ebook img

Wireless Communications Over Rapidly Time-Varying Channels PDF

435 Pages·2011·5.359 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Wireless Communications Over Rapidly Time-Varying Channels

“01-fm-i-iv-9780123744838” — 2011/3/8 — 17:53 — page 1 — #1 Wireless Communications Over Rapidly Time-Varying Channels “01-fm-i-iv-9780123744838” — 2011/3/8 — 17:53 — page 3 — #3 Wireless Communications Over Rapidly Time-Varying Channels Edited by Franz Hlawatsch Gerald Matz AMSTERDAM•BOSTON•HEIDELBERG•LONDON NEWYORK•OXFORD•PARIS•SANDIEGO SANFRANCISCO•SINGAPORE•SYDNEY•TOKYO AcademicPressisanimprintofElsevier “05-con-xvii-xviii-9780123744838” — 2011/3/8 — 17:38 — page xvii — #1 Contributing Authors PaoloBanelli,Universita` diPerugia(Perugia,Italy) HelmutBo¨lcskei,ETHZurich(Zurich,Switzerland) SibasishDas,QualcommInc.(SanDiego,CA,USA) MinDong,UniversityofOntarioInstituteofTechnology(Oshawa,Ontario,Canada) CharlotteDumard,FTWForschungszentrumTelekommunikationWien(Vienna,Austria) GiuseppeDurisi,ChalmersUniversityofTechnology(Gothenburg,Switzerland) FranzHlawatsch,ViennaUniversityofTechnology(Vienna,Austria) YiHong,MonashUniversity(Clayton,Melbourne,Australia) Sung-JunHwang,QualcommInc.(SantaClara,CA,USA) CornelIoana,NationalPolytechnicInstituteofGrenoble(Grenoble,France) JoakimJalde´n,RoyalInstituteofTechnology(KTH)(Stockholm,Sweden) ArunP.Kannu,IndianInstituteofTechnology(Madras,Chennai,India) GeertLeus,DelftUniversityofTechnology(Delft,TheNetherlands) GeraldMatz,ViennaUniversityofTechnology(Vienna,Austria) VeniaminI.Morgenshtern,ETHZurich(Zurich,Switzerland) AntoniaPapandreou-Suppappola,ArizonaStateUniversity(Tempe,AZ,USA) LucaRugini,Universita` diPerugia(Perugia,Italy) BrianM.Sadler,ArmyResearchLaboratory(Adelphi,MD,USA) PhilipSchniter,OhioStateUniversity(Columbus,OH,USA) UlrichG.Schuster,RobertBoschGmbH(Stuttgart,Germany) ShlomoShamai(Shitz),Technion–IsraelInstituteofTechnology(Haifa,Israel) ZijianTang,TNODefence,SecurityandSafety(TheHague,TheNetherlands) LangTong,CornellUniversity(Ithaca,NY,USA) EmanueleViterbo,MonashUniversity(Clayton,Melbourne,Australia) ThomasZemen,FTWForschungszentrumTelekommunikationWien(Vienna,Austria) JunJasonZhang,ArizonaStateUniversity(Tempe,AZ,USA) xvii “04-ate-xv-xvi-9780123744838” — 2011/3/8 — 17:40 — page xv — #1 About the Editors FranzHlawatschreceivedtheDipl.-Ing.,Dr.techn.,andUniv.-Dozent(habilitation)degreesinelec- tricalengineering/signalprocessingfromViennaUniversityofTechnology,Vienna,Austria,in1983, 1988,and1996,respectively.Since1983,hehasbeenwiththeInstituteofTelecommunications,Vienna University of Technology, as an associate professor. During 1991–1992, as a recipient of an Erwin Schro¨dinger Fellowship, he spent a sabbatical year with the Department of Electrical Engineering, UniversityofRhodeIsland,Kingston,RI,USA.In1999,2000,and2001,heheldone-monthvisiting professorpositionswithINP–ENSEEIHT/Te´SA(Toulouse,France)andIRCCyN(Nantes,France).He (co)authoredabook,areviewpaperthatappearedintheIEEESignalProcessingMagazine,about180 refereedorinvitedscientificpapersandbookchapters,andthreepatents.Hecoeditedthreebooks.His researchinterestsincludesignalprocessingforwirelesscommunications,statisticalsignalprocessing, andcompressivesignalprocessing.Prof.HlawatschwasaTechnicalProgramCo-ChairofEUSIPCO 2004andhasservedonthetechnicalcommitteesofnumerousinternationalconferences.From2003to 2007,heservedasanassociateeditorfortheIEEETransactionsonSignalProcessing.Heiscurrently servingasanassociateeditorfortheIEEETransactionsonInformationTheory.From2004to2009, he was a member of the IEEE Signal Processing for Communications Technical Committee. He is coauthorofapaperthatwonanIEEESignalProcessingSocietyYoungAuthorBestPaperAward. Gerald Matz received the Dipl.