FortschrittederPhysik,27January2012 Wrapping corrections beyond the sl(2) sector in N = 4 SYM MatteoBeccaria1,∗,GuidoMacorini2,∗∗,andCarloAlbertoRatti1,∗∗∗ 1 DipartimentodiFisica,Universita’delSalento,ViaArnesano,73100Lecce& INFN,SezionediLecce. 2 NielsBohrInternationalAcademyandDiscoveryCenter, 2 Blegdamsvej17DK-2100Copenhagen,Denmark. 1 0 ReceivedDayMonth2012,revisedDayMonth2012,acceptedDayMonth2012 2 PublishedonlineDayMonth2012 n a Keywords Integrability,Y-system. J 6 Thesl(2)sector of N = 4SYMtheory hasbeen muchstudied andtheanomalous dimensions of those 2 operators are well known. Nevertheless, many interesting operators are not included in this sector. We consider a class of twist operators beyond the sl(2) subsector introduced by Freyhult, Rej and Zieme. ] They are spin n, length-3 operators. At one-loop they can be identified with three gluon operators. At h strongcoupling,theyareassociatedwithspinningstringswithtwospinsinAdS spaceandchargeinS5. t - We exploit the Y-system to compute the leading weak-coupling four loop wrapping correction to their p anomalous dimension. Theresult iswritteninclosedformasafunction ofthespinn. Wecombine the e wrappingcorrectionwiththeknown four loopasymptoticBetheAnsatzcontributionandanalyzespecial h limitsinthespinn. Inparticular,atlargen,weprovethatageneralizedGribov-Lipatovreciprocityholds. [ Atnegativeunphysicalspin,wepresentasimpleBFKL-likeequationpredictingtherightmostleadingpoles. 2 v Copyrightlinewillbeprovidedbythepublisher 2 2 2 5 1 Introduction . 1 The mirror thermodynamic Bethe Ansatz (TBA) for the AdS ×S5 superstring [1] provides a general 0 5 2 approachto the study of finite size correctionsto states/operatorsin AdS/CFT. The associated Y-system 1 has been proposed in [2] based on symmetry argumentsand educated guesses about the analyticity and : asymptoticpropertiesoftheY-functions. v i Verypowerfulexplicittestsofthesemethodshavebeenmostlydoneinthesl(2)sectorofN =4SYM X [3]. Beyondsl(2),ourknowledgeofthelargerpartofthefullpsu(2,2|4)structureofthetheoryislimited. r Inthisbriefnote, following[4], [5], we showsomerecentprogressin thecomputationofthe leading a orderwrappingcorrectionsoftheFreyhult-Rej-Zieme(FRZ)operators,aspecialclassofoperatorsbeyond thesl(2)sectorfirstdiscussedatone-loopinthegeneralanalysis[6]andfurtheranalyzedatallordersin [7]. TheresultsfollowfromadirectapplicationoftheY-systemtechniques. FRZoperatorsaretwist3operators. Theirgeneralformcanbewrittenbyinsertingcovariantandanti- covariant derivatives D, D¯ into the half-BPS state TrZ3 (Z being one of the three complex scalars of N =4SYMtheory): OFRZ =Tr(Dn+mD¯mZ3)+··· . (1) n,m Atstrongcoupling,theseoperatorsaredualtospinningstringconfigurationswithtwospinsS =n+m−1 1 2 andS = m− 1 inAdS andchargeJ = L = 3inS5. Thedistributionoftherootsonthenodesofthe 2 2 5 ∗ [email