ebook img

Wood Density Profiles and Their Corresponding Tissue Fractions in Tropical Angiosperm Trees PDF

14 Pages·2017·2.4 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Wood Density Profiles and Their Corresponding Tissue Fractions in Tropical Angiosperm Trees

Article Wood Density Profiles and Their Corresponding Tissue Fractions in Tropical Angiosperm Trees TomDeMil1,2,*,YegorTarelkin1,2,3,StephanHahn4 ,WannesHubau1,2 , VictorDeklerck2 ,OlivierDebeir4 ,JorisVanAcker2,CharlesdeCannière3, HansBeeckman1 andJanVandenBulcke2 1 RoyalMuseumforCentralAfrica,WoodBiologyService,Leuvensesteenweg13,B-3080Tervuren,Belgium; [email protected](Y.T.);[email protected](W.H.); [email protected](H.B.) 2 UGCT-UGent-Woodlab,LaboratoryofWoodTechnology,DepartmentofEnvironment,GhentUniversity, CoupureLinks653,B-9000Gent,Belgium;[email protected](V.D.);[email protected](J.V.A.); [email protected](J.V.d.B.) 3 LandscapeEcologyandPlantProductionSystemsUnit,UniversitéLibredeBruxelles,CP264/2, B-1050Bruxelles,Belgium;[email protected](C.d.C.) 4 LaboratoryofImage,SignalprocessingandAcoustics—BrusselsSchoolofEngineering,Universitélibrede Bruxelles(ULB),B-1050Brussels,Belgium;[email protected](S.H.);[email protected](O.D.) * Correspondence:[email protected];Tel.:+32-494-334-433 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:12October2018;Accepted:27November2018;Published:7December2018 Abstract:Wooddensityprofilesrevealatree’slifestrategyandgrowth. Densityprofilesare,however, rarely defined in terms of tissue fractions for wood of tropical angiosperm trees. Here, we aim atlinkingthesefractionstocorrespondingdensityprofilesoftropicaltreesfromtheCongoBasin. Coresof8treespecieswerescannedwithX-rayComputedTomographytocalculatedensityprofiles. Then,coresweresandedandtheoutermost3cmwereusedtosemi-automaticallymeasurevessel lumen,parenchymaandfibrefractionsusingtheWekasegmentationtoolinImageJ.Fibrewalland lumenwidthsweremeasuredusinganewlydevelopedsemi-automatedmethod. Anassessment of density variation in function of growth ring boundary detection is done. A mixed regression modelestimatedtherelativecontributionofeachtraittothedensity,withaspecieseffectonslope andinterceptoftheregression. Position-dependentcorrelationsweremadebetweenthefractions andthecorrespondingwooddensityprofile. Onaverage,densityprofilevariationmostlyreflects variationsinfibrelumenandwallfractions,butthesearespecies-andposition-dependent: onsome positions,parenchymaandvesselshaveamorepronouncedeffectondensity. Themodellinking densitytotraitsexplains92%ofthevariation,with65%ofthedensityprofilevariationattributedto thethreemeasuredtraits. Theremaining27%isexplainedbyspeciesasarandomeffect. Thereisa clearvariationbetweentreesandwithintreesthathaveimplicationsforinterpretingdensityprofiles inangiospermtrees: theexactdrivinganatomicalfractionbehindeverydensityvaluewilldependon thepositionwithinthecore. Theunderlyingfunctionofdensitywillthusvaryaccordingly. Keywords: wooddensity;woodspecificgravity;parenchyma;fibres;vessellumen;tissuefractions; CongoBasin;X-rayCTdensitometry;tropicalforests 1. Introduction Wood specific gravity or wood density is an integrating variable [1] and a property defined by chemicalandanatomicaltraits[2].Ingeneral,wooddensityismeasuredintheframeworkofecologyand carbon dynamics within and across species, taxa, and across a continent [3]. Wood density varies considerably from pith to bark, especially in tropical trees [4,5]. A large portion of the variation, Forests2018,9,763;doi:10.3390/f9120763 www.mdpi.com/journal/forests Forests2018,9,763 2of14 especiallyinsoftwood,occursbetweenringboundariesduetoseasonaldynamicsofwoodformation[6], whichisofparticularimportanceinclimatereconstructionsandstudiesonimpactofclimatechange ontrees. To study these inter and intra-annual patterns of density variation, high-resolution density profilesareneeded. High-resolutiondensitometrycanbeobtainedwithblueintensity[7]orX-ray densitometry[8]systemsthatcombinedensitometrywithanatomicalobservations[9,10],andmany otherdevicesexistaswell[11]. X-rayComputedTomography(CT)microdensitometryisatechnique that allows obtaining 3D density volumes, that can be converted to large datasets of density profiles[12,13],withresolutionrangingfromsubmicronlevel[14]tocoarserresolutionstoperform tree-ringanalysis[15,16]. Maximumlatewooddensityofconifersisnexttotree-ringwidthoneof theparametersusedto,forinstance,reconstructsummertemperature[17],andearlywoodisbeing exploredaswell[18]. Therelationbetweendensityandcellfractionsisstraightforwardforconiferous species: tracheidsizeluminaandthecellwallwidthoftracheidsdeterminethedensityvariationina ring[18]. Assuch,agrowthringboundaryismarkedatthepositionwherelatewoodtoearlywood transitionisassociatedwithasharpdecrease. Densitometryisapromisingtechniquetoassistintree ringanalysisofsometropicaltreespecies[19],butknowledgeofunderlyinganatomicalpatternsthat determineringboundariesisnecessaryforitsapplication. DensityprofileswereconstructedfortropicaltreespeciesshortlyaftertheestablishmentofX-ray densitometry[8]forfastgrowingspeciessuchasAucoumeaklaineanaPierre[20]andTerminaliaivorensis A.Chev.[21],andmorerecentlyinsemi-aridregions[22]inordertodelineateringboundariesorto assesswoodquality. However, theseprofilesneverrelatedwooddensitytotheunderlyingwood anatomicalfractions. Densityprofilesforangiospermsareindeedlessclearlydefinedcomparedto softwoods, as the underlying anatomical signal is more variable due to a combination of vessels, axialandrayparenchymaandfibresthatvarywithinthegrowthring. Attemptstodisentangledensity profiles locally intovessels, parenchymaandfibres havebeenreportedfor angiosperm temperate speciessuchasQuercuspetraea(Matt.) Liebl.[23]andinsometropicalones[24], butaplethoraof angiosperm tropical species with a wide range of wood anatomical patterns [25] remains largely understudied. Inthetropics,thereisalsoahighlevelofunclearandlessdistinctringbordersand intra-andinter-ringvariabilityofanatomicalpatternsduetoweakseasonality. Moreover,densityis regardedasafunctionaltrait[1],butmanyuncertaintiesexistinwhattheunderlyingcomponents causedensityvariations,whichforangiospermsisacombinationofwoodanatomicalvariables[26] andotherchemicalcomponents. In this study, we define wood density profiles in terms of (i) ring boundaries and (ii) the underlying wood anatomical fractions. To do so, we compare high-resolution X-ray CT profiles with vessel, parenchyma and fibre wall fractions of eight common tropical species at high detail (110µm). Weinvestigatewhichanatomicalfeatureinfluenceswooddensitythemostandexplorethe effectofspecies. Finally,weassesslocalradialvariationsthathelpininterpretingthedensityprofile. Wehypothesizethatduetohighanatomicalvariability,thisrelationwillbedifferentfromspeciesto speciesanddependsontheradialposition. 2. MaterialsandMethods 2.1. StudySiteandSamples To assess the general variability between density and tissue fractions, tree increment cores (ø5.15mm)weretakenatbreastheightfromeightspecies,onecoreperspecies(Table1)fromtheLuki Biospherereserve(KongoCentralprovince;5.39◦S13.4◦E),theBoloboforestsofMalebo(Mai-Ndombe province; 2.49◦ S, 16.50◦ E) and the Yoko reserve (Tshopo province; 0.33◦ N, 25.31◦ E), all in the DemocraticRepublicoftheCongo. Thosespecieswereselectedinordertorepresentawiderange ofwooddensities,lifestrategiesandleafsheddinghabits. AllsamplesreceivedauniqueTervuren Wood identification number of the Xylarium (Tw) and are stored at the Africamuseum Tervuren Forests 2018, 9, x FOR PEER REVIEW 3 of 14 (http://www.africamuseum.be/en/research/collections_libraries/biology/collections/xylarium). These samples were also verified via reference samples where microsections show detailed anatomy of the selected species (Figure 1). Forests2018,9,763 3of14 Table 1. Summary of the collected species that were used to link wood density to the tissue fractions. Diameter at breast height (DBH) of the sampled tree and Tervuren Wood identification number at the Xylaxryiulamrium(h t(tTpw:/) /isw giwvewn. aafsr wicealml. Luisfee ustmra.tbegey/ eann/d rleeasef aprhcehn/olcooglyle wctaios nexst_rlaicbtreadr fireosm/b [i2o7l]o. .g y/collections/ xylarium). Thesesampleswerealsoverifiedviareferencesampleswheremicrosectionsshowdetailed Tw DBH Life anatomTyesotf stpheecsieelse ctedspecies(Figure1)F.amily Site Phenology label (cm) strategy Anonidium mannii Shade Table1.SummaryoftheTcwol6le4c3te6d6 speAciensntohnaatcweaeer euse2d6.t7o linkMwaoloedbod ensitytothetissuefEravcetriognrse.en (Oliv.) Engl. & Diels bearer Diameteratbreastheight(DBH)ofthesampledtreeandTervurenWoodidentificationnumberatthe Canarium schweinfurthii Light xylarium(Tw)isgivenaswell.Lifestrategyandleafphenologywasextractedfrom[27]. Tw78659 Burseraceae 31.7 Luki Deciduous Engl. demanding EntaTnedsrtoSpphercaigemsa TwLabel Family DBH Site Life Phenology (cm) SLtriagthegt y angolense (Welw.) Tw78727 Meliaceae 37.2 Malebo Deciduous demanding Anonidiummannii(Oliv.) C.DC. Tw64366 Annonaceae 26.7 Malebo Shadebearer Evergreen Engl.&Diels Milicia excelsa (Welw.) Light Canariumschweinfurthii Tw78904 Moraceae 32 Luki Light Deciduous C.CE. nBgelr.g Tw78659 Burseraceae 31.7 Luki ddeemmaannddiinngg Deciduous PEnytcannadnrothphursa gamngaoalnengosliesn se LLiigghhtt TwT7w87728782 7MyrMisteilciaacceeaaee 4347 .2 MMalaelebboo EDveecridgureoeuns (W(Welewlw.). )WCa.DrbC.. ddeemmaannddiinngg Miliciaexcelsa(Welw.) Light Polyalthia suaveolens Tw78904 Moraceae 32 Luki Shade Deciduous C.C.Berg Tw68771 Annonaceae 27.5 Yoko demanding Evergreen Engl. & Diels bearer Pycnanthusangolensis Light Tw78728 Myristicaceae 44 Malebo Evergreen Staud(tWia eklawm.)eWruanrben.sis deSmhaanddei ng Tw68713 Myristicaceae 23.8 Luki Evergreen PolyaWlthaiarbsu. aveolens bearer Tw68771 Annonaceae 27.5 Yoko Shadebearer Evergreen Engl.&Diels Tetrorchidium StaudtiakamerunensisWarb. Tw68713 Myristicaceae 23.8 Luki ShaLdiegbheta rer Evergreen didymostemon (Baill.) Tw78828 Myristicaceae 33.4 Luki Evergreen Tetrorchidiumdidymostemon Tw78828 Myristicaceae 33.4 Luki demLaignhdting Evergreen (BPaailxl. )&P aKx.H&oKff.Hmo.f fm. demanding Figure1.Cont. Forests2018,9,763 4of14 Forests 2018, 9, x FOR PEER REVIEW 4 of 14 FFigiguurree 11. .MMicircoroscsocoppici csescetcitoinons soof fTTeervrvuurerenn WWoooodd rreefeferreenncceess ssaammppleles soof fththee ccoorrreressppoonnddiningg spspeeciceies,s , sshhoowwiningg wwoooodd aannaattoommyy,,a nadnd,w, whehneanv aaivlaabillaeb,lteh,e tghreo wgrtohwritnhg rbinougn bdoaurinedsa(wriehsi te(wtrhiaitneg ltersia).nTghleess).p eTchiees sapreecimeso astrley mdoifsftulyse dpifofruosues p,owriotuhsv, ewsistehl svseoslsietalsr ysoolirtasrliyg hotrl ysliggrhotulyp egdr.ou(pa)edA.n (oan) idAinuomnimdiaunmn imi,aTnwni7i2, , T(wb)7C2,a (nba)r iCuamnasrcihuwme isncfhuwrtehiini,fuTrwth6ii1, 1T5w1,6(1c1)5E1n, t(acn) dErnoptahnradgrompahraanggmolae nasnegTolwen1s4e3 T2,w(d14)3M2,i l(idci)a Mesicleiclsiaa eTswce9ls4a3 , T(we)94P3y,c (nea)n Pthyucnsaannthguolse nansigsolTewns1is5 1T3w,1(5f)13P, o(lfy) aPltoilayaslutiaav seuolaevnesolEennsg El.ng&l. &D Dieiles.ls. TTww3322661188,, ((gg)) SSttaauuddtitaia kkaammereurunneennssisis TTww6622770077,, aanndd ((hh)) TTeettrroorrcchhiiddiiuumm ddiiddyymmoosstteemmoonn TTww22004499.. SSccaallee bbaarr:: 220000 µµmm.. 2.2. X-RayCTDensitometry 2.2. X-Ray CT Densitometry Woodcoreswereinsertedinpaperstrawsandovendriedfor24hoursbeforebeingscannedat Wood cores were inserted in paper straws and oven dried for 24 hours before being scanned at 110µmusingtheNanoWoodCTfacility[28],developedincollaborationwithXRE(X-rayEngineering, 110 µm using the NanoWood CT facility [28], developed in collaboration with XRE (X-ray www.XRE.be).Thescannedimageswerereconstructed(GPUGeForceGPX7704GB)withtheOctopus Engineering, www.XRE.be). The scanned images were reconstructed (GPU GeForce GPX 770 4 GB) reconstruction software package ([29,30], X-ray Engineering, www.XRE.be) and further processed with the Octopus reconstruction software package ([29,30], X-ray Engineering, www.XRE.be) and (extractionofvolumes,tiltcorrection,tangentialcorrection)throughatailoredtoolchain[13]. X-rayCT further processed (extraction of volumes, tilt correction, tangential correction) through a tailored wooddensityprofilesresultfromcorrectingstructuredirectionoffibreandringdeviations,calibrating toolchain [13]. X-ray CT wood density profiles result from correcting structure direction of fibre and withareferencematerial,andaveragingintangentialandaxialdirection[15],basedon30–40voxelsat ring deviations, calibrating with a reference material, and averaging in tangential and axial direction agivenradialplane. Theobtainedwooddensitymeasurementsaredefinedasovendrywoodweight, [15], based on 30–40 voxels at a given radial plane. The obtained wood density measurements are dividedbyovendryvolume,aftercalibratingwithareferencematerialofknowndensity[31]. defined as ovendry wood weight, divided by ovendry volume, after calibrating with a reference material of known density [31]. Forests2018,9,763 5of14 2.3. WoodAnatomicalMeasurements Coreswerethengluedinawoodensampleholderandtheirtransversalsurfacewassandedwith increasinglyfinersandpaper(grit80–1200). Thelastthreecmoftheouterwood(untilthecambial zone)wasimaged(StreamMotion,Olympus,Japan)onascanningstage(SCAN100×100,Märzhäuser Wetzlar,Germany)withacamera(3.2MP,2048×1536pixels;UC30,Olympus(Tokyo,Japan))mounted Forests 2018, 9, x FOR PEER REVIEW 5 of 14 onareflectedlightmicroscope(BX60,Olympus,magnification×10). Thefinalimagesconsistedof 2.3. Wood Anatomical Measurements overlapping images stitched together with the Multiple Image Alignment algorithm (Olympus). TheseimagesCwoereres wthereen thuesne gdluteod imn ae awsouordeenth saemfrpalec htiooldnesr oanfdd tihfefeirr ternantsavnerastaol smurifcaacle fwraasc staiondnesd( wveitshs ellumina, increasingly finer sandpaper (grit 80–1200). The last three cm of the outer wood (until the cambial axialandrayparenchyma,fibres). Forthefibrefraction,thelocalfibrewallfractions(theratiofibre zone) was imaged (StreamMotion, Olympus, Japan) on a scanning stage (SCAN 100 × 100, wall/totalcellsize)weremeasuredaswell. Märzhäuser Wetzlar, Germany) with a camera (3.2 MP, 2048 × 1536 pixels; UC30, Olympus (Tokyo, Japan)) mounted on a reflected light microscope (BX60, Olympus, magnification ×10). The final 2.3.1. Pareinmcahgyesm caonasnisdtedV eosf soevlserlapping images stitched together with the Multiple Image Alignment algorithm (Olympus). These images were then used to measure the fractions of different anatomical Delineatingvessellumina(VL)andparenchymafractions(PRM)isatime-consumingprocess, fractions (vessel lumina, axial and ray parenchyma, fibres). For the fibre fraction, the local fibre wall and thereffroarcetiotnhse (sthee frraaticot fiiobnres wwalel/rtoetasle cgelml seiznet) ewderue smineagsutrhede atsr awienlla. b le Weka plugin [32] in ImageJ [33]. TheWekaplugincombinesasetofmachinelearningalgorithms,toperformpixel-basedsegmentations 2.3.1. Parenchyma and Vessels of images. In a graphical user interface, a sub-region was selected as training set and all vessels, parenchymaaDndelifinebarteinsgw veesrseelm luamniunaa l(lVyLl)a abnedl lpeadreinnchtyhmata sfruabct-iroengs i(oPnR.MT) hise at rtiamine-ecdonmsuomdinegl wpraocsetshs,e napplied and therefore these fractions were segmented using the trainable Weka plugin [32] in ImageJ [33]. ontheentireimage. Ablockprocessingapproachwasimplementedforhandlingtheratherlarge The Weka plugin combines a set of machine learning algorithms, to perform pixel-based imagesansdegrmedenutactiinognsp orf oimceasgseisn. Ign sap gereapdhoicnal ausdere sinktteorfpacce,o am supbu-rteegrio(nIn wteals® seCleocrteed™ ais5 t-r4ai5n7in0gC sePt Uan@d 3.20GHz 3.20GHz,a1ll6 vGesBselRs, ApaMre)n.cThyhmeai manadg fiebrwesa wsetrhe emraenfouarellys luabbedllievdi dine tdhaut ssuinb-greagiuons.e Trh-de etrfiainneedd mgordidel, weaasc hgridcell wasclassitfiheend aspeppliaerda otne ltyhea enndtirael ilmgargied. Ace bllloscwk perroecesstsiitncgh aepdpraofatcehr wparso cimespsleimngenrteeds ufoltr ihnagndinlinag cthlae ssification rather large images and reducing processing speed on a desktop computer (Intel®Core™i5-4570 CPU of the entire image. The results are displayed as a single probability map per feature, and each @ 3.20 GHz 3.20 GHz, 16 GB RAM). The image was therefore subdivided using a user-defined grid, probabilityeamch agpridh caesll twhaes scalamsseifisediz seepaasrattheely oarnidg ainll aglriidm caelglse waenred steitvcehreyd apftiexre plrhocaesssainvga rleusueltbinegt win eae n0and1, indicatingcltahsseifpicraotibona bofi ltihtye eonftitrhe aimtafgeea.t Tuhree .reTsuhletss aerep droisbplaabyeildi tays ma sainpgslew perorbeavbiilsituy amllayp cpoern fveeatrutreed, tobinary mapsviatahnrde esahcohl pdrionbga,bifloitry tmhaepfi hnasa tlhde esalimnee asitzieo ans othfet ohreigainnaal timomagiec aanldf reavcetriyo pnixse.lV heass sae vlaslufiel lbeedtwweeinth sawdust, 0 and 1, indicating the probability of that feature. These probability maps were visually converted to notrecognizedbythealgorithm,wereindicatedmanuallyinImageJ(Figure2). binary maps via thresholding, for the final delineation of the anatomical fractions. Vessels filled with Binarsyawmduaspt,s nootf rveceosgsneilzseda nbyd thpea arlegnorcihthymm, waewre einrdeiccaotendv meratneudalltyo inp IrmofiagleeJs (Fbiygutrae n2g). entialaveragingin ImageJ.TheimBinaagrey smwapesr oef avlessoselus saendd paasremncahsykmsa ownerteh ceonovreirgteind atol ipmroafiglees sbyp trainogretnotiaml aevaesraugrining gint helumen ImageJ. The images were also used as masks on the original images prior to measuring the lumen diametersandfibrewallthicknesses(Figure2a). Fibresweredelineatedassubtractoftotalfraction diameters and fibre wall thicknesses (Figure 2a). Fibres were delineated as subtract of total fraction (i.e.,1)minusthesumofparenchymafractionandvessellumenfractionatagivenradialposition. (i.e. 1) minus the sum of parenchyma fraction and vessel lumen fraction at a given radial position. Figure2. FFiglouwre c2h. aFrlotwfcohrardt efolirn deealitnienagtinvge vsesseslesls aanndd ppaarernecnhcyhmyam ona ao nsegamseengt mof ean stanodfead ssuarnfadcee dof surfaceof Polyalthia suaveolens with the trainable Weka plugin. The plugin assesses the probability for different PolyalthiasuaveolenswiththetrainableWekaplugin.Thepluginassessestheprobabilityfordifferent portions of the image to be classified as vessel or parenchyma before being manually corrected. (a) portions of the image to be classified as vessel or parenchyma before being manually corrected. Original sanded surface is imaged, (b) probability map for parenchyma with mismatches for vessel (a)Originalulmsainnad, e(cd) csourrrefcatcioeni sthirmouagghe md,an(bua)l pinrodibcaatbioinli toyf mveasspelsf otro pbeacroemnec hbyinmaray wimiatghesm oifs (md)a vtcehsseesl forvessel lumina,(c)correctionthroughmanualindicationofvesselstobecomebinaryimagesof(d)vessel luminaand(e)parenchymafractions.(f)Fibrefraction,asthesubtractofthetotalimagewithvessel andparenchymafraction.Scale500µm. Forests 2018, 9, x FOR PEER REVIEW 6 of 14 lumina and (e) parenchyma fractions. (f) Fibre fraction, as the subtract of the total image with vessel and parenchyma fraction. Scale 500 µm. 2.3.2. Fibres Fibre fraction (F) is then subdivided in fibre walls and fibre lumina. Fibre lumina diameter and wall thickness were measured using pattern recognition based on self-developed software. First, the original images were binarized in order to clearly separate fibre walls from lumina for further steps (Figure 3b): light-coloured pixels (corresponding to lumina) were selected with the colour thresholding tool in ImageJ. Adjacent selected pixels formed different shapes that were filtered based on their circularity and size to ensure that the retained shapes correspond to the fibre lumina. For the detection of individual fibre lumina and wall thickness, we followed a protocol [34] consisting of a segmentation, tracking and measurement sequence. Segmentation detects and labels individual cells based on criteria such as the size, the shape and the surrounding pixel intensity variation ([35,36]; Figure 3c). Tracking allows connecting different fibre’s centroids to form the Forests2018,9,763 6of14 longest chains in the radial direction by using a nearest neighbours (KNN) algorithm: from the nth centroid, the nth+1 was searched within a specified distance and with a maximum allowed angle of 2.3.2. Fibres deviation from the radial direction (Figure 3d). Pixel intensity was then measured along numerous pathsF cirberaetefrda cbtyio tnhe(F t)raiscktihnegn, wsuibthd ifvibidreesd luinmfiinbare/wwalallsl sshaonwdifinbgr epilxuemls inwai.thF hibigreh/lluomwi nvaaludeiasm. Tehteer waniddthw oafl flibthreicsk lnuemsisnwa aenred mfiberaes uwraeldls uwsains gthpenat mteernasurerceodg bnyit cioonunbtainsegd thoen nusemlfb-dere voef laodpjeadcensot fptwixealrse . wFiitrhst ,hitghhe/loorwig iinnatelnimsitayg veasluweesr erebspineacrtiizveedly.i nA oursdeerr intotecrlfeaacerl ywases pdaervaetelofipebdre tow ianlslspefrcot mthel urmesiunlats faotr efaucrhth perroscteespss s(tFeipg uarned3 tbo): aldigahptt- ctohleo usergedmpenixtealtsio(cno prraersapmonetdeirnsg ift orelquumirinead). wImerpelesmeleecntteadtiownit ohft thheisc oulsoeurr itnhtreersfahcoel dwinags tboaosleidn oImn athgee JS.cAikdijta icmenatgsee l[e3c7t]e adnpdi xSecliskfiot rlmeaerdn d[3i8ff]e rliebnrtasrhieasp iens Pthyathtowne.r Tehfiel tceoredde bisa soend aonn atvhaeiilracbilrec urelaproitsyitoarnyd (shitztepsto://egnitshuureb.tchoamtt/hsteeprehtaahinne/dWsohoadpSeescctoiornre).s p ondtothefibrelumina. FFiigguurree 33. .FFlolowwcchhaarrt tooff tthhee pprreeppaarraattioionn ooff aa sseeggmmeenntt ooff aa ssaannddeedd ssuurrffaaccee oonn PPyyccnnaanntthhuuss aannggoolelennssisis ffoorr mmeeaassuurreemmeennt toof ffifibbrree wwaalll ltthhiicckknneessss aanndd lluummininaa ddiaiammeeteterr. .(a(a) )OOrrigigininaal lssaannddeedd aanndd ssccaannnneedd imimaaggee, , wwhheerree ppaarreenncchhyymmaa aanndd vveesssseel llluummininaa wweerree mmaasskkeedd ((oobbtatainineedd wwitihth WWeekkaa sseeggmmeennttaattiioonn pplluugginin iinn imimaaggeeJJ)). .((bb)) BBininaarriizzaattiioonn ooff tthhee imimaaggee inin oorrddeerr ttoo sseeppaarraattee ffiibbrree lluummiinnaa aanndd wwaallllss.. ((cc)) RReeccooggnnititioionn aanndd lalabbeelllilningg ooff iinnddiivvididuuaal lcceelllsls aanndd ((dd)) ttrraacckkiinngg aanndd lliinnkkiinngg ooff iinnddiivviidduuaall cceellllss.. PPixixeel liinntteennssitiyty iiss tthheenn aannaalylysseedd aalloonngg tthhee nnuummeerroouuss ccrreeaatteedd ppaatthhss aanndd tthhee wwiiddtthhss ooff lluummiinnaa aanndd ffiibbrree wwaallllss eexxttrraacctteedd.. SSccaalele 110000 µµmm.. For the detection of individual fibre lumina and wall thickness, we followed a protocol [34] All measurements of the anatomical variables were interpolated to the coarser X-ray CT consistingofasegmentation,trackingandmeasurementsequence. Segmentationdetectsandlabels resolution of 110 µm so that each wood density at a given position corresponds to a value of fibre, individual cells based on criteria such as the size, the shape and the surrounding pixel intensity vessel lumen and parenchyma fraction, as well as to the ratio of fibre wall/total fibre diameter (further variation([35,36];Figure3c). Trackingallowsconnectingdifferentfibre’scentroidstoformthelongest referred to as fibre wall fraction (FW)). Fibre fraction is inversely related to the sum of the vessel chainsintheradialdirectionbyusinganearestneighbours(KNN)algorithm: fromthenthcentroid, lumen and parenchyma fraction and is thus a linear combination. Therefore, it was not taken in thenth+1wassearchedwithinaspecifieddistanceandwithamaximumallowedangleofdeviation account for further analysis and model construction. fromtheradialdirection(Figure3d). Pixelintensitywasthenmeasuredalongnumerouspathscreated bythetracking,withfibreslumina/wallsshowingpixelswithhigh/lowvalues. Thewidthoffibres 2.4. Model and Local Correlation luminaandfibrewallswasthenmeasuredbycountingthenumberofadjacentpixelswithhigh/low For the overall relationship between wood density and anatomy, we used a Gaussian linear intensityvaluesrespectively. Auserinterfacewasdevelopedtoinspecttheresultsateachprocessstep mixed framework with random intercepts and slopes to investigate the potential of predicting wood andtoadaptthesegmentationparametersifrequired. Implementationofthisuserinterfacewasbased density using the vessel lumina, parenchyma and fibre wall fraction as fixed effects and species as ontheScikitimage[37]andScikitlearn[38]librariesinPython. Thecodeisonanavailablerepository random effects. This model assesses the importance of a species effect in the relationship between (https://github.com/stephahn/WoodSection). wood density and wood anatomy, and was performed in R software (version 3.4.1, R Foundation for AllmeasurementsoftheanatomicalvariableswereinterpolatedtothecoarserX-rayCTresolution Statistical Computing, Vienna, Austria). of110µmsothateachwooddensityatagivenpositioncorrespondstoavalueoffibre,vessellumen andparenchymafraction,aswellastotheratiooffibrewall/totalfibrediameter(furtherreferred toasfibrewallfraction(FW)).Fibrefractionisinverselyrelatedtothesumofthevessellumenand parenchymafractionandisthusalinearcombination.Therefore,itwasnottakeninaccountforfurther analysisandmodelconstruction. 