Wireless Communications and Networking with Unmanned Aerial Vehicles: Fundamentals, Deployment, and Optimization MohammadMozaffari DissertationsubmittedtotheFacultyofthe VirginiaPolytechnicInstituteandStateUniversity inpartialfulfillmentoftherequirementsforthedegreeof DoctorofPhilosophy in ElectricalEngineering WalidSaad,Chair JeffreyH.Reed HarpreetDhillon MantuK.Hudait AnilKumarS.Vullikanti May16,2018 Blacksburg,Virginia Keywords: UnmannedAerialVehicle(UAV),3DWirelessNetworks,Drone,Optimization, OptimalTransportTheory,PerformanceAnalysis Copyright2018,MohammadMozaffari Wireless Communications and Networking with Unmanned Aerial Vehicles: Fundamentals, Deployment, and Optimization MohammadMozaffari ABSTRACT Theuseofaerialplatformssuchasunmannedaerialvehicles(UAVs),popularlyknownasdrones, hasemergedasapromisingsolutionforprovidingreliableandcost-effectivewirelesscommunica- tions. Inparticular,UAVscanbequicklyandefficientlydeployedtosupportcellularnetworksand enhance their quality-of-service (QoS) by establishing line-of-sight communication links. With theirinherentattributessuchasmobility,flexibility,andadaptivealtitude,UAVsadmitseveralkey potentialapplicationsinwirelesssystems. Remarkably,despitetheseinherentadvantagesofUAV- based communications, little work has analyzed the performance tradeoffs associated with using UAVs as aerial wireless platforms. The key goal of this dissertation is to develop the analytical foundationsfordeployment,performanceanalysis,andoptimizationofUAV-enabledwirelessnet- works. This dissertation makes a number of fundamental contributions to various areas of UAV communicationsthatinclude: 1)EfficientdeploymentofUAVs,2)Performanceevaluationandop- timization,and3)Designofnewflying,three-dimensional(3D)wirelesssystems. Fordeployment, usingtoolsfromoptimizationtheory,holisticframeworksaredevelopedfortheoptimal3Dplace- ment of UAV base stations in uplink and downlink scenarios. The results show that the proposed deployment approaches significantly improve the downlink coverage for ground users, and enable ultra-reliableandenergy-efficientuplinkcommunicationsinInternetofThings(IoT)applications. For performance optimization, a novel framework is developed for maximizing the performance of a UAV-based wireless system, in terms of data service, under UAVs’ flight time constraints. To this end, using the mathematical framework of optimal transport theory, the optimal cell as- sociations, that lead to a maximum data service to ground users within the limited UAVs’ hover duration, are analytically derived. The results shed light on the tradeoff between hover time and quality-of-service in UAV-based wireless networks. For performance evaluation, this dissertation provides a comprehensive analysis on the performance of a UAV-based communication system in coexistence with a terrestrial network. In particular, a tractable analytical framework is proposed foranalyzingthecoverageandrateperformanceofanetworkwithaUAVbasestationanddevice- to-device (D2D) users. The results reveal the fundamental tradeoffs in such a UAV-D2D network that allow adopting appropriate system design parameters. Then, this dissertation sheds light on thedesignofthreenewdrone-enabledwirelesssystems. First,anovelframeworkforeffectiveuse ofcache-enabledUAVsinwirelessnetworksisdeveloped. Theresultsdemonstratehowtheusers’ quality of experience substantially improves by exploiting UAVs’ mobility and user-centric infor- mation. Second, a new framework is proposed for deploying and operating a drone-based antenna array system that delivers wireless service to ground users within a minimum time. The results show significant enhancement in QoS, spectral and energy efficiency while levering the proposed droneantennaarraysystem. Finally,toeffectivelyincorporatevarioususecasesofdronesranging from aerial users to base stations, the new concept of a fully-fledged 3D cellular network is intro- duced. For this new type of 3D wireless network, a unified framework for deployment, network planning, and performance optimization is developed that yields a maximum coverage and mini- mumlatencyinthenetwork. Inanutshell,theanalyticalfoundationsandframeworkspresentedin this dissertation provide key guidelines for effective