protected]. ∗∗ [email protected]. ∗∗∗ [email protected]. Copyrightlinewillbeprovidedbythepublisher 2 M.Beccaria,G.Macorini,andC.Ratti:Wrappingcorrectionsbeyondthesl(2)sectorinN =4SYM psu(2,2|4)algebraissummarizedinFigure2: +1 (cid:0)❅♥ ♥ (cid:0)❅♥ ♥ (cid:0)❅♥ ♥ (cid:0)❅♥ (2) n+2m m m−1 m−2 Nontrivialrootsoutofthesl(2)sectoroccurform ≥ 2. Intheparticularm = 2case,theoperatorsare called3-gluonoperators. In general, the wrapping effects are expected to appear at weak coupling for the OFRZ operators at n,m fourloop. Inpaper[8],theasymptoticpartoftheanomalousdimensionsoftheOFRZhasbeencomputed n,2 exactly up to four loops. The result is given as a closed formula in the spin parameter n. Up to this level, reciprocityholdsfor the asymptotic contributions. By following[4], fromthe Y-system equations wederivepreciselyasimilarclosedformulafortheleadingwrappingcorrections. Thisformula,together withtheresultsof[8],completesthestudyoftheanomalousdimensionsforthe3-gluonoperatorsupfour loop. Asabyproduct,weshallbeabletotestpositivelyreciprocityaswellasdiscusstheBFKLpolesof the full fourloopresult. We also show that a very simple and naturalmodificationof the twist-2 BFKL equationpredictsthecorrectpolestructure. For the general OFRZ FRZ operators, no asymptotic closed formula for the anomalous dimension is n,m known beyond one-loop. Thus, the research of such a closed formula for the wrapping corrections is hopelessanduseless. Neverthelessthelargenexpansionoftheasymptoticminimalanomalousdimension ofOFRZisknownforfixedration/morfixedm[7].Theexpansionisobtainedatallordersinthecoupling n,m andincludingtheleadingterm∼lognaswellasthesubleadingasymptoticallyconstantcorrection∼n0. Thesetwocontributionsareexpectedtobefreeofwrappingcorrections. Following[5],weconsiderpreciselythelargenexpansionofleadingorderwrappingcorrectionwhich appearsatfourloop. WeprovideanalgorithmtocomputethroughtheY-systemthelargenexpansionfor fixedmandpresentexplicitnewresultsform = 2,3,4. Form = 2wematchthelargen expansionof theclosedformulaforthe3-gluonoperators[4]. Theexpansionsfortheothertwovaluesarenew. Infull generality,weprovethe logn scalingbehaviouratlargenthusconfirmingtheassumptionin[7]. n2 Theplanofthepaperisthefollowing:InthenextSectionwegivetheminimalsetofY-systemequations requiredtocomputetheleadingorderwrappingcorrections.InSection3wegivetheresultfortheleading wrappingcorrectionsofthe3-gluonoperators.InSection4weconsiderthelargenlimitofFRZoperators OFRZ. Thegeneralstrategyisdescribedandresultsaregivenform=(3,4). n,m 2 Leading wrapping corrections from Y-system TheY-systemisasetoffunctionalequationsforthefunctionsY (u)definedonthefat-hookofpsu(2,2|4) a,s [2]. Theseequationsare Y+ Y− (1+Y )(1+Y ) a,s a,s = a,s+1 a,s−1 . (3) Y Y (1+Y )(1+Y ) a+1,s a−1,s a+1,s a−1,s Theirboundaryconditionsare discussed in [9]. Theanomalousdimensionofa