-Ing. and Dr. techn. degrees in electrical engineering in 1994 and 2000, respectively, and the Habilitation degree for communication systems in 2004, all from Vienna UniversityofTechnology,Vienna,Austria.Since1995,hehasbeenwiththeInstituteofTelecommu- nications,ViennaUniversityofTechnology,wherehecurrentlyholdsatenuredpositionasassociate professor. From March 2004 to February 2005, he was on leave as an Erwin Schro¨dinger Fellow withtheLaboratoiredesSignauxetSyste`mes,EcoleSupe´rieured’Electricite´,France.Duringsummer 2007,hewasaguestresearcherwiththeCommunicationTheoryLabatETHZurich,Switzerland.He hasdirectedoractivelyparticipatedinseveralresearchprojectsfundedbytheAustrianScienceFund (FWF),theViennaScienceandTechnologyFund(WWTF),andtheEuropeanUnion.Hehaspublished morethan140papersininternationaljournals,conferenceproceedings,andeditedbooks.Hisresearch interestsincludewirelesscommunications,statisticalsignalprocessing,andinformationtheory.Prof. MatzservesasamemberoftheIEEESignalProcessingSociety(SPS)TechnicalCommitteeonSignal Processing for Communications and Networking and of the IEEE SPS Technical Committee on Sig- nal Processing Theory and Methods. He was an associate editor for the IEEE Transactions of Signal Processing(2006–2010),fortheIEEESignalProcessingLetters(2004–2008),andfortheEURASIP journalSignalProcessing(2007–2010).HewasaTechnicalProgramCo-ChairofEUSIPCO2004and has been on the Technical Program Committee of numerous international conferences. In 2006, he receivedtheKardinalInnitzerMostPromisingYoungInvestigatorAward. xv “03-pref-xiii-xiv-9780123744838” — 2011/3/8 — 17:43 — page xiii — #1 Preface Wireless communications has become a field of enormous scientific and economic interest. Recent success stories include 2G and 3G cellular voice and data services (e.g., GSM and UMTS), wireless local area networks (WiFi/IEEE 802.11x), wireless broadband access (WiMAX/IEEE 802.16x), and digitalbroadcastsystems(DVB,DAB,DRM).Onthephysicallayerside,traditionaldesignstypically assumethattheradiochannelremainsconstantforthedurationofadatablock.However,researchers andsystemdesignersareincreasinglyshiftingtheirattentiontochannelsthatmayvarywithinablock. In addition to time dispersion caused by multipath propagation, these rapidly time-varying channels feature frequency dispersion resulting from the Doppler effect. They are, thus, often referred to as being“doublydispersive.” Historically,channelswithtimevariationandfrequencydispersionwerefirstconsideredmostlyin the contextof ionospheric and troposphericcommunications and in radioastronomy. The theoretical foundationsofrapidlytime-varyingchannelswereestablishedbyBello,Gallager,Kailath,Kennedy, and others in the sixties of the twentieth century. More recently, rapidly time-varying channels have becomeimportantinnovelapplicationscenarioswithpotentiallyhigheconomicrelevanceandsocietal .impact. User mobility, a source of