design and operation of UAV-based wireless communicationsystems. Wireless Communications and Networking with Unmanned Aerial Vehicles: Fundamentals, Deployment, and Optimization MohammadMozaffari GeneralAudienceAbstract Unmannedaerialvehicles(UAVs),commonlyknownasdrones,havebeenthesubjectofconcerted research over the past few years, owing to their autonomy, flexibility, and broad range of applica- tion domains. Indeed, UAVs have been considered as enablers of various applications that include military, surveillance and monitoring, telecommunications, delivery of medical supplies, and res- cue operations. The unprecedented recent advances in drone technology has made it possible to widely deploy UAVs, such small aircrafts, balloons, and airships for wireless communication purposes. In particular, if properly deployed and operated, UAVs can provide reliable and cost- effectivewirelesscommunicationsolutionsforavarietyofreal-worldscenarios. Ontheonehand, drones can be used as aerial base stations that can deliver reliable, cost-effective, and on-demand wireless communications to desired areas. On the other hand, drones can function as aerial user equipments,knownascellular-connectedUAVs,incoexistencewithgroundusers. Despite such promising opportunities for drones, one must address a number of technical chal- lengesinordertoeffectivelyusethemforeachspecificnetworkingapplication. Forinstance,while using drone-BS, the key design considerations include performance characterization, optimal 3D deployment of drones, wireless and computational resource allocation, flight time and trajectory optimization, and network planning. Meanwhile, in the drone-UE scenario, handover manage- ment, channel modeling, low-latency control, 3D localization, and interference management are amongthemainchallenges. Therefore, this dissertation addresses the fundamental challenges in UAV-enabled wireless com- municationsthatallowsprovidingbroadband,wide-scale,cost-effective,andreliablewirelesscon- nectivity. To this end, various mathematical frameworks and efficient algorithms are proposed to design,optimize,deploy,andoperateUAV-basedcommunicationsystems. Theresultsshowsthat, the proposed aerial communication system can deliver ultra-reliable, and cost-effective wireless services,thusprovidingubiquitoushighspeedInternetconnectivityforthewholeworld. Tomyparents,mysister,andShaghayegh iv Acknowledgments First and foremost, I owe my deepest gratitude to my advisor, Dr. Walid Saad, for his continuous support of my Ph.D study, his patience, motivation, and immense knowledge and experience. I wouldliketothankyoufortheamountoftimeandeffort,ideas,andfundingyouhavegenerously dedicatedtomakemyPh.D.experienceproductiveandstimulating. Iamalsogratefulforbelieving in me and giving me the freedom to pursue diverse, yet coherent research directions which has made my Ph.D. study a joyful and unforgettable journey. I am thankful for your priceless advice andgreatsupervisionthathavehelpedmetogrowasaresearchscientistandfindtherightpathfor my future career. I would like to thank the members of my Ph.D. advisory committee, Dr. Jeffrey H. Reed, Dr. Harpreet Dhillon, Dr. Mantu K. Hudait, and Dr. Anil Kumar S. Vullikanti, for their valuablecommentswhichhavehelpedmetosubstantiallyimprovethequalityofthisdissertation. I am grateful for having the opportunity to work with great researchers and scientists during my Ph.D.studytopublishscholarlypapers. Specialthankstomycollaborators,Dr. MerouaneDebbah, Dr. Mehdi Bennis, and Dr. Ismail Guvenc for their time and effort to provide me with their insightfulcommentstoimprovemyworkthroughoutmyPhD. I would like to thank the folks at Wireless@VT, especially my friends at NetSciWis lab for their help and support. In particular, thanks to Priyabrata for his great help during my PhD. Additional gratitude is offered to my amazing friends: Homa, Mehrnoosh, Rashidi, Eragh, Lotfian, Beshkar, andEskandar. I am greatly thankful to my family, Zahra, Ali, Saeed, MohammadReza, and Shayan for their sustainedencouragement,support,andunconditionallove. Last, but not least, words cannot express how grateful I am to Mehrnaz. Indeed, without her support,Icouldhaveneverbeenabletofinishthisdissertation. v Contents 1 Motivation,Background,andContributions 1 1.1 BenefitsandApplicationsofUAVCommunications . . . . . . . . . . . . . . . . . 