genericstate isgivenby theTBAformula ∞ du ∂ǫ⋆ E = g2ℓγ = ǫ (u ) + a log(1+Y⋆ (u)), (4) ℓ-loop 1 4,i R 2πi ∂u a,0 ℓ=0 i a≥1Z X X X asymptoticγasy wrappingW where the asymptotic and the w|rapp{izng co}ntrib|utions are well{zdistinct. In for}mula (4), the dispersion relationis 2ig 2ig ǫ (u)=a+ − , (5) a x[a] x[−a] Copyrightlinewillbeprovidedbythepublisher fdpheaderwillbeprovidedbythepublisher 3 andthestarmeansevaluationinthemirrorkinematics1. ThecrucialassumptionintheidentificationofrelevantsolutionstotheY-systemis x[−a] L Y⋆ ∼ , (6) a≥1,0 x[+a] (cid:18) (cid:19) for large L, or large u (or small g). In this limit, it can be shown that the Hirota equation splits in two su(2|2) wings. Onecanhavea simultaneousfinitelargeLlimitonbothwingsafterasuitablegauge L,R transformation.Thesolutionisthen x[−a] L φ[−a] Y (u)≃ TL TR , (7) a,0 x[+a] φ[+a] a,1 a,1 (cid:18) (cid:19) where φ[−a] isthefusionformfactorandTL,R arethetransfermatricesoftheantisymmetricrectangular φ[+a] a,1 representationsof su(2|2) . They can be explicitly computedby an appropriategeneratingfunctional L,R [10]. Atweakcoupling,theformula(4)fortheleadingwrappingcorrectionstakesthesimplerform ∞ ∞ 1 W =−π RduYa⋆,0 =−2i Resu=i2aYa⋆,0. (8) a=1Z a=1 X X Theformula(7)fortherelevantY functionsgetssimplifiedtoo. Inparticular,theY’scanbeexpressedas functionsofthe1-loopBaxterpolynomialsQ ’s. Weget[5]: i x[−a] L ⋆ 4g2 L = , (cid:18)x[+a](cid:19) ! (cid:18)a2+4u2(cid:19) φ[−a] ⋆ = Q+(0) 2 Q[41−a] Q[5−a] Q7(0), (cid:18)φ[+a](cid:19) 4 Q[4−1−a]Q[4a−1]Q[4a+1] Q5(0) Q[7−a] (cid:2) (cid:3) T∗,L =(log(Q′))|u=+2i g2(−1)a+1 a Q[4−1−k]−Q[41−k] +O(g4), a,1 4 u=−2i Q[41−a] kX=−a u−ik2 (cid:12)(cid:12)Q[4−1−a],Q[4−1−a]→0 ∆k=2 (cid:12) Q[a]Q[−a] a−1 Q[k] Q[k+2]−Q[k] Q[k(cid:12)−2]−Q[k] T∗ =(−1)a+1 5 7 4 6 6 + 6 6 +O(g2). (9) a,1 Q[1−a] Q[k] Q[k+1]Q[k+1] Q[k−1]Q[k−1]! 4 k=1−a 6 5 7 5 7 X ∆k=2 TheexpressionsfortheQ ’sfortheFRZoperatorsareknownandcanbefoundin[7],[8]. Theseexpres- i sions togetherwith equations(7), (8) and(9) are in principleall whatone needsto computethe leading wrappingcorrectionsfortheFRZoperators. 3 The 3-gluonoperators OFRZ case n,2 FRZ operatorsOFRZ with m = 2 are amongthe simplest nontrivial operatorsthatcan be built beyond n,2 the sl(2) sector of N = 4 SYM theory. In this Section we give a general result for their leading order wrappingcorrectionsW . Moredetailsabouttheresultsofthissectioncanbefoundin[4]. n ThestartingpointistheobservationthatbyspecializingtheformulasofSection2tothesimplem=2 caseandfixingn,thecomputationofthewrappingcorrectionsisstraightforward.In[5]weproducedalist ±···± 1 ShiftedquantitiesaredefinedasF| {az }(u)=F[±a](u)=F(cid:0)u±ia(cid:1). 