significant Doppler frequency shifts, is an essential factor in today’s cellular and broadband access systems. An extreme example is given by radio access links for high-speedtrains.Channelswithrapidtimevariationarealsoencounteredincar-to-carandcar-to- . infrastructurecommunications,whicharebecomingincreasinglyimportant. In advanced wireless networks, nodes may cooperate to achieve spatial diversity gains in a dis- tributedmanner.Anexampleisthebasestationcooperationoption(alsoknownasnetworkMIMO or cooperative multipoint transmission) in 3GPP Long Term Evolution. In such systems, the car- rierfrequency offsetsof differentnodes accumulateand, togetherwith mobility-inducedDoppler . frequencyshifts,resultinchannelswithrapidtimevariation. In underwater acoustic communications, the relative Doppler shifts are potentially much larger thaninterrestrialradiosystemsbecausethespeedofsoundismuchsmallerthanthespeedoflight. Furthermore,thesmallerpropagationspeedofacousticwavesresultsinlargerpropagationdelays. Underwaterchannelsare,therefore,instancesofparticularlyharshdoublydispersivechannels. Rapid channel variations induced by Doppler shifts provide an extra dimension that offers addi- tionalgains.Atthesametime,doublydispersivechannelsposetoughdesignchallengesandnecessitate the use of sophisticated methods to combat the detrimental effects of the channel and to realize the additional gains. Thus, understanding the fundamental properties of doubly dispersive channels and theresultingdesignparadigmswillbecomeessentialknow-howinthefuturewirelessarena. This book explains the system-theoretic and information-theoretic foundations of doubly disper- sivechannelsanddescribesthecurrentstateoftheartinalgorithmandsystemdesign.Itisintendedto present a comprehensive and coherent discussion of the challenges and developments in the field, which will help researchers and engineers understand and develop future wireless communication technologies. Contributed by leading experts, the individual chapters of this book address the most important aspects of the theory and methodology of wireless communications over rapidly time- varying channels. Wireless transceiver design and modern techniques such as iterative turbo-style xiii “03-pref-xiii-xiv-9780123744838” — 2011/3/8 — 17:43 — page xiv — #2 xiv Preface detection, multicarrier (OFDM) modulation, and multiantenna (MIMO) processing are given special attention. In the introductory chapter, Chapter 1, we discuss the properties and mathematical charac- terization of doubly dispersive channels. Further topics addressed include propagation effects, system-theoretic aspects, stochastic channel characterizations, parsimonious channel models, and measurementprinciples. Chapter 2, by G. Durisi, V. Morgenshtern, H. Bo¨lcskei, U. Schuster, and S. Shamai, discusses information-theoreticaspectsofrandomtime-varyingchannels,includingMIMOchannels.Thischap- ter focuses on noncoherent channel capacity (i.e., channel capacity in the absence of channel state information)inthelarge-bandwidthandhigh-SNRregimes. Chapter3,byE.ViterboandY.Hong,addressesthedesignofchannelcodesforfast-fadingchan- nels,usingmethodsfromalgebraicnumbertheoryandlatticetheory.Thespheredecoderisdiscussed asanefficientmeanstorecoverthetransmittedcodewords. Chapter 4, by G. Leus, Z. Tang, and P. Banelli, considers