2 1.1.1 UAVsasBaseStationsforCoverageandCapacityEnhancement . . . . . . 2 1.1.2 UAVsinPublicSafetyScenarios . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 Energy-EfficientIoTCommunications . . . . . . . . . . . . . . . . . . . . 5 1.1.4 UAVsasFlyingBackhaulforTerrestrialNetworks . . . . . . . . . . . . . 6 1.2 ChallengesandRelatedStudiesinUAVCommunications . . . . . . . . . . . . . . 6 1.2.1 Air-to-GroundPathLossModeling . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 OptimalDeployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.3 PerformanceAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.4 EnergyEfficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.5 TrajectoryOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 LimitationsofExistingWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 SummaryofContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4.1 DeploymentandMobility . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.2 PerformanceAnalysisandOptimization . . . . . . . . . . . . . . . . . . . 17 1.4.3 CommunicationsandControlforWirelessDrone-BasedAntennaArray . . 18 1.4.4 CellAssociationinUAV-assistedCellularNetworks . . . . . . . . . . . . 19 1.4.5 ProactiveDeploymentofCache-EnabledUAVs . . . . . . . . . . . . . . . 19 1.4.6 Foundationsofa3DCellularNetworkwithDrones . . . . . . . . . . . . . 20 1.4.7 Sum-RateAnalysisforHAPDroneswithTetheredBalloonRelay . . . . . 20 vi 1.5 ListofPublications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.1 JournalPublications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.2 ConferencePublications . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 Efficient Deployment of Multiple Unmanned Aerial Vehicles for Optimal Wireless Coverage 24 2.1 Background,RelatedWorks,andContributions . . . . . . . . . . . . . . . . . . . 24 2.2 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 OptimalMulti-UAVdeployment . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 SimulationResultsandAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 MobileUnmannedAerialVehiclesforEnergy-EfficientInternetofThingsCommuni- cations 33 3.1 Background,RelatedWorks,andContributions . . . . . . . . . . . . . . . . . . . 33 3.2 SystemModelandProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 Ground-to-AirPathLossModel . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.2 IoTDeviceActivationModel . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.3 ChannelAssignmentStrategy . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 UAVDeploymentandDeviceAssociationwithPowercontrol . . . . . . . . . . . 40 3.3.1 DeviceAssociationandPowerControl . . . . . . . . . . . . . . . . . . . 40 3.3.2 OptimalLocationsoftheUAVs . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 UpdateTimesandMobilityofUAVs . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.1 UpdateTimeAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.2 UAVs’Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5 SimulationResultsandAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4 HoverTimeOptimizationinUAV-EnabledWirelessNetworks 62 4.1 Background,RelatedWorks,andContributions . . . . . . . . . . . . . . . . . . . 62 vii 4.2 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Air-to-groundpathlossmodel . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3 Scenario 1: Optimal Cell Partitioning for Data Service Maximization under Fair- nessConstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3.1 OptimalTransportTheory: Preliminaries . . . . . . . . . . . . . . . . . . 69 4.3.2 OptimalCellPartitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.3 CellPartitioninginUplinkCase . . . . . . . . . . . . . . . . . . . . . . . 74 4.4 Scenario2: MinimumHoverTimeFormeetingLoadRequirements . . . . . . . . 76 4.5 SimulationResultsandAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5.1 ResultsforScenario1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.5.2 ResultsforScenario2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.7 AppendixA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Fundamental Performance Analysis of Unmanned Aerial Vehicle with Terrestrial Device-to-DeviceNetwork 90 5.1 Background,RelatedWorks,andContributions . . . . . . . . . . . . . . . . . . . 