2 Copyrightlinewillbeprovidedbythepublisher 4 M.Beccaria,G.Macorini,andC.Ratti:Wrappingcorrectionsbeyondthesl(2)sectorinN =4SYM ofresultsforthewrappingupton =70. Thenwewereabletocondensatethesedatainaclosedformula thatreplicatesandgeneralizestoanyvalueofnthenumericalresultsofthelist. Theformulais W = (r +r ζ +r ζ ) g8, n 0,n 3,n 3 5,n 5 2 1 r = 80 4S + +4 −4(N +1)+ , 5,n 1 N +1 N +1 (cid:18) (cid:19) (cid:18) (cid:19) 2 r = 16 4S + +4 × 3,n 1 N +1 (cid:18) (cid:19) 2 2 1 8(N +1)S +8+ (2−S )− − , 2 N +1 2 (N +1)2 (N +1)3 (cid:20) (cid:21) 2 r = 2 4S + +4 × 0,n 1 N +1 (cid:18) (cid:19) 4 16(N +1)(2S −S )+32S + (S −2S +4S )+ 2,3 5 3 5 2,3 3 N +1 (cid:20) 8 4 4 1 + (−S +2)+ (−S +4)− − . (10) (N +1)2 3 (N +1)3 3 (N +1)5 (N +1)6 (cid:21) HereS ≡ S (N)andN = n/2+12. Notethateachoftherationalcoefficientr canbewritten a,b,... a,b,... i asr =γ r ,whereγ =S + 2 +4istheoneloopanomalousdimension. i,n 1-loop i,n 1-loop 1 N+1 TheAnsatz(10)completesthefourloopexpressionoftheenergyspectrumfortheOFRZoperators,the n,2 otherrelevantcoentributionsuptothisorderbeingthefirstfourasymptoticorders. Theirexpressionscan befoundin[8]. Uptofourloop,theasymptoticpartofthespectrumshowsthegeneralizedGribov-Lipatovreciprocity property[8]. Formula(10)allowstocheckwhetherthispropertyextendstothefullfourloopresult. This isindeedthecase:ThelargenexpansionofW /γ reads n 1-loop ζ r +ζ r +r = 5 5,n 3 3,n 0,n 32 −32ζ 232ζ3 − 352 4834 − 2344ζ3 3544ζ3 − 83956 271768 − 9512ζ3 3 3 + 5 15 + 105 35 + 35 945 + 1485 55 + e J2e e J4 J6 J8 J10 1872392ζ3 − 20053258 87933002 − 524872ζ3 4917304ζ3 − 5747755528 5005 45045 + 61425 455 + 935 883575 +..., (11) J12 J14 J16 where we introduced the charge J2 = N(N +2). All the odd powers of 1/J cancel proving that the reciprocitypropertydoeshold.Itisremarkablethatthispropertyisaconsequenceofnon-trivialcancella- tionsofodd1/J termswhicharepresentintheexpansionofeachsinglecoefficientr . Thepresenceof i,n reciprocityisreallyappreciable,sinceitallowstopredictahalfofthelargenexpansionterms(expressed asfunctionsofthesamen)ascombinationsoftheotherhalf. e TheAnsatz(10)allowsalsotostudytheBFKLpolesofthefullfourloopresult. Ingeneral,atℓ-loop theanalyticcontinuationofγ inthevariableN aroundN =−1isexpectedtobehaveatworstasω−ℓ, ℓ-loop whereωisasmallexpansionparameterdefinedbyN =−1+ω. Atfourloopstheasymptoticanomalous dimensionγasy presentsinsteadalso polesin ω−k with k = (7,6,5). Thesepolesgetindeedcompen- 4-loop satedinsidethefullγ =γasy +W wherepreciselythewrappingcontribution(10)isincluded. The 4-loop 4-loop finalexpressionsfortheexpansionsofthefirstfourγ are ℓ-loop 4 8 4π2 γ =− +..., γ = + +..., (12) 1-loop ω 2-loop ω2 3ω 0 16 −3ζ +π2+12 32(1+2ζ ) 160ζ 3 3 3 γ = − +..., γ =− + +.... 