ebook img

Work Supported by DOE ARPA-E PDF

23 Pages·2011·3.34 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Work Supported by DOE ARPA-E

WavePro  Conference,  June  8-­‐11,  2011  Crete  ,  Greece   Department  of  Physics  &  Astronomy,  University  of  Delaware,  U.S.A.   [email protected] Work Supported by DOE ARPA-E Hysteresis Loop Response  of  ferromagne-c  materials  to  magne-c  field  (H).     Area under hysteresis loop represents the energy losses which are converted to heat. M   r Ms   H   c B = µο (H + M) (SI) B = H + 4πM (CGS) Maximum  Energy  Product:  Strength  of  a  Permanent  Magnet   (BH) ~ H2 V / V m ag ag m The higher the (BH) the smaller the V ! m m Permanent  magnet  materials  must  have:   ● a  high  remanence  to  produce  a  large  magneFc  inducFon.   ● a  high  H  to  avoid  easy  demagneFzaFon.   c ● a  high  T  to  resist  thermal  demagneFzaFon.   C TheoreFcal  limit  of  (BH)  :     m                                                                      (BH)  =(4πM /2)2   m s ApplicaFons  of  Permanent  Magnets   ● The  strength  of  permanent  magnets  (PMs)  is  the  most  important  parameter  that  affects   the  power  density  and  energy  efficiency  of  countless  devices.   Wind turbines with PM generators Hybrid electric are very efficient at low wind speeds vehicles are (M ~1-2 Kg). particularly m demanding for power density of their PM motors (M > 1-2 tons) m PM hydroelectric turbine generators eliminate need for gearboxes In this generator buoy, the floater moves coils Efficient and fail-safe relative to the PM to Inductrack maglev induce voltages train Progress  in  High  Performance  Permanent  Magnets   ● In  the  last  100  years,  (BH)  increased    by  a  factor  of  100.   max ● Current  advanced  magnets  are  based  on  the  discovery  of                         anisotropic  compounds–  SmCo ,  Sm Co ,  Nd Fe B.   5 2 17 2 14 Advanced  Permanent  Magnet  Materials   ● All  of  these  materials  have  one  thing  in  common:    their  hard  magneFc  properFes  arise   from  the  fundamental  properFes  of  their  major  consFtuent  compound.   ● The  (BH)  limits  set  by  the  intrinsic  properFes  of  these  compounds  are  nearly  reached   max [(BH)  =  (4πM /2)2.   max s Fundamental magnetic properties of hard magnetic compounds Compound Saturation Anisotropy Curie Theoretical magnetization field temperature (BH) max Nd Fe B     16.0  kG     67  kOe   312  oC   64.0  MGOe   2 14 (57  MGOe)   Sm Fe N     15.4  kG     140  kOe   476  oC   59.3  MGOe   2 17 2.3 Sm Co     12.5  kG     65  kOe   920  oC   39.1  MGOe   2 17 (33  MGOe)   SmCo     11  kG     ≤  440  kOe   681  oC   30.2  MGOe   5 (25  MGOe)   PrCo     12.3  kG     ≥  145  kOe   620  oC   37.8  MGOe   5 Development  of  New  Advanced  Permanent  Magnets   ●   Probability  exists  for  discovery  of  new  anisotropic  compounds;  but   search  is  extremely  difficult.   ● Non-­‐rare   earth   magnets   remain   a   possibility   but   a   focused   and   concerted  effort  is  needed  (97%  of  rare  earths  produced  in  China!).   ●    A   new   concept   of   high   performance   exchange-­‐coupled   nanocomposite  magnets  was  proposed  in  the    late  80s  but  has  not   yet  materialized. Rare  Earth-­‐Lean  Exchange-­‐Coupled  Nanocomposite  Magnets   ● MagneFc  exchange  coupling  allows  us  to  combine  the  high  coercivity  of  rare-­‐earth   compounds  with  the  high  magneFzaFon  of  sok  magneFc  materials  and  develop  a   METAMATERIAL:  composite  magnet  with  performance  greater  than  the  sum  of  the   two.   ● According   to   models   (Skomski   et.al.),   the   predicted   (BH)   of   the   hard-­‐sok   max composites  exceeds  100  MGOe  (57  MGOe  is  the  present  record  for  sintered  Nd-­‐Fe-­‐B).   ● Because   the   exchange   interacFon   has   a   very   short   range,   the   composite   material   must  be  in  the  nanoscale  (size  of  sok  phase  ≈20  nm,  about  twice  the  domain  wall   width  of  hard  phase). Nanostructured Nd-Fe-B Magnets Single  Phase    Isotropic     Single  Phase  Isotropic     Nanocomposites   Nanocomposites   Decoupled     Exchange-­‐coupled   Isotropic  Coupled   Anisotropic  Coupled   M /M  =  0.5   M /M  >  0.5   M /M  >  0.5   M /M  >  0.5   r s r s r s r s (BH)  =  12  MGOe   (BH)  =  20  MGOe   (BH)  >  20  MGOe   (BH)  ~  100  MGOe   max max max max Hard phase Soft phase Magnetization Anisotropic Nanocrystalline Magnets by Die-Upsetting c - axes c - axes ● Anisotropic   nanocrystalline   Nd-­‐Fe-­‐B   magnets  can  be  produced  by  die-­‐upseong   at  high  temperature  [R.W.  Lee,  Appl.  Phys.   Lep.,  46,  790,  1985]  of  alloys  with  an  over-­‐ stochiometric  rare  earth  content.   Hot-­‐pressed   Hot-­‐deformed   magnet   magnet   ● It   is   difficult   to   obtain   textured   Nd-­‐ Fe-­‐B   nanocrystalline   magnets   with   under-­‐stochiometric   rare   earth   content   because   of   the   absence   of   low  melFng  Nd-­‐rich  phase.

Description:
Synthesis of RE-TM Nanoparticles by Surfactant-Assisted. Ball Milling. ○ Surfactants prevent simultaneous cold welding and protect the par]cles. Milling in
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.