the estimation of rapidly time-varying channels in single-carrier and multicarrier communication systems. A block-based approach is adoptedthatbuildsonabasisexpansionmodelforthechannelandthetransmissionofdedicatedpilot (training)symbols. Chapter 5, by M. Dong, B. M. Sadler, and L. Tong, complements Chapter 4 by discussing train- ing designs for the estimation of time-varying channels. The optimization of the number, placement, and power of pilot symbols is studied for various system configurations (single carrier, multicarrier, multiantenna)andperformancecriteria. Chapter6,byP.Schniter,S.-J.Hwang,S.Das,andA.P.Kannu,presentsequalizationtechniques for doubly dispersive channels. Both coherent and noncoherent detection are addressed, using linear andtree-searchmethods,iterativeapproaches,andjointdetection-estimationschemes. Chapter7,byL.Rugini,P.Banelli,andG.Leus,isdedicatedtoorthogonalfrequencydivisionmulti- plex(OFDM)transmissionsovertime-varyingchannels.Thischapterdiscussesmethodsforequalizing intercarrierinterferenceandforchannelestimationandcommentsontherelevanceofthesemethods toexistingstandards. Chapter8,byC.Dumard,J.Jalde´n,andT.Zemen,considersamultiusersystememployingmultiple antennas and a multicarrier CDMA transmission format. An iterative (turbo) receiver is developed, whichperformsestimationofthetime-varyingchannels,multiuserseparation,andchanneldecoding, withcomplexityreductionsduetoKrylovsubspaceandspheredecodingtechniques. The final chapter, Chapter 9, by A. Papandreou-Suppappola, C. Ioana, and J. J. Zhang, discusses wideband channels that are more suitably characterized in terms of Doppler scaling than in terms of Doppler shifts. Theoretical considerations and advanced receiver designs are exemplified by an underwateracousticcommunicationsystem. Wewouldliketothankallpeoplewhocontributedtothisbookinonewayoranother.Weareespe- ciallygratefultothechapterauthorsfortheirexpertiseandhardwork,andforacceptingtheconstraints ofapredefined,commonnotation.WethankTimPittsofElsevierforinvitingustoeditthisbook.Tim andhiscolleagues—MelanieBenson,SusanLi,MelissaRead,andNaomiRobertson—providedmuch appreciatedassistanceduringthevariousstagesofthisproject.Finally,weacknowledgesupportbythe Austrian Science Fund (FWF) under Grants S10603 (Statistical Inference) and S10606 (Information Networks)withintheNationalResearchNetworkSISE. FranzHlawatsch GeraldMatz “06-not-xix-xxiv-9780123744838” — 2011/3/8 — 17:35 — page xix — #1 Notations and Symbols Basic Notations R,C,Z real/complex/integernumbers √ j −1 ∗ x complexconjugation z−1 unitdelay dx(t),x(cid:48)(t) differentiation/derivative dt (cid:104)x,y(cid:105) innerproduct √ (cid:107)x(cid:107)= (cid:104)x,x(cid:105) norm E =(cid:107)x(cid:107)2 energy x (x∗y)(t) continuous-timeconvolution (x∗y)[n] discrete-timeconvolution Re{·},Im{·} realpart,imaginarypart L2(R) spaceofsquare-integrablefunctionsonR l2(Z) spaceofsquare-summablefunctionsonZ (cid:44) definition (cid:100)x(cid:101) smallestintegernotlessthanx (cid:98)x(cid:99) largestintegernotgreaterthanx Basic Symbols t continuoustime f frequency(Hz) τ continuoustime-delay ν Dopplerfrequency(Hz) α continuoustimescaleparameter n discretetime m discretetime-delay θ normalizedfrequency l discretefrequency ξ normalizedDopplerfrequency d discreteDopplerfrequency κ discretescaleparameter (cid:49)t,(cid:49)n,etc. lag/difference x(t) continuous-timesignal x[n] discrete-timesignal xix “06-not-xix-xxiv-9780123744838” — 2011/3/8 — 17:35 — page xx — #2 xx Notations and Symbols X(f) continuous-timeFouriertransform X(θ) discrete-timeFouriertransform X[l] discreteFouriertransform(DFT) X(z) z-transform f ,T samplingfrequency/period s s s(t),s[n] transmitsignal w(t),w[n] whitechannelnoise r(t),r[n] receivesignal g(t),γ(t) transmit/receivepulse b[i] informationbits c[j] codedbits L [j] log-likelihoodratio c a[k],a[k,l] transmitsymbols y[k],y[k,l] demodulatedsymbols z[k],z[k,l] noiseafterdemodulation p[k],p[k,l] pilotsymbols Transceiver and Channel Parameters T ,N blocklength 0 B transmitbandwidth(Hz) f carrierfrequency(Hz) c T symbolduration R symbolrate F subcarrierfrequencyspacing T bitduration b R bitrate b (cid:53) interleaver k symboltimeindex l subcarrierfrequencyindex A symbolalphabet N size(cardinality)ofsymbolalphabet a P setofpilotlocationskor(k,l) N numberofpilotsymbols p K numberoftransmittedsymbols L numberofsubcarriers N guardintervallength g L cyclicprefixlength CP “06-not-xix-xxiv-9780123744838” — 2011/3/8 — 17:35 — page xxi — #3 Notations and Symbols xxi M ,M numberoftransmit/receiveantennas T R U numberofusers ρ signal-to-noiseratio I basisexpansionmodelorder τ ,M maximumdelay(channellength) max ν ,D maximumDopplerfrequency max A Dopplerscalespread s T coherencetime c F coherencebandwidth c T stationaritytime s F stationaritybandwidth s Channel and Signal Representations H channeloperator h(t,τ),h[n,m] time-varyingimpulseresponse H(f,ν),H[l,d] frequency-domainimpulseresponse L (t,f),L [n,l] (time-frequency/time-varying)transferfunction H H S (τ,ν),S [m,d] (delay-Doppler)spreadingfunction H H F (τ,α),F [m,κ] widebandspreadingfunction H H C (τ,ν),C [m,d] scatteringfunction H H B (τ,α),B [m,κ] widebandscatteringfunction H H R ((cid:49)t,(cid:49)f),R [(cid:49)n,(cid:49)l] time-frequencycorrelationfunction H H A ((cid:49)t,(cid:49)f) ambiguityfunction x A ((cid:49)t,(cid:49)f) cross-ambiguityfunction xy Special Functions and Signals ln(·) naturallogarithm log(·),log (·) base-10logarithm 10 log (·) binarylogarithm 2 et,exp(t) exponentialfunction ej2πft complexsinusoid sin(·),cos(·),tan(·),cot(·) trigonometricfunctions sinh(·),cosh(·),tanh(·),coth(·) hyperbolicfunctions u(t),u[n] unitstep 1T(t),1N [n] indicatorfunction “06-not-xix-xxiv-9780123744838” — 2011/3/8 — 17:35 — page xxii — #4 xxii Notations and Symbols δ(t) Diracimpulse δ[n] unitsample δ Kroneckerdelta ij sign(·) signfunction sinc(t)= sin(t) sincfunction t Vectors, Matrices, and Operators x (column)vector x,[x] ithelementofvectorx i i (cid:107)x(cid:107) normofx (cid:107)x(cid:107) weightednormofx W A,(a ) matrix ij a ,[A] elementofmatrixA ij ij det{A} determinant tr{A} trace dim{x} dimension A−1 inverse A# pseudo-inverse xT,AT transpose xH,AH Hermitiantranspose I identitymatrix W DFTmatrix U(cid:54)VH singularvaluedecomposition U(cid:51)UH eigenvaluedecomposition H linearoperator H−1 inverseofH ∗ H adjoint H# pseudo-inverse I identityoperator Probability, Random Variables, and Random Processes Pr{E} probabilityofeventE f(x) probabilitydensityfunction(pdf) p(x) probabilitymassfunction(pmf) f(x|y),p(x|y) conditionalpdf/pmf F(x) cumulativedistributionfunction

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.