90 5.2 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.2.1 Air-to-groundchannelmodel . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3 NetworkwithaStaticUAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.1 CoverageprobabilityforD2Dusers . . . . . . . . . . . . . . . . . . . . . 95 5.3.2 CoverageProbabilityforDownlinkUsers . . . . . . . . . . . . . . . . . . 97 5.3.3 Systemsum-rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.4 NetworkwithaMobileUAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.5 SimulationResultsandAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.5.1 ThestaticUAVscenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.5.2 ThemobileUAVscenario . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.7 AppendixB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 viii 6 Cache-EnabledUnmannedAerialVehiclesinWirelessNetworks 120 6.1 Background,RelatedWorks,andContributions . . . . . . . . . . . . . . . . . . . 120 6.2 SystemModelandProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.1 MobilityModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2.2 TransmissionModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.2.3 Quality-of-ExperienceModel . . . . . . . . . . . . . . . . . . . . . . . . 127 6.2.4 ProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.3 ConceptorEchoStateNetworksforContentandMobilityPredictions . . . . . . . 131 6.3.1 ConceptorESNComponents . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.3.2 ConceptorESNAlgorithmforContentandMobilityPredictions . . . . . 133 6.4 OptimalLocationandContentCachingforUAVs . . . . . . . . . . . . . . . . . . 136 6.4.1 Users-RRHAssociation . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.4.2 OptimalContentCachingforUAVs . . . . . . . . . . . . . . . . . . . . . 137 6.4.3 OptimalLocationsofUAVs . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.4.4 ImplementationandComplexity . . . . . . . . . . . . . . . . . . . . . . . 139 6.5 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.7 AppendixC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.7.1 ProofofTheorem10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7 CommunicationsandControlforWirelessDrone-BasedAntennaArray 149 7.1 Background,RelatedWorks,andContributions . . . . . . . . . . . . . . . . . . . 149 7.2 SystemModelandGeneralProblemFormulation . . . . . . . . . . . . . . . . . . 151 7.3 OptimalPositionsofDronesinArrayforTransmissionTimeMinimization . . . . 155 7.3.1 PerturbationTechniqueforDroneSpacingOptimization . . . . . . . . . . 155 7.3.2 OptimalLocationsofDrones . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.4 Time-OptimalControlofDrones . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.4.1 DynamicModelofaQuadrotorDrone . . . . . . . . . . . . . . . . . . . . 160 7.5 SimulationResultsandAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 ix 7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.6.1 D.4 ProofofTheorem15 . . . . . . . . . . . . . . . . . . . . . . . . . . 172 8 OptimalTransportTheoryforCellAssociationinUAV-EnabledCellularNetworks 175 8.1 Background,RelatedWorks,andContributions . . . . . . . . . . . . . . . . . . . 175 8.2 SystemModelandProblemformulation . . . . . . . . . . . . . . . . . . . . . . . 176 8.2.1 UAV-UserandBS-Userpathlossmodels . . . . . . . . . . . . . . . . . . 176 8.2.2 Problemformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 8.3 OptimalTransportTheoryforCellAssociation . . . . . . . . . . . . . . . . . . . 178 8.4 SimulationResultsandAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 9 Beyond5GwithUAVs: Foundationsofa3DWirelessCellularNetwork 184 9.1 Background,RelatedWorks,andContributions . . . . . . . . . . . . . . . . . . . 184 9.2 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 9.3 Three-dimensional Network Planning of Drone-BSs: A Truncated Octahedron Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 9.4 EstimationoftheSpatialDistributionofDrone-UEs . . . . . . . . . . . . . . . . . 195 9.5 Optimal3DCellAssociationforMinimumLatency . . . . . . