ebook img

Wireless Networks: Characteristics and Applications PDF

232 Pages·2019·28.993 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Wireless Networks: Characteristics and Applications

Journal of Sensor and Actuator Networks Wireless Networks Characteristics and Applications Selected articles published by MDPI www.mdpi.com/journal/jsan Wireless Networks Wireless Networks Characteristics and Applications SelectedArticlesPublishedbyMDPI MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade This is a reprint of articles published online by the open access publisher MDPI from 2017 to 2018. The responsibility for the book’s title and preface lies with Dharma P. Agrawal, who compiled this selection. Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow: LastName,A.A.; LastName,B.B.; LastName,C.C.ArticleTitle. JournalNameYear,ArticleNumber, PageRange. ISBN978-3-03921-684-0(Pbk) ISBN978-3-03921-685-7(PDF) (cid:2)c 2019bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximumdisseminationandawiderimpactofourpublications. Contents Prefaceto”WirelessNetworks” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ChiaraBedon,EnricoBergamo,MatteoIzziandSalvatoreNoe` PrototypingandValidationofMEMSAccelerometersforStructuralHealthMonitoring—The CaseStudyofthePietratagliataCable-StayedBridge Reprintedfrom:J.Sens.ActuatorNetw.2018,7,30,doi:10.3390/jsan7030030 . . . . . . . . . . . . 1 MarcoCattani,CarloAlbertoBoano,andKayRo¨mer An Experimental Evaluation of the Reliability of LoRa Long-Range Low-Power Wireless Communication Reprintedfrom:J.Sens.ActuatorNetw.2017,6,7,doi:10.3390/jsan6020007 . . . . . . . . . . . . . 19 AnupKumarPaulandTakuroSato LocalizationinWirelessSensorNetworks:ASurveyonAlgorithms,MeasurementTechniques, ApplicationsandChallenges Reprintedfrom:J.Sens.ActuatorNetw.2017,6,24,doi:10.3390/jsan6040024 . . . . . . . . . . . . 38 SimoneGrimaldi,AamirMahmoodandMikaelGidlund An SVM-Based Method for Classification of External Interference in Industrial Wireless SensorandActuatorNetworks Reprintedfrom:J.Sens.ActuatorNetw.2017,6,9,doi:10.3390/jsan6020009 . . . . . . . . . . . . . 61 HindBangui,MouzhiGe,BarboraBuhnova,SaidRakrak,SaidRaghayandTomasPitner Multi-CriteriaDecisionAnalysisMethodsintheMobileCloudOffloadingParadigm Reprintedfrom:J.Sens.ActuatorNetw.2017,6,25,doi:10.3390/jsan6040025 . . . . . . . . . . . . 86 AntonioJose´Caldero´nGodoyandIsa´ıasGonza´lezPe´rez IntegrationofSensorandActuatorNetworksandtheSCADASystemtoPromotetheMigration oftheLegacyFlexibleManufacturingSystemtowardstheIndustry4.0Concept Reprintedfrom:J.Sens.ActuatorNetw.2018,7,23,doi:10.3390/jsan7020023 . . . . . . . . . . . . 105 KhandakarAhmed,JanO.Blech,MarkA.GregoryandHeinzW.Schmidt SoftwareDefinedNetworksinIndustrialAutomation Reprintedfrom:J.Sens.ActuatorNetw.2018,7,33,doi:10.3390/jsan7030033 . . . . . . . . . . . . 126 HamzaDjelouat,AbbesAmiraandFaycalBensaali CompressiveSensing-BasedIoTApplications:AReview Reprintedfrom:J.Sens.ActuatorNetw.2018,7,45,doi:10.3390/jsan7040045 . . . . . . . . . . . . 147 Beiyu Lin, Yibo Huangfu, Nathan Lima, Bertram Jobson, Max Kirk, Patrick O’Keeffe, Shelley N. Pressley, Von Walden, Brian Lamb and Diane J. Cook Analyzing the Relationship between Human Behavior and Indoor Air Quality Reprintedfrom:J.Sens.ActuatorNetw.2017,6,13,doi:10.3390/jsan6030013 . . . . . . . . . . . . 178 AlexAdimObinikpoandBurakKantarci BigSensedDataMeetsDeepLearningforSmarterHealthCareinSmartCities Reprintedfrom:J.Sens.ActuatorNetw.2017,6,26,doi:10.3390/jsan6040026 . . . . . . . . . . . . 196 v Preface to ”Wireless Networks” Wirelesstechnologyhasbecomeextremelyimportantforhumanlifeandnearlyeveryonecarries atleastonecell/mobilephone. Voicecommunicationaffectsourdailylivesandweareinfluenced byday-to-dayroutine. Wirelesssystemsarebeingexploredfornumerousapplicationsinaddition totheircurrentcommunicationfunction. Onecanonlyimaginethepossibleinnovationsfroman area is expanding at an unprecedented rate and offers significant future potentials. This volume isacarefullyselectedcollectionofpapersthatcharacterizesthetechnologyandestablishesitsuse. Thefirstpaperexplorestheuseofmicroelectro–mechanicalsystems(MEMSs)forstructuralhealth monitoring (SHM) and considers the design and validation of an accelerometer that can be used in monitoring the health of structures. This paper presents an original self-made MEMS sensor prototypeandit’svalidationusinglaboratorytesting. Possibleapplicationsinstructuralassembly arediscussed. Afull-scaleexperimentalvalidationoftheMEMSaccelerometerwasperformed,and thedynamicresultsaresummarizedinthepaper. Some have begun to doubt the transmission and reliability of wireless communications. The second paper touches on this topic via an experimental reliability evaluation of low-power communications. Byextendingthecommunicationrangeofthelinks,thenetworkdiametercanbe reducedandcansimplifycommunicationandremovetheneedforrouting. However, long-range low-power (LoRa) wireless technology is still at its infancy. It is, as yet, unclear whether it is sufficiently reliable to complement existing short-range and cellular technologies, or which radio settingscansustainthehighdeliveryrate.Thispaperpresentsanexperimentalstudyofthereliability ofLoRabyfocusingontheimpactofphysicallayersettingsontheeffectivedatarateandenergy efficiency.Theresultsshowthatthedatarateneednotbetunedinordertomaximizetheprobability ofsuccessfulreception. Wirelesssensornetworks(WSNs)areformedbymanylow-costsensorsthatcommunicatewith eachother,sensedata,andpassitontoacentralstationcommonlyknownasthebasestation(BS).All decisionsaremadewithintheBS.Thetaskofdeterminingthephysicalcoordinatesofsensornodes inWSNsisknownaslocalizationorpositioning. InaWSN,itisimportanttoestimatetheplaceof originofeventssensedbysensorsasdecisionsaremadewithinaBS.Aspositioningaccuracyvaries fromapplicationtoapplication,differentlocalizationmethodsareadoptedindifferentapplications andthereareseverechallengesinscenariossuchaswildfires. Thethirdpapersurveysdifferentmeasurementtechniquesforlocalization. Further, different localization-basedapplicationsarediscussed,andacomprehensivediscussionofthechallenges,such as accuracy, cost, complexity, and scalability, are detailed. As the adoption of industrial wireless sensord and actuator networks (IWSANs) has greatly increased, the time-critical performance is affected considerably by external sources of interference. When an IEEE 802.11 network exists in thesameenvironment,adropincommunicationreliabilityisobserved.Thiscanbeminimizedwith long-termsampling. Asupportvectormachine(SVM)wasusedinfourthreasearchprojecttominimizesboththe sensing time and the memory footprint of the collected samples. A mechanism was proposed to enable the classification of interference, while ensuring high classification accuracy. The fast classificationwasobservedtobesuitableforTSCH-basedIWSAN.Mobilecloudcomputing(MCC)is becomingapopularmobiletechnologythataimstoaugmentthelocalresourcesofmobiledevicesby offloadingmobiledataandcomputation-intensiveoperationstocloudplatforms.Severaltechniques vii havebeenproposedtoimprovetheeffectivenessoftheoffloadingprocess. Multi-criteriadecision analysis (MCDA) is a well-known concept that selects the best solution from several alternatives. However,itisstillchallengingtoachieveasatisfactoryqualityofserviceinoffloading. Inthefifth paper,areviewoftheliteraturewasconductedtopromoteabetterunderstandingoftheusabilityin theoffloadingoperation.Challengesandopportunitiesformobilecloudcomputingarediscussed. Networksofsensorsandactuatorsarebeingimplementedusingindustrialfieldbuses, where automationunitsandsupervisorysystemsalsoexchangeoperationalinformation. Thesixthpaper presents a solution to enhance the connectivity of a flexible manufacturing system. This system includesafieldbusthatinterconnectsthesensors,actuators,andcontrollers. Toestablisheffective communicationbetweenthesensorandactuatornetworks,ahardwareandsoftwareapproachwas implemented.Theexperimentalresultsshowedproperoperationofsuchasystem. TheInternetofThingshasincreasedtheuseofinnovativenetworktechnologiesinindustrial automation, leading to efficient manufacturing and process automation with minimal human intervention. Duetoongoingevolution,anewopportunityforsoftwaredefinednetworking(SDN) hasemerged. Intheseventhpaper,abriefoverviewofSDNisprovidedandanetworkarchitecture calledthesoftwaredefinedindustrialautomationnetwork(SDIAN)isproposed.Twonewsolutions forflowcreationwereproposed,andtheanalyticalsolutionsarequantified. Theanalyticalmodel wasverifiedusingMonteCarlosimulations. TheproposedSDIANarchitecturewasevaluatedand analyzedusingtheMininetemulator. AnexperimentalfoodprocessingplantfeaturedRaspberryPi asasoftware-definedcontrollerthatdemonstratedcharacteristicsofSDIAN. TheIoTholdsgreatpromiseforprovidingcutting-edgetechnologythatwillenablenumerous innovative services related to healthcare, manufacturing, smart cities, and various other human activities. Many self-powered smart devices collect real-world data and communicate with each otherandwiththecloudthroughawirelesslink. However, highenergyconsumptioninwireless transmissionlimitstheperformanceofthesedevices.Thus,differentapproachessuchascooperative transmission,multi-hopnetworkarchitectures,andsophisticatedcompressiontechniqueshavebeen explored. Compressivesensing(CS)isaveryattractiveparadigminthedesignofIoTplatforms. TheeighthpaperassessestheextantliteraturethathasaimedtoincorporateCSinIoTapplications. Moreover,emergingtrendsarehighlightedforfutureCS-basedIoTresearch. In the coming decades, global population growth and global aging issues are expected, and thereareincreasingconcernsaboutthequalityoftheairbothinsideandoutsideofbuildings. The ninth paper examines the relationship between home occupant behavior and indoor air quality. Both sensor-based behavior data and chemical indoor air quality measurements in smart home environmentswerecollected.Anovelmachinelearning-basedapproachwasintroducedtoquantify the correlation between smart home features and chemical measurements of air quality. This informationcouldbeusefulinplanningforthefutureasanintegralpartofsmartcities. TheIoTconceptanditsintegrationwithsmartconnectedhealthsystemsappearedasanintegral componentofsmartcityservices.Hardsensing-baseddataacquisitionthroughwearableprobes,and softsensingsuchascrowd-sensing,couldresultinhiddenpatterns. Recentresearchaddressedthis challengethroughdeeplearning.Inthislastarticle,deeplearningtechniquesthatcanbeusedtosense data,improvepredictionandmakesmartdecisionswerereviewed.Acomparisonandtaxonomyof thesemethodologiesarepresentedbasedontypesofsensorsandsenseddata.Thoroughdiscussions oftheopenissuesandresearchchallengesineachcategoryarealsoprovided. Thecollectedarticlesprovideasummaryofvariouscharacteristicsofwirelessnetworks,their viii limitations, and ways to overcome these limitaitons effectively and quickly. There are numerous applications where wireless technology, such as the IoT, sensor networks, and other networks, is beingexploredandmanynovelapplicationsarecoveredhereindetail. DharmaP.Agrawal ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.