2.4. ModelandLocalCorrelation Fortheoverallrelationshipbetweenwooddensityandanatomy,weusedaGaussianlinearmixed frameworkwithrandominterceptsandslopestoinvestigatethepotentialofpredictingwooddensity usingthevessellumina,parenchymaandfibrewallfractionasfixedeffectsandspeciesasrandom effects. Thismodelassessestheimportanceofaspecieseffectintherelationshipbetweenwooddensity and wood anatomy, and was performed in R software (version 3.4.1, R Foundation for Statistical Computing,Vienna,Austria). WD = β +β x +α +α ε +ε (1) i,j 0,k 1,k i,j,k 0,j,k 1,j,k i,j,k i,j Forests2018,9,763 7of14 whereWD(i,j)arei-thmeasureofwooddensityofspeciesj, β(0,k)istheinterceptand β(1,k)isthe slopeforthek-thvariableregardlessofspecies,α(0,j,k)isthedeviationfromtheglobalinterceptand α(1,j,k)isthedeviationfromtheglobalslopeforthek-thvariableofspeciesj. Toanalyzethespatiallyexplicitlocalrelationshipbetweenwooddensityandwoodanatomy, wesubdividedthedensityandanatomicalmeasurementsprofilesintosectionsof30datapointsand constructed a linear model with parenchyma, vessel lumen and fibre wall fractions as explaining variables. Allanatomicaldatawasstandardizedperspecies(subtractedthevalueswiththemeanand dividedbythestandarddeviation)inordertoassesstherelativeimportanceofthethreevariables. Furthermore,wecalculatedPearsoncorrelationbetweenwooddensity,parenchyma,vessellumen fraction, total fibre fraction and fibre wall fraction, with a moving window of 30 points (trade-off betweensufficientdatapointsandthe110µmresolution),whichwasperformedinMatlabR2016b (Mathworks,Natick,MA,USA). 3. Results 3.1. GeneralWoodDensity—AnatomicalFractionsRelationship Averagewooddensityvaluesrangefrom510kg·m−3to794kg·m−3. Onaverage,fibresformthe highestfraction,followedbyparenchymaandvessellumenfractions. Thefibrewallfractionofthe totalfibrefractionpartvariedbetween0.22and0.49(Table2). Table2. Measuredvaluesofthe8testedsamples. Wooddensity(WD,kg/m3),parenchymafraction (PRM),vesselluminafraction(VL),aswellasfibre(F)andfibrewallfraction(FW,definedasthefibrewall widthdividedbythesumoffibrewallandlumendiameter).Standarddeviationisgivenbetweenbrackets. Species WD(kg·m−3) PRM(-) VL(-) F(-) FW(-) A.mannii 513.15(48.77) 0.34(0.07) 0.04(0.03) 0.62(0.09) 0.23(0.06) C.schweinfurthii 500.91(60.75) 0.13(0.03) 0.09(0.04) 0.78(0.04) 0.22(0.04) E.angolense 651.89(47.61) 0.23(0.07) 0.08(0.04) 0.69(0.08) 0.35(0.06) M.excelsa 571.17(57.71) 0.28(0.14) 0.06(0.04) 0.66(0.16) 0.25(0.06) P.angolensis 570.79(36.30) 0.23(0.03) 0.07(0.04) 0.7(0.04) 0.33(0.03) P.suaveolens 794.36(25.82) 0.42(0.03) 0.12(0.04) 0.46(0.04) 0.49(0.06) S.kamerunensis 768.67(26.51) 0.31(0.03) 0.05(0.02) 0.64(0.03) 0.35(0.05) T.didymostemon 510.30(30.72) 0.19(0.08) 0.13(0.05) 0.67(0.09) 0.25(0.05) Overall, fibre wall fraction is positively correlated with wood density while vessel lumina and parenchyma slightly decrease density (Table 3). Fibre wall fraction impacts density the most, followedrespectivelybyvesselandparenchymafractions. Themodelalsoshowstheimportanceof thespecieseffectontherelationshipbetweenwooddensityandwoodanatomy: morethan25%of wooddensityvariabilityisinfluencedbyspecies. Table3.CoefficientsfromaGaussianlinearmixedmodel(randomintercept+slope)predictingwood densityfromtheanatomicalvariablesfor8tropicalspeciesinvestigated. Coefficientestimatesare providedforthefixedeffects(at95%ofconfidenceinterval). Fixedeffects Intercept 490.92 Parenchymafraction −24.39 Vesselluminafraction −94.22 Fibrewallfraction 453.67 %ofvariance 65% Randomeffects Contributiontototalvariance(%) Species 4 Species|parenchyma 4 Species|vessels 6 Species|fibrewalls 13 Residuals 8 Forests 2018, 9, x FOR PEER REVIEW 8 of 14 Overall, fibre wall fraction is positively correlated with wood density while vessel lumina and parenchyma slightly decrease density (Table 3). Fibre wall fraction impacts density the most, followed respectively by vessel and parenchyma fractions. The model also shows the importance of Forests2018,9,763 8of14 the species effect on the relationship between wood density and wood anatomy: more than 25% of wood density variability is influenced by species. FFoorr aallll ssppeecciieess,, tthhee fifibbrree wwaallll ffrraaccttiioonn aappppeeaarrss ttoo bbee tthhee mmoosstt iimmppoorrttaanntt ddrriivveerr ooff wwoooodd ddeennssiittyy vvaarriiaabbiilliittyy,, aass hhiigghheerr fifibbrree wwaallll ffrraaccttiioonnss iinnccrreeaassee wwoooodd ddeennssiittyy ((FFiigguurree 44aa)).. TThhee rreellaattiioonn ooff vveesssseell