3-loop ω3 3ω2 4-loop ω4 ω3 (cid:0) (cid:1) 2 Weremindthatnisanevenpositiveinteger.ThismeansthatNisaninteger,N ≥2. Copyrightlinewillbeprovidedbythepublisher fdpheaderwillbeprovidedbythepublisher 5 Strikingly,theleadingpolescanbereproducedbyaBFKL-likeequationthatlinksωtothefullanomalous dimensionγ ω γ − = χ , χ (z)=S (z)+S (z+1). (13) g2 1 2 1 1 1 (cid:16) (cid:17) Infact,theweakcouplingexpansionofthisequationreadsprecisely 4 8 0 32(1+2ζ ) γ = − +... g2+ +... g4+ +... g6+ − 3 +... g8+.... ω ω2 ω3 ω4 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (14) 4 General FRZoperators: Largen expansion ForthegeneralOFRZ onlythelargenlimitoftheasymptoticpartoftheanomalousdimensionisknown n,m>2 forfixedration/morfixedm[7]. Thus,asfarasweconsiderthewrappingcorrections,weareprimarily interestedinthecomputationoftheirlargenexpansions. TheY-systemdescribedinSec. 2canbeoptimizedtogetonlythelargencontributions.Thecomputa- tionalstrategyisthefollowing: • Startingfromeq. (8)oneevaluatestheresidueatfixeda=1,2,... withoutassigningn; • Analyzingthedependenceonnoftheresidue,onerealizesthatncomesfromtheBaxterpolynomials Q ,itsderivatives(whicharewrittenintermsofthebasichypergeometricfunctionF )andfrom 4 n,m theexplicitn-dependentcoefficientsoftheotherBaxterpolynomials. Atthispointthelimitovern canbetakenintwodistinctsteps; • Using the Baxter equation, it is possible to shift the argumentof F to some minimal value and n,m takethelargenlimitonthecoefficients.Thisgivesafirstexpansioncontainingvariousderivativesof thelogarithmofF ; n,m • Thederivativesofthelogarithmcanbesystematicallycomputedbymeansofthemethodexplained in[11]; • Theoutcomeofthisprocedurearesequencesofrationalnumbersbeingthea-dependentcoefficients of the large n expansion of Resu=ia2 Ya⋆,0. These sequences turn out to be rather simple rational functionswhichareeasilyidentified. Thesumoveraoftheserationalfunctionsgivesthewrapping W asdefinedbyeq. (8). Followingthiscomputationalmethod,in[5]wecomputedthelargenexpansionofthewrappingcor- rectionsfortheoperatorsOFRZ withm = 2,3,4. Them = 2caseagreeswiththelargenexpansionof n,m eq. (10). Form=3,4wegetthesenewresults 4 2 logn¯+1 88 logn¯ g−8W = − (36ζ +5π2−3) + (36ζ +5π2−3) + (15) n,m=3 3 3 n2 3 3 n3 2 − 4(9108ζ +1289π2−615) logn¯−14868ζ −2017π2+1527 +..., 9n4 3 3 1024(cid:2) 3 logn¯ +4 7168 6 logn¯ +5 (cid:3) g−8W = − (81ζ −32) 2 + (81ζ −32) 2 + (16) n,m=4 1215 3 n2 1215 3 n3 1024 n¯ − 138240(1971ζ −760) log +143289ζ −53248 +.... 8505n4 3 2 3 h i Theextensionoftheseresultstolargervaluesofmisaplaintask. Copyrightlinewillbeprovidedbythepublisher 6 M.Beccaria,G.Macorini,andC.Ratti:Wrappingcorrectionsbeyondthesl(2)sectorinN =4SYM Thenumericalcheckin Table(17) showsthatthere isgoodagreementbetweenourexpansionsanda numericalestimateofthewrappingcorrections. m=3 n estimate (LO NLO NNLO) fullexpansion diff% 10 −1.857411 (−4.038730 3.785374 −2.548066) −2.801422 51% 30 −0.438781 (−0.594614 0.193683 −0.045355) −0.446286 1.7% 50 −0.197270 (−0.238478 0.047207 −0.006716) −0.197986 0.36% m=4 n estimate (LO NLO NNLO) fullexpansion diff% 10 −1.201460 (−2.908787 3.493848 −3.576129) −2.991068 