (VIC-3D), são captadas as imagens da membrana de 𝐾𝑎𝑝𝑡𝑜𝑛 𝐻𝑁® em tensão de forma a averiguar a evolução das rugas, no que concerne à amplitude e comprimento de onda das mesmas. Posteriormente, um estudo numérico usando o programa comercial de elementos finitos ABAQUS é feito baseado no modelo físico da membrana de forma a obter o crescimento, a evolução e as características das rugas. Para tal, uma análise de instabilidade linearizada (ou Euler) e outra estática geometricamente não-linear são simuladas, usando elementos de casca fina. Em seguida, a verificação numérica dos resultados é feita através de resultados disponíveis em literatura referentes ao mesmo modelo e, ainda, pela comparação com os resultados experimentais obtidos na presente dissertação. Finalmente, algumas conclusões e desenvolvimentos futuros são descritos. Palavras-chave: Enrugamento, membrana, análise de instabilidade linearizada (ou Euler), método de elementos finitos, análise não linear. iii iv Acknowledgments This dissertation represents the end of a unique and unforgettable journey and the support given by several people was essential for the conclusion of my Master’s degree. Firstly, I would like to express my gratitude to Professor Nuno Silvestre for the opportunity of working with him. Since the first day, constant invaluable help and advice were fundamental for the development of this dissertation. I also have to manifest my acknowledgment to Claudia Schmidt from DuPont and Maite Fernández, Coraline Perron and Silvia Silva from Isovolta for efficiently dealing with the process of transporting the material. A key help in this journey was given by my colleague Joel Pinheiro and Professor Pedro Amaral, who continuously provide me the tools, the time, the knowledge and the dedication much above needed for this thesis. I would also like to thank the courage and love given by my family, especially by my parents, Lúcia and Rui, to whom I owe everything I am. They continuously dare me to expand my horizons and show me their unconditional support. Additionally, I would like to remember and to thank the people who were present since the first day of my course in this university, my long-time friends João Ferro, José Bruno Pinto, André Sousa, João Frazão, Sara Monte, Rita Vieira and Joana Matos, to whom I give responsibility for my success and accomplishments. I could never forget the friendship and the irreplaceable support and motivation given along this period of my life. This appreciation would not be complete if I didn’t mention my boyfriend Tomás Viana who has always given me his love, respect and admiration. I could have never walked through this journey without you and words cannot express my gratitude for your friendship and for the support in every single day of this adventure. “Serendipity is the way to make discoveries, by accident but also by sagacity, of things one is not in quest of. Based on experience, knowledge, it is the creative exploitation of the unforeseen.” Adrian Bejan, Mechanical Engineer at MIT v vi Contents Abstract......................................................................................................................................................i Resumo ................................................................................................................................................... iii Acknowledgments ....................................................................................................................................v List of figures ........................................................................................................................................... ix List of tables ............................................................................................................................................ xi List of acronyms and symbols ............................................................................................................... xiii 1. Introduction ...................................................................................................................................... 1 1.1 Scope ....................................................................................................................................... 1 1.2 Wrinkling phenomena .............................................................................................................. 1 1.3 Membrane structures in Aerospace and other Applications .................................................... 4 1.3.1 Solar Sails ........................................................................................................................ 4 1.3.2 Membrane Mirrors in Space Telescopes ......................................................................... 5 1.3.3 Sunshields ....................................................................................................................... 5 1.3.4 Inflatable Reflector Antennas .......................................................................................... 6 1.3.5 Other applications ............................................................................................................ 7 1.4 Objectives ................................................................................................................................ 9 1.5 Organization of contents ........................................................................................................ 10 2 Literature review ............................................................................................................................ 11 2.1 Wrinkling Criterion ................................................................................................................. 11 2.2 Analytical studies ................................................................................................................... 13 2.2.1 Tension field theory ....................................................................................................... 13 2.2.2 Variable Poisson’s Ratio theory ..................................................................................... 16 2.2.3 Theories with finite bending stiffness ............................................................................ 16 2.3 Numerical studies .................................................................................................................. 23 2.4 Scope of Present Study ......................................................................................................... 25 3 Experimental Studies ..................................................................................................................... 27 3.1 Material characterization ....................................................................................................... 27 3.2 Set-up .................................................................................................................................... 30 3.2.1 Specimen Preparation ................................................................................................... 30 3.2.2 Test Procedure .............................................................................................................. 31 3.3 Results ................................................................................................................................... 33 3.3.1 Wrinkle Profile ................................................................................................................ 33 3.3.2 Discussion ..................................................................................................................... 38 4 Numerical Studies ......................................................................................................................... 41 4.1 Finite Element Method for Wrinkling Analysis ....................................................................... 41 4.2 Analysis Procedure ................................................................................................................ 42 4.2.1 Initial Conditions ............................................................................................................ 43 4.2.2 Buckling analysis ........................................................................................................... 43 vii 4.2.3 Nonlinear Analysis ......................................................................................................... 44 4.3 Finite Element Model – Reference Case ............................................................................... 45 4.4 Sensitivity of FE Model .......................................................................................................... 48 4.4.1 Type of FE ..................................................................................................................... 48 4.4.2 Refinement of FE Mesh ................................................................................................. 49 4.4.3 Sensitivity to the perturbation ........................................................................................ 50 4.4.4 Stabilizing Factor ........................................................................................................... 52 4.5 Results ................................................................................................................................... 52 4.5.1 Buckling Modes and critical strains ............................................................................... 52 4.5.2 Wrinkling Profile ............................................................................................................. 55 4.5.3 Stress Distribution.......................................................................................................... 59 5 Model Validation ............................................................................................................................ 65 5.1 Numerical Model from the literature ...................................................................................... 65 5.2 Experimental Validation ......................................................................................................... 69 6 Conclusions and future work ......................................................................................................... 75 6.1 Conclusions ........................................................................................................................... 75 6.2 Future Developments ............................................................................................................ 77 7 References .................................................................................................................................... 79 A. Eigenvalue buckling analysis ..................................................................................................... 83 B. Experimental results .................................................................................................................. 85 viii
Description: