Wiretap channel capacity: Secrecy criteria, strong converse, and phase change Eric Graves and Tan F. Wong Abstract—This paper employs equal-image-size source parti- requirement is to view the problem as a binary hypothesis tioningtechniquestoderivethecapacitiesofthegeneraldiscrete testing of the alternate hypothesis of M and Zn being in- memoryless wiretap channel (DM-WTC) under four different dependent against the null hypothesis of M and Zn being secrecy criteria. These criteria respectively specify requirements 7 on the expected values and tail probabilities of the differences, correlated.This is an interesting case in which we would like 1 in absolute value and in exponent, between the joint probability the false positive probability given by the likelihood ratio test 0 of the secret message and the eavesdropper’s observation and n 2 tthheesceocrrrietseproiandreindgucperobbaacbkiltiotythifetshteayndwaerrdelienadkeapgeendaenndt.vSaorimateioonf PM,Zn(cid:18)(cid:26)(m,zn)∈M×Zn : PPMM(,mZn)P(mZn,z(znn)) ≥τ(cid:27)(cid:19) a distance constraints that have been previously considered in the 1 as n J literature.Thecapacitiesunderthesesecrecycriteriaarefoundto → →∞ 5 bedifferentwhennon-vanishingerrorandsecrecytolerancesare where the decision threshold τ [0,1) serves as a measure allowed.Basedonthesenewresults,weareabletoconcludethat ∈ 2 of secrecy with τ 1 begin the most secret situation. Note ] tohnelysutrnodnegrctohnevtewrosesepcrroepceyrctyritgeerniaerbaallsyedhoonldcsofnosrtrtahieniDngMt-hWetTaCil that the log-likelih→ood log2 PPMM(,mZn)P(Zmn,z(znn)) may also be used T probabilities. Under the secrecy criteria based on the expected in the hypothesis testing problem above. I values, an interesting phase change phenomenon is observed as For every (m,zn) n, define . the tolerance values vary. ∈M×Z s [c I. INTRODUCTION v(m,zn), 1− PPMM(,mZ)nP(Zmn,z(znn)) + if PM,Zn(m,zn)>0 1 The discrete memoryless wiretap channel (DM-WTC) (cid:12)(cid:12)0 (cid:12)(cid:12) if PM,Zn(m,zn)=0 (cid:12) (cid:12) 7v r(eXce,iPvYe,rZY|X,,aYnd×anZea)vecsodnrsoipstpseroZf.aAsmenedsseargeXM, aislteogbiteimseantet where |c|+ equals c if c>0 and 0 otherwise, and 734 rbeyliaZb.lyOfvreormnXusteos Yofatnhde DdiMsc-rWeetTlyC,agleatinfstne:avMesdr→oppXinng i(m,zn),(−0 log2 PPMM(,mZn)P(Zmn,z(znn)) iiff PPMM,,ZZnn((mm,,zznn))>=00. 0 and ϕn : n be the encoding and decoding functions . respectiveYly em→plMoyed at X and Y, where = [1 : 2nR] is We see that all the secrecy requirements discussed above can 1 the message set and M is uniformlydistribuMted over . The be compactly specified in terms of the tail probabilities and 0 7 transmission reliability requirement is specified by M expected values of v(M,Zn) and i(M,Zn): 1 v: Pr{ϕn(Yn)6=M}≤ǫn (1) S1(δn):PM,Zn({v(M,Zn)>δn})→0 Xi wrehqeurieremǫnen∈ta(s0se,s1s)esdehnoowtemsuthche oenrreomr atoyleleraanrncea.bTouhteMsecfrreocmy SS23((δlnn))::PEMM,,ZZnn([vi((MM,,ZZnn))]=>klnPM),Zn0−PMPZnk1 ≤δn r { } → a Zn. This requirement is often quantified by measuring the S4(ln):EM,Zn[i(M,Zn)]=I(M;Zn) ln ≤ level of “independence” between M and Zn based on either the variation distance wexhpeercetaδtinon∈w(.0r.,t.1]P,Mln,Z∈n.(N0,o∞te)t,haatndS2E(δMn,)Zna[n·]ddSen4(oltne)s tahree 1 P P P thevariationdistanceanddivergence(leakage)constraints,re- M,Zn M Zn 1 2k − k spectively,whileS (δ )andS (l )correspondtothesecrecy 1 n 3 n 1 , PM,Zn(m,zn) PM(m)PZn(zn) requirementsspecifiedbythehypothesistestingproblemusing 2 | − | the likelihood and log-likelihood ratios, respectively. (m,znX)∈M×Zn Clearly these secrecy requirements are related to each or the divergence D(PM,Zn PMPZn) = I(M;Zn) between other. For example, S (δ ) implies S (δ ), and S (l ) im- k 1 n 2 n 3 n PM,Zn and PMPZn. Another way of quantifying the secrecy plies S (l ). Then, by Pinsker’s inequality, S (l ) implies 4 n 4 n erTEiarcincsFgG.rWraavo@enusgfiilss.wweiidtthhuDAerpmayrtmReensteaorfchEleLcatrbi,caAldaenldphCi,omMpDute2r0E78n3g,ineUe.rSin.Ag,. Sin2eq(cid:18)uqaliltny2,lnS2(cid:19)2(δnif) linmp∈lies(0S,1l(n2√2δ).n)Siimf iδlanrly by0.MAalrskoovb’ys University ofFlorida,Gainesville, FL32611,[email protected] elementarylogarithm inequalities, S (δ ) imp→lies S 2δn if T.F.WongwassupportedbytheNationalScienceFoundationunderGrant δ 0. Thus for vanishing toleranc1es,nS –S are e3sselnnt2ially CCF-1320086. Eric Graves was supported by a National Research Council n → 1 4 (cid:0) (cid:1) Research Associateship AwardatArmyResearch Lab. equivalent. Special cases of these secrecy requirementshave been con- that lim (R ,ǫ ,η ) = (R,ǫ,η), for i 3,4 . We n→∞ n n n ∈ { } sideredintheliterature.Forexample,requiringǫ 0in(1), have instead chosen to present the “weak” versions of these n S (nr ) is the equivocation constraint originally→considered criteria, simply because their proofs trivially recover their 4 l in [1]. Six secrecy requirements S –S are more recently “strong” counterparts. That is the ǫ-secrecy capacity under 1 6 considered in [2]. Setting ǫ 0, S is S (l ) for some S (l) orS (l), mustbe less than the ǫ-secrecycapacityunder n 1 4 n 3 4 lln →00,,SS2 iissSS2((δln))ffoorrssoommeeδ→lnn→00,,Sa3nidsSS3(ilsn)Sfo(lrs)omfoer S3 nlogn2n and S4 nlogn2n -respectively. Yet, the secrecy snom→e ln 4 0. 4 n n → 6 3 n cap(cid:16)acities u(cid:17)nder S3 (cid:16)nlogn2n (cid:17)and S4 nlogn2n can also be Thenm→ajority of known secrecy capacity results under the achievedunderS3(ln(cid:16))andS(cid:17)4(ln)fors(cid:16)omeln (cid:17) 0,using[8, → abovesecrecy requirementsare for cases with vanishingerror Theorem 17.11]. tolerance, ǫ 0, and secrecy tolerance, l 0, ln 0, Write n → n → n → or δn 0. These results are nicely summarizedin [2], which C ,maxI(X;Y) shows→thatthesecrecycapacitiesunderS1–S6 (seefootnote1) 1 PX oftheDM-WTCareallgivenbymax I(U;Y) I(U;Z), C ,maxI(U;Y) I(U;Z) PU,X − 2 PU,X − ❝ ❝ where U X Y,Z. Here we are mainly interested in where the alphabet of U in the definition of C can be cases where both the error tolerance ǫ and secrecy tolerance U 2 n assumed to have . Also restrict ǫ [0,1) and δ δ , l or ln are non-vanishing, on which only a few partial |U| ≤ |X| ∈ ∈ n n n [0,1], and r [0, ). Then the following theorems give our l resultsexist.TheoldestsuchresultdatesbacktoWyner’sorig- ∈ ∞ main results regarding the secrecy capacities: inalpaper[1],in whichthesecrecycapacityunderS (nr )of 4 l the degraded DM-WTC (PY,Z|X = PZ|YPY|X) is calculated Theorem 1. The ǫ-secrecy capacity under S1(δ) of the DM- for the case of ǫ 0. The ǫ-secrecy capacity under S (l ) WTC is given by n 4 n → of the degraded DM-WTC is obtained in [3] for the case of C if δ <1 ln 0. Thiscase hasalso beenextendedto the generalDM- C (δ), 2 WnT→C in [4] and [5]. The ǫ-secrecy capacity under S (δ) of 1 (C1 otherwise. 2 the degraded DM-WTC is found in [6]. for all ǫ. In this paper, we determine the secrecy capacities for the Theorem 2. The ǫ-secrecy capacity under S (δ) of the DM- generalDM-WTCundertheabovefoursecurityrequirements, 2 S –S ,withnon-vanishingtolerances.Alloftheseresultscan WTC is given by 1 4 be straightforwardly obtained using our recently developed C if ǫ+δ <1 equal-image-size source partitioning techniques [4], [7]. Fur- C2(ǫ,δ), 2 ther,theǫ-secrecycapacityforeachofthesefourrequirements (C1 otherwise. isunique.UnderS andS thestrongconversepropertyholds, Theorem3. Theǫ-secrecycapacityunderS (nr )oftheDM- 1 3 3 l while it does not under S and S in general. In addition, WTC is given by 2 4 under S and S , the capacity can be broken into distinct 2 4 C (r ),C +min(r ,C C ) phases depending on the error tolerance. For instance, under 3 l 2 l 1− 2 S2 the capacity of the channel is either equal to the capacity for all ǫ. of the channel with vanishing error, or the capacity of the Theorem4. Theǫ-secrecycapacityunderS (nr )oftheDM- channel with no secrecy requirement. We call this interesting 4 l WTC is given by phenomenon a phase change. r C (ǫ,r ),C +min l ,C C . II. MAIN RESULTS 4 l 2 1 ǫ 1− 2 (cid:18) − (cid:19) For i 1,2,3,4 , we call (fn,ϕn) a (n,R ,ǫ ,S (η ))- Theorems 1 and 4 state that the ǫ-secrecy capacities of the n n i n ∈{ } code if the domain of fn (i.e., ) is of cardinality 2nRn, DM-WTC under S (δ) and S (nr ) are invariantto the value and the pair satisfy both (1) anMd Si(ηn). Further we say of ǫ [0,1) for al1l valid valu3es olf δ and rl, respectively. In athcehiervaatebleerirforthesreecreexciysts(RaEsSe)q-tureipnlcee (oaf,b(n,c,)Rn∈,ǫnR,3Sii(sηnS))i-- aonthderS∈3w(onrrdls),.tAhelthsotruognhgicnovnavriearnsteopfrothpeeretryrohrotlodlseruanndceer,Sth1e(δǫ)- caonddelsimsuch thaRt lim,ǫn→,η∞n(R=n,(ǫan,,bη,nc))=if(ia,b,c3),4if .iT∈h{e1n,2th}e, tsheecrelecaykacgapearcaittey run.dIenr sSp3e(cnifirlc), itshenoǫn-s-etrcirveicayllycadpeapceintydeunntdoenr ǫR-sseuccrehcnyth→caa∞tptah(cid:0)ceitRnyEuSnn-dternirpt(cid:1)lhee(aRp,pǫr,oηp)riaisteSS-ia∈(·c)h{iisevtha}belme.aximum iSt3s(antrulr)atienscraetasCes,llitnheear(lnyoans-saecfruent)ctcioapnaociftyrloffrotmheCd2iscurnettiel i 1 Note that for S and S , the above definition corresponds memoryless channel (DMC) ( ,P , ). 3 4 Y|X to what is called “weak” secrecy in the literature [2]. If When the secrecy requiremeXntsare wYeakened to S (δ) and 2 “strong” secrecy is desired, the definition could be modi- S (nr ) from S (δ) and S (nr ) respectively, Theorems 2 4 l 1 3 l fied to that the RES-triple (R,ǫ,η) is S -achievable when and 4 show that the strong conserve property no longer holds i there exists a sequence of (n,R ,ǫ ,S (η ))-codes such fortheDM-WTCastheǫ-secrecycapacitiesgenerallydepend n n i n onthevalueofǫ.UnderS (δ),theǫ-secrecycapacityremains and 2 at C as long as ǫ [0,1 δ). However, for ǫ [1 δ,1), 2 ∈ − ∈ − Ω (r), (m,zn) n : the ǫ-secrecy capacity value experiences an abrupt phase n ∈M×Z change,increasingtoC1 asifthereisnosecrecyrequirement. n PM,Zn(m,zn) 2n(r+λn)PM(m)PZn(zn) , Restricting to within either of the two value ranges, the ǫ- ≤ secrecy capacity under S2(δ) is invariant to ǫ. then o r U=n0defrorSa4l(lnǫrl),[0th,e1)ǫ.-sNeocrteectyhactatphaicsitaylsroeminacilnusdeast Cth2ewcahseens PM,Zn(Ωn(r))≤PQn QSn(r) +µn. l of strong secrec∈y (S (l ) with l 0) and bounded leakage For proving achievability in Th(cid:0)eorems(cid:1)2 and 4, we will 4 n n (S (l ) with l =l). Thus the stro→ng conversepropertyholds make use of the following lemma to simplify discussions: 4 n n when rl = 0 as proven in [4] and [5]. For any fixed rl Lemma 6. For i 2,4 , if the RES-triple (R,0,η) is S - ∈ i (0,C1 C2), the ǫ-secrecy capacity increases from C2 +rl achievable, then th∈e{RES-}triple (R,γ,(1 γ)η) is also S - − i to C and then levels off as ǫ increases in the range [0,1). − 1 achievable for any γ [0,1). TheDM-WTCexhibitsa phasechangefromwherethestrong ∈ conversepropertyholdstowhereitdoesnot.Whenr C A. Proof of Theorem 1 l 1 ≥ − C , the ǫ-secrecy capacity value remains at C for all ǫ 2 1 (Direct) For any δ [0,1) and ǫ [0,1), the RES- ∈ [0,1), and the DM-WTC exhibits another phase change after triple (C ,ǫ,δ) being S∈-achievable follow∈s directly from [8, 2 1 which the strong converse property holds again. Theorem 17.11], which in particular shows the RES-triple (C ,0,0) is S -achievable.On the other hand, the RES-triple III. PROOFS OF THEOREMS 2 1 (C ,ǫ,1)isS -achievablesinceC isthechannelcapacityfor 1 1 1 We prove the converses in Theorems 1–4 by employing the DMC ( ,P , ), and δ =1 correspondsto no secrecy Y|X the following strong Fano’s inequality developed in [4] and X Y constraint. information stabilization result developed in [7]: (Converse) To prove that C (δ) is an upper bound on the 1 Strong Fano’s inequality. For any (fn,ϕn) of rate R that ǫ-secrecycapacityunderS1(δ), firstapplyLemma5toobtain gives Pr ϕn(Yn) = M ǫ over the DM-WTC, there exist values τn, µn, and λn which converge to 0 as n increases, scauabrradsenintdaolmi{tyiinsdaext mQo6nstthpao}tlyr≤naonmgieasloinvenr,aζnni→nde0x, asentdQanwinhdoesex ΩPsuMnc(h,0Z)ntha(anΩtdnP(Q0M)Sn,)(Z0n)(aΩ1snd(e0ρfi)n)nefd≤orinsPoLQmenme(cid:0)mQρnaSn(50.)W(cid:1)0e,+dalµuseno,thofaovSre1(tshδeat)st. Thus S (δ) and≥Lemm−a 5 together imply→that 1 1 R , q :R I(M;Yn Q =q )+ζ Qn (cid:26) n ∈Qn ≤ n | n n n(cid:27) PQn QSn(0) ≥PM,Zn(Ωn(0))−µn ≥1−ρn−µn. (2) satisfying P ( R) 1 ǫ ζ . Butthe(cid:0)nthestr(cid:1)ongFano’sinequalityand(2)togethergivethe Qn Qn ≥ − − n existence of a q such that Information stabilization. For the (fn,ϕn) pair, random n ∈Qn iinnddeexx Qsunb,seatndiZndex setsQatnisfaybinogveP,ther(e eZx)ist ξ1n →ξ0:a1ndan R≤ n1I(M;Yn|Qn =qn)+ζn (3) 1) PZZnn:|QPnZQ(nZnˆ|Qn⊆n(q(znQn)n||qqnn))≥=.ξ1n−2−ξHnQ,(ZnwnhQ|eQrnne=Zq≥ˆnn)(q,−n),n (cid:8)zn ∈ n1I(M;Zn|Qn =qn)≤τn (4) 2) tPhere (ex˜is(tqs )qa) M˜1(qn)ξ , an⊆d P M(cid:9)(msqati)sfy=.ing sfoinrcelarPgeQnenQouRngh∩nQSna(n0d)ǫ ≥ [10,−1)ǫ. −Coζmnb−ininρgn −(3)µannd>(40) M|Qn M n | n ≥ − n M|Qn | n ξn (cid:0) (cid:1) ∈ 3) P2−H(M|Qn(=˜qnn)(mfo,rqea)cmh,mq ∈) M˜(qn),1and ξ where walilthǫ[8, L[0e,m1)m.aO1n7.t1h2e],oitthfeorllhoawnsd,thwathRen≤δC=2+1,ζnth+e ηstnrofnogr Zn|M,Qn Z n | n ≥ − n . ∈ 2Z˜−nH(m(Z,nq|Mn),Q,n=qnz)n,∈ Zn : PZn|M,Qn(zn|m,qn) =ξn Fasanion’sthienesqtuaanlditayrd(is.etr.,on(g3))cognivveersseRar≤gumCe1n+t foζnr tfhoer DalMl ǫC, (cid:8) ( ,P , ). for each qn ∈QZn. (cid:9) X Y|X Y B. Proof of Theorem 2 Obtained through the information stabilization result in the appendix, the following lemma will also be needed: (Direct) The RES-triple (C ,ǫ,δ) is S -achievable, once 2 2 again, by [8, Theorem 17.11], for ǫ+δ < 1. For ǫ+δ 1, Lemma 5. For any r ≥ 0, there exist τn → 0, µn → 0, and the RES-triple (C ,ǫ,1 ǫ) is S -achievable by Lemm≥a 6, λn →0 satisfying nλn →∞ such that by defining since the RES-trip1le (C −,0,1) is S2 -achievable. 1 2 S(r), q : 1I(M;Zn Q =q ) r+τ (Converse) On the other hand, to prove that C2(ǫ,δ) is an Qn n ∈Qn n | n n ≤ n upper bound on the ǫ-secrecy capacity under S (δ), observe (cid:26) (cid:27) 2 that S (δ) implies . 2 (cid:12)(cid:12)n11lFoogr2aanny−nonn1-nleogga2tibvne(cid:12)(cid:12)λ≤nλ→n.0,an>0,andbn>0,an=λn bn means δ ≥kPM,Zn −PMPZnk1 ≥ PM,Zn(m,zn)−PM(m)PZn(zn) together with (8) implies that there must be a qn ∈QRn such ≥(m,zn)∈MX×Zn\Ωn(0)PM,Zn(m,zn) 1−2−nλn that n1I(M;Zn|Qn =qn)≤ rl1+ αnǫlogζ2nn. (9) (m,zn)∈MX×Zn\Ωn(0) (cid:0) (cid:1) Again by the strong Fano’s inequality−, for−this q we also = 1−2−nλn [1−PM,Zn(Ωn(0))]. (5) have(3).Hencecombining(3)and(8)with[8,Lemmna17.12], Thus (cid:2)combining L(cid:3)emma 5 and (5) gives it follows that r + αlog n P S(0) 1 δ 2−nλn µ . R C + l n 2 +ζ . Qn Qn ≥ − − − n ≤ 2 1 ǫ ζ n n − − As a result, if ǫ(cid:0)+δ <(cid:1)1, then there must exist a q n n The strong Fano’s inequality alone also gives the bound R ∈ Q such that (3) and (4) are simultaneously satisfied since ≤ C +ζ . Thus we have 1 n PQn(QRn ∩QSn(0))≥1−ǫ−δ−ζn−2−nλn −µn >0 R min C + rl+ αnlog2n +ζ , C +ζ . ≤ 2 1 ǫ ζ n 1 n forallsufficientlylargen. Henceagainby[8, Lemma17.12], (cid:26) − − n (cid:27) we have R C2 +ζn +τn. If ǫ+δ 1, then the strong IV. CONCLUSIONS ≤ ≥ Fano’s inequality (i.e., (3)) gives R C +ζ . 1 n Employing the recently developed techniques of equal- ≤ image-size partitioning, we obtained the ǫ-secrecy capacities C. Proof of Theorem 3 under S (δ), S (δ), S (nr ), and S (nr ) of the DM-WTC (Direct)The RES-triple ((C +min(r ,C C ),ǫ,r) is 1 2 3 l 4 l S achievabledueto[8,Theore2m17.13],wl hic1h−sho2wsthatlthe fornon-vanishingǫ, δ, and rl. The secrecycriteria considered 3 include the standard leakage and variation distance secrecy RES-triple ((C +min(r ,C C ),0,r) is S achievable. (Converse) O2n the othler h1a−nd, 2to provle that3C (r ) is an constraints often employed in the literature. Our new results 3 l show that both the capacity value and the strong converse upper bound on the ǫ-secrecy capacity under S (nr ) of the 3 l property of the DM-WTC are in fact dependent on the DM-WTC, we notethat Lemma5 and S (nr ) directlyimply 3 l secrecy criterion adopted. We conjecture that the interesting PQn QSn(rl) ≥PM,Zn(Ωn(rl))−µn ≥1−ρn−µn (6) phasechangephenomenonobservedincaseswherethestrong conserve property does not hold is commonplace in many for som(cid:0)e ρ (cid:1)0. Thusas beforethe strongFano’sinequality n other multi-terminal DMCs. → and(6)togethergivetheexistenceofaq satisfying(3) n n ∈Q and APPENDIX 1 I(M;Zn Q =q ) r +τ (7) A. Proof of Lemma 5 n n k n n | ≤ We need the following lemma to prove Lemma 5: since P R S(r ) 1 ǫ ζ ρ µ > 0. Qn Qn ∩Qn l ≥ − − n − n − n Hencebyapplying[8,Lemma17.12]tothecombinationof(3) Lemma7. LetQ bearandomindexrangingover ,whose n n (cid:0) (cid:1) Q and (7), we have R < C +r +ζ +τ . The strong Fano’s cardinality is at most polynomialin n, and V be any discrete 2 l n n inequalityalso gives the boundR≤C1+ζn. Thuswe obtain random variable distributed over V. Then there exist λn →0 R≤min{C2+rl+ζn+τn,C1+ζn} for all ǫ. and ξn′ →0 such that nλn →∞ and . D. Proof of Theorem 4 P (v,q ) :P (v q )= P (v) V,Qn n ∈V ×Qn V|Qn | n λn V (Direct) First note the RES-triple 1 ξ′. ≥ −(cid:0)(cid:8)n (cid:9)(cid:1) (C2+min 1r−lǫ,C1−C2 ,0,1r−lǫ is S4 achievable Note that λn and ξn′ both depend only on the polynomial (cid:16)due to [8,(cid:16) Theorem 1(cid:17)7.13]. H(cid:17)ence the RES-triple cardinality bound on . n (C +min rl ,C C ,ǫ,r is S -achievable by Q 2 1−ǫ 1− 2 l 4 Proof: Let α > 0 be such that nα. First (cid:16)Lemma 6. (cid:16) (cid:17) (cid:17) write = (v,q ) :P (v|Qqn)|>≤n2αP (v) (Converse) To prove C4(ǫ,rl) upper-bounds the ǫ-secrecy and A= (v,q )n ∈V ×Q:nP V|Q(nv q|)n<n−2αPV(v) . capacity under S4(nrl) of the DM-WTC, notice that S4(nrl) ThenB (cid:8) n ∈V ×Qn V|Qn | n V (cid:9) implies (cid:8) (cid:9) . r 1I(M;Zn) 1I(M;Zn Q ) αlog n PV,Qn (v,qn)∈V ×Qn :PV|Qn(v|qn)=λn PV(v) l ≥ n ≥ n | n − n 2 ≥1−(cid:0)(cid:8)PV,Qn(A∪B) (cid:9)(cid:1)(10) 1 α ≥ nI(M;Zn|Qn =qn)PQn(qn)− n log2n where λn = 2nαlog2n. Thus the lemma is verified by (10) if qnX∈QRn we canshowthatPV,Qn(A∪B)→0.In particular,we doso 1 α by bounding P ( ) n−α and P ( ) n−2α, and min I(M;Zn Q =q )P ( R) log n (8) V,Qn A ≤ V,Qn B ≤ ≥qn∈QRn n | n n Qn Qn − n 2 setting ξn′ =n−α+n−2α. To bound P ( ), note that for all (v,q ) , wherenα isthecardinalityboundon n.Butfromthestrong V,Qn A n ∈A Fano’s inequality, we have P ( RQ) 1 ǫ ζ . This P (q ) n−2α (11) Qn Qn ≥ − − n Qn n ≤ since since (m,zn,q ) Ξ . Thus Lemma 5 results from (16) by n n ∈ settingτ =4λ +2ξ andµ =3ξ′ +4ξ ,becausewehave P (v) P (v q )P (q ) n2αP (v)P (q ). n n n n n n V ≥ V|Qn | n Qn n ≥ V Qn n from (14) Then the upper bound on P ( ) follows from (11) as below: V,Qn A PM,Zn(Ωn(r)) P ( )= P (v q )P (q ) ≤PM,Zn,Qn(Ξn∩Γn∩Ωn(r)×Qn)+3ξn′ +4ξn V,Qn A (v,Xqn)∈A V|Qn | n Qn n ≤PQn QSn(r) +3ξn′ +4ξn. P (v q )n−2α n−α. B. Proof of L(cid:0)emma(cid:1)6 ≤ V|Qn | n ≤ (v,Xqn)∈A (n,FRor ,(1i γ)ǫ∈+γ,S{2(,(41}, γ)wl e))-cocdaen (fˆnco,nϕsntr)u,ctgivena The upper bound on PV,Qn(B) follows similarly in that that thnere e−xistsna (n,Rni,ǫn,−Si(lnn))-code (fn,ϕn). Whence P ( )= P (v q )P (q ) the lemma follows by the definition of the RES-triples. V,Qn B V|Qn | n Qn n Letting Mˆ be a random variable distributed identical, but (v,Xqn)∈B independent, to M. The new encoder, fˆn, is constructed by P (v)P (q )n−2α n−2α. ≤ V Qn n ≤ setting it equal to f(M) with probability 1 γ and to f(Mˆ) (v,Xqn)∈B with probability γ. While the new decoder ϕ−ˆn =ϕn. Clearly, an error will likely occur if fˆ(M) is