149% 30 −0.293765 (−0.424071 0.176476 −0.061888) −0.309484 5.4% 50 −0.134246 (−0.169551 0.042847 −0.009090) −0.135794 1.2% (17) Followingthegeneralideaofreciprocity,weareledtorewritetheabovelargenexpansionsintermsof thequantity J2 =n(n+a ). (18) m m It turns out that the coefficients of the two odd terms 1/J3 and logJ/J3 indeed vanish for the choice a = 8, 11, 14. Thisis notcompletelytrivialsince we haveoneparameterandtwo structures. It is 2,3,4 temptingtoconjecturethesimplerelationa = 3m+2andtoclaimthatreciprocityintheabovesense m holdsforthefullanomalousdimensionaswell. References [1] G.ArutyunovandS.Frolov,JHEP0712,024(2007)[arXiv:0710.1568[hep-th]]•G.ArutyunovandS.Frolov, JHEP 0903, 152 (2009) [arXiv:0901.1417 [hep-th]] • G. Arutyunov and S. Frolov, JHEP 0905, 068 (2009) [arXiv:0903.0141 [hep-th]] • D. Bombardelli, D. Fioravanti and R. Tateo, J. Phys. A A 42, 375401 (2009) [arXiv:0902.3930[hep-th]]•N.Gromov,V.Kazakov,A.KozakandP.Vieira,Lett.Math.Phys.91,265(2010) [arXiv:0902.4458[hep-th]]•G.ArutyunovandS.Frolov,JHEP0911,019(2009)[arXiv:0907.2647[hep-th]]• G.ArutyunovandS.Frolov,JHEP1105,082(2011)[arXiv:1103.2708[hep-th]]•P.DoreyandR.Tateo,Nucl. Phys.B482,639(1996)[hep-th/9607167]. [2] N.Gromov,V.Kazakov,andP.Vieira,Phys.Rev.Lett.103131601(2009)[arXiv:hep-th/0901.3753]•N.Gro- movandV.Kazakov,arXiv:1012.3996[hep-th]. [3] Z.Bajnok, A.Hegedus, R.A.JanikandT.Lukowski, Nucl.Phys.B827, 426(2010) [arXiv:0906.4062 [hep- th]] • G. Arutyunov, S. Frolov and R. Suzuki, JHEP 1004, 069 (2010) [arXiv:1002.1711 [hep-th]] • J. Ba- log and A. Hegedus, JHEP 1006, 080 (2010) [arXiv:1002.4142 [hep-th]] • N. Gromov, JHEP 1001, 112 (2010)[arXiv:0910.3608[hep-th]]•J.BalogandA.Hegedus,JHEP1009,107(2010)[arXiv:1003.4303[hep- th]] • N. Gromov, V. Kazakov and P. Vieira, Phys. Rev. Lett. 104, 211601 (2010) [arXiv:0906.4240 [hep- th]] • S. Frolov, J. Phys. A A 44, 065401 (2011) [arXiv:1006.5032 [hep-th]] • T. Lukowski, A. Rej and V. N. Velizhanin, Nucl. Phys. B 831, 105 (2010) [arXiv:0912.1624 [hep-th]] • V. N. Velizhanin, JHEP 1011, 129(2010)[arXiv:1003.4717[hep-th]]. [4] M.Beccaria,G.MacoriniandC.Ratti,JHEP1106,071(2011)[arXiv:1105.3577[hep-th]]. [5] M.Beccaria,G.MacoriniandC.Ratti,JHEP1108,050(2011)[arXiv:1107.2568[hep-th]]. [6] N.Beisert,M.Bianchi,J.F.MoralesandH.Samtleben,JHEP0407,058(2004)[hep-th/0405057]. [7] L.Freyhult,A.RejandS.Zieme,JHEP1002,050(2010)[arXiv:0911.2458[hep-th]]. [8] M. Beccaria, JHEP 0709, 023 (2007). [arXiv:0707.1574 [hep-th]] • M. Beccaria, V. Forini, JHEP 0806, 077 (2008).[arXiv:0803.3768[hep-th]]. [9] N.Gromov,V.Kazakov,P.Vieira,Phys.Rev.Lett.103,131601(2009).[arXiv:0901.3753[hep-th]]. [10] V.Kazakov,A.S.SorinandA.Zabrodin,Nucl.Phys.B790,345(2008)[hep-th/0703147[HEP-TH]]. [11] M.Beccaria,F.Catino,JHEP0801,067(2008).[arXiv:0710.1991[hep-th]]. Copyrightlinewillbeprovidedbythepublisher