lluummeenn ffrraaccttiioonn wwiitthh wwoooodd ddeennssiittyy iiss,, iinn mmoosstt ccaasseess,, tthhee lloowweesstt ooff aallll aannaattoommiiccaall ffrraaccttiioonnss.. WWhhiillee tthhee ssllooppeess ooff tthhee rreeggrreessssiioonn lliinneess bbeettwweeeenn wwoooodd ddeennssiittyy aanndd tthhee ffiibbrree wwaallll ffrraaccttiioonn aarree vvaarriiaabbllee bbeettwweeeenn ssppeecciieess bbuutt rreemmaaiinn ppoossiittiivvee ((FFiigguurree 44aa)),, tthhee eeffffeeccttss ooff ppaarreenncchhyymmaa oorr vveesssseellss ccaann vvaarryy ssttrroonnggllyy bbeettwweeeenn spspeceiceise s(F(iFgiugruer e4b4,cb),.c P).arPeanrcehnycmhyam haash aa gseanegreanl eproasliptiovsei teifvfeecet fofenc ptroonfilperso (fie.lge.s, (Pe.. gsu.,aPv.esouleanvse oalnends Aa.n mdanAn.iim).a Fnonri it)h.reFeo sratmhpreleess (aEm. apnlgeosle(nEs.ea, nTg. odliednysme,osTt.emdiodny,m Po. satnemgoolnen,sPis.)a, nthgeo lvenesssise)l, ftrhaectvieosns edlofreasc tnieognadtioveeslyn eingfaltuivenelcye inthfleu ednecnesitthye pdreonfisliet y(Fpirgoufirlee (4Fbi)g. uWreh4ible) .tWheh iinlefltuheenicnefl oufe nficbereosf rfiebmreasinrse mpaoisnistivpeo stihtirvoeutghhroouutg htohue tpthroefiplero, fitlhee, thinefliuneflnuceen coef opfapreanrecnhcyhmyam aanadn dvvesesseslesl sccaann vvaarryy ssuubbssttaannttiiaallllyy ffrroomm oonnee ssuubb--sseeccttiioonn ooff tthhee ccoorree ttoo tthhee ootthheerr:: ppaarreenncchhyymmaa ccaann bbee bbootthh ppoossiittiivveellyy aanndd nneeggaattiivveellyy ccoorrrreellaatteedd ttoo wwoooodd ddeennssiittyy wwiitthhiinn oonnee iinnddiivviidduuaall aanndd vveesssseellss,, aalltthhoouugghh nnoott ssiiggnniifificcaanntt oovveerraallll,, ccaann ppllaayy aann iimmppoorrttaanntt rroollee llooccaallllyy.. (a) Anonidiummannii (b) Canariumschweinfurthii 800 850 700 750 m-³) 650 600 g. 500 k 550 D ( 400 W 450 300 350 8.5 9.5 10.5 11.5 12.5 7.75 8.75 9.75 (c) Entandrophragmaangolense (d) Miliciaexcelsa 900 1000 800 m-³) 900 700 kg. 800 600 D ( 700 W 600 500 500 400 12.5 13.5 14.5 15.5 12.15 13.15 14.15 15.15 (e) Pycnanthusangolensis (f) Polyalthiasuaveolens 900 1150 800 1050 m-³) 700 950 g. 600 850 k D ( 500 750 W 400 650 15.25 16.25 17.25 18.25 7.9 8.9 9.9 10.9 (g) (h) Staudtiakamerunensis Tetrorchidiumdidymostemon 1150 900 g.m-³)1095500 780000 D (k 850 600 W 750 500 650 400 7.3 8.3 9.3 10.3 11.2 12.2 13.2 14.2 Radial distance (cm) Radial distance (cm) Figure4.Visualinterpretationofthedensityprofile.Sandedwoodcoresectionsinupperpanel,where Figure 4. Visual interpretation of the density profile. Sanded wood core sections in upper panel, ringwidthswereindicated. Theoutermostsectionofdensityprofilesof8selectedspeciesfromthe where ring widths were indicated. The outermost section of density profiles of 8 selected species from CongoBasin,withazoomshowingtowhatextenttheringboundariesvisuallyindicatedwithwhite the Congo Basin, with a zoom showing to what extent the ring boundaries visually indicated with trianglesonthewoodsurface,concurwiththedensityprofileattheringboundary.Wooddensityis white triangles on the wood surface, concur with the density profile at the ring boundary. Wood definedastheovendrywooddensity(kg·m−3).Speciesshownare(a)Anonidiummannii,(b)Canarium density is defined as the ovendry wood density (kg·m−3). Species shown are (a) Anonidium mannii, (b) schweinfurthii,(c)Entandrophragmaangolense,(d)Miliciaexcelsa,(e)Pycnanthusangolensis,(f)Polyalthia suaveolens,(g)Staudtiakamerunensis,and(h)Tetrorchidiumdidymostemom.Scalebar500µm. Forests2018,9,763 9of14 3.2. LocalDefinitionoftheDensityProfile: GrowthRingBoundaryCriterion Allspecieshavevaryingradialpatternsofwooddensity. Somespecies,suchasP.suaveolensand S.kamerunensis,showsmall,high-frequencydensityvariationsalongtheprofile(Figure4f,g),whileother speciesshowlarge,low-frequencyvariations,seenasnarrowandwidegrowthringsrespectively. Anonidiummanniiboundariesarecharacterizedbyalternatingfibreandparenchymabandsthat narrowdowntowardsthegrowthringboundary(Figure1a). Thiscausesadensityincrease, seen intheprofile(Figure4a). Canariumschweinfurthiihasaclearvariationinfibrelumenandwallsize, causing a density increase (Figure 4b). Entandrophragma angolense has a fibre lumen and wall size variationcombinedwithterminalparenchyma,butalsowithcleardensityincreases. InMiliciaexcelsa, there is a fibre variation and in some cases a terminal parenchyma band (Figure 1d). The density profilesshowclearvariationsindensity,buttheseare,insomecases,maskedbyparenchymabands (Figure 4d). Ring boundaries of Pyncanthus angolensis are difficult to detect, despite the variation in density, as the ring boundary is indistinct: fibre lumen decrease is gradual (Figures 1e and 4e). AlternatingfibreandparenchymabandsdeterminethegrowthringboundaryinPolyalthiasuaveolens, aswellasdistendedrays(Figure1f),butonthedensityprofilethesesubtleanatomicalchangesare hardertodetect(Figure4f). Staudtiakamerunensisshowsflattenedfibrestowardstheendofthegrowth ring,onlyinsomecasesaccompaniedwithaterminalparenchymaband(Figure1g),andthisisclearly seeninthedensityprofileaspeaks(Figure4g). Tetrorchidiumdidymostemonischaracterisedbyflattened fibresaswell(Figure4hbutnotseeninFigure1h),butthisissubtle,andalthoughclearvariationis seen,theringlimitisnotsosharpanddifficulttoobserveinthedensityprofile. 3.3. LocalRadialVariationintheRelationbetweenWoodDensityandWoodAnatomicalFractions Whenassessingtheexactlocalcorrelationbetweeneachofthevariablesandthewooddensity valuesatagivenposition,thesevalueschangeconsiderably. Themovingcorrelations(Figure5)show thateachofthecomponentscanprevailatacertainradialposition.OnspeciessuchasEntandrophragma angolense (Figure 5c), the vessel lumina fraction does influence the density profile locally at most, especiallybetweengrowthringboundaries. ForTetrorchidiumdidymostemon(Figure5h)andCanarium schweinfurthii(Figure5b),parenchymaandtotalfibrefractionactinverselytoahighextentincertain regionsnegativelyandpositivelyincertainregions. ForPolyalthiasuaveolens(Figure5f),parenchyma positively influences the density profile. In species such as Staudtia kamerunensis (Figure 5g) and Anonidium manii, the fibre wall fractions determine wood density variations the most (Figure 5a), whichcanalsobeseenduetothegrowthringstructureofflattenedfibres(Figure1a,g). Miliciaexcelsa showshighcorrelationwithfibrewallfractionatthegrowthringboundaries(Figure1d),whereasin between, parenchymabandsdeterminethedensitypattern(Figure5d). ForPycnanthusangolensis, thevariationbetweenprevailingfractionsislarge(Figure5e). Forests2018,9,763 10of14 Forests 2018, 9, x FOR PEER REVIEW 10 of 14 Figure5.Movingsignificant(p<0.05)Pearsoncorrelationplots(windowwidth=30densityvalues)in Figure 5. Moving significant (p < 0.05) Pearson correlation plots (window width = 30 density values) upperpanelwithfibrewallfraction(red),fibrelumina(pink),parenchyma(orange),andvessels(blue). in upper panel with fibre wall fraction (red), fibre lumina (pink), parenchyma (orange), and vessels Bottompanelshowsfractionswithfibrewalls(red),fibrelumina(pink),parenchyma(orange),andvessels (blue). Bottom panel shows fractions with fibre walls (red), fibre lumina (pink), parenchyma (orange), (blue).Speciesshownare(a)Anonidiummannii,(b)Canariumschweinfurthii,(c)Entandrophragmaangolense, and vessels (blue). Species shown are (a) Anonidium mannii, (b) Canarium schweinfurthii, (c) (d)Miliciaexcelsa, (e)Pycnanthusangolensis, (f)Polyalthiasuaveolens, (g)Staudtiakamerunensis, and(h) Entandrophragma angolense, (d) Milicia excelsa, (e) Pycnanthus angolensis, (f) Polyalthia suaveolens, (g) Tetrorchidiumdidymostemon. Staudtia kamerunensis, and (h) Tetrorchidium didymostemon. 4. Discussion 4. Discussion Ageneralpositiveinfluenceoffibrewallfractiononwooddensitywasdescribedbyprevious studieAs [g2e4n,3e9ra,4l 0p].oFsiitbivree firnafclutieonncsea onfd fifibbrree wwaallll ffrraaccttiioonn owni twhionodth disefinbsirtey fwraacsti odnesdcreitbeermd ibnye pthreevairoeuas osctcuudpieiesd [2b4y,3w9,a4l0ls].a Fnidbrbey flruamctiionnasw ahnidch fiabfrfee cwtsawll oforadcdtieonns wityitthhien mthoiss tf(iTbareb lfera3c).tiDonif fdeeretenrcmesinine athvee raargeea wococoudpdieedn sbityy wbeatlwlse eannds pbeyc ielusmarientah uwshdicrhiv eanffebcytst hweofroadc tdioennssiotfy ththeeir manoastto m(Tya.ble 3). Differences in averAaglteh wouogohd sdeevnesriatyl tbreotpwiceaelns pspeeciceiesss haroew thruinsg dbriovuennd bayr itehsed ferfiacnteiodnbsy ofd tehnesiirt yanflautcotmuayt.i o nsdueto fibrewAaltlhlothuigckhn seesvsevraalr itartoiopnicsa[l3 s1p,4e1c]ie,sw sehsohwo wrinthga btoouthnedratryiepse sdoeffintiessdu beya ldseonisnifltyu eflnuccetuwaotioodnsd denusei ttyo afnibdret hwaatlol tthheicrkdneensssi vtyarviaatriioantiso [n3s1a,4r1e],d wuee tsohofrwa ctthioatn ostohtehre trytpheasn ofif btirsessu.eS aolsfoa ri,niftluaepnpceea wrsodoidffi dceunltsittoy daentde ctthraitn ogtshdere ldimenisteitdy bvyarpiaatrieonncsh ayrme daubea ntod fsraocrtivoensss eoltsh,ewr hthearena fsibforersfl. Satot efnare,d itfi abprpese,arths idsiaffpicpuelat rtso edveidteecnt t,riansgsse edneliinmFiitgedur ebsy 1paanrden4c.hTyhmisaa bdadnitdios noarl vvaersisaeblisl,i twyhoefrtehaesd feonrs iftlyatpternoefidle fmibarkese,s tfihbisre a-dprpiveaerns deevnidsietnyt,v aasr isaeteino nins Fdiigffiucrue l1t atondd Feitgecutrea m4. oTnhgisa aldldthiteioontahle vrsar[i4a2b]i.litDye onfs tihtye dperonfisilteys pcraonfisleh mowakterso pfiibcrael- tdrereiv-reinn gdbeonusnitdya vriaersiaintiosonms edicfafsiceus,lta ntod dweeteschto wamedonthga atlwl othoed odtehnesristy [i4s2o].n Dlyecnlosisteyl yprreolfaitleeds tcoansp sehcioews tropical tree-ring boundaries in some cases, and we showed that wood density is only closely related to species with clear fibre wall variation. The visibility of macroscopically visible growth ring

Description:
Abstract: Wood density profiles reveal a tree's life strategy and growth. Density profiles are, however, rarely defined in terms of tissue fractions for wood
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.