set equal to Apply Lemma 7 three times with V = M, V = Zn, and f(Mˆ). On the other hand, the probability of error will revert V =(M,Zn), respectively. Writing to that of (fn,ϕn) if fˆ(M) is set equal to f(M). Thus the probability of error for (fˆn,ϕˆn) is at most (1 γ)ǫ +γ. Γn , (m,zn,qn)∈M×Zn×. Qn : Letting PZn,M be the joint distribution o−f Znn,M for n PPMM,|ZQnn|(Qmn|(qmn),z=.nλ|qnnP)M=λ(mn P),Ma,nZdn(m,zn), fPiˆnnduacasen(dd1bP−yfγn).P,BwZunet,Mctahne+nw,γrfPiotZerntthhPeeMjvo,aiwnritahdtiilioestnrtihdbeuistmtiaoannrcgoeif,nZalns,rMemafoinr . M Zn where λ is obPtaZinne|Qdni(nznL|eqmn)m=aλ7n, PwZenh(azvne)o k(1−γ)PZn,M +γPZnPM −PZnPMk1 n =(1 γ) PZn,M PZnPM 1. − k − k PM,Zn,Qn(Γn)≥1−3ξn′. (12) And for divergence Next define D((1 γ)PZn,M +γPZnPM PZnPM) Ξn , (m,zn,qn)∈M×Zn×Qn :qn ∈QZn, ≤(−1−γ)D(PZn,M||PZnP|M| )+γD(PZnPM||PZnPM) n m ˜(q ), and zn ˆn(q ) ˜n(m,q ) =(1 γ)D(PZn,M PZnPM). n n n − || ∈M ∈Z ∩Z o with the corresponding Z, ˜(q ), ˆn(q ), and ˜n(m,q ) Qn M n Z n Z n as given in the information stabilization result summarized in REFERENCES Section III. Similar to before, [1] A.Wyner,“Thewire-tapchannel,”BellSyst.Tech.J.,vol.54,pp.1355– 1387,Oct.1975. PM,Zn,Qn(Ξn)≥1−4ξn. (13) [2] M. Bloch and J. Laneman, “Strong secrecy from channel resolvability,” IEEETrans.Info.Theory,vol.59,pp.8077–8098, Dec.2013. Combining (12) and (13) gives [3] V.TanandM.Bloch,“Informationspectrumapproachtostrongconverse theoremsfordegradedwiretapchannels,”inProc.52ndAnnualAllerton PM,Zn,Qn(Ξn∩Γn)≥1−3ξn′ −4ξn. (14) Conf.Comm.,Con.,andComp.,pp.747–754,Sep.2014. [4] E. Graves and T. F. Wong, “Equal-image-size source partition- From here note that for any (m,zn,q ) Ξ Γ , n n n ing: Creating strong fano’s inequalities for multi-terminal discrete ∈ ∩ memoryless channels,” ArXiv e-prints, Dec. 2015. Available at PM,Zn(m,zn) 2n(r+λn)PM(m)PZn(zn) https://arxiv.org/abs/1512.00824 . ≤ [5] Y.-P. Wei and S. Ulukus, “Partial Strong Converse for the Non- implies Degraded Wiretap Channel,” ArXiv e-prints, Oct. 2016. Available at https://arxiv.org/abs/1610.04215 . 1 log PZn,M|Qn(zn,m|qn) r+4λ , (15) [6] M.Hayashi,H.Tyagi,andS.Watanabe,“Strongconverseforadegraded n 2 P (zn q )P (mq ) ≤ n wiretap channel via active hypothesis testing,” in Proc. 52nd Annual Zn|Qn | n M|Qn | n AllertonConf.Comm.,Con.,andComp.,pp.148–151,Sep.2014. because (m,zn,q ) Γ . And then in turn, for all [7] E. Graves and T. F. Wong, “Information stabilization of images over n n (m,zn,q ) Γ Ξ ,∈ discrete memoryless channels,” in Proc. IEEE Int. Symp. Info. Theory, n ∈ n∩ n pp.2619–2623, Jun.2016. 1 [8] I. Csisza´r and J. Ko¨rner, Information Theory: Coding Theorems for r+4λ I(M;Zn Q =q ) 2ξ (16) DiscreteMemorylessSystems.CambridgeUniversityPress,2nded.,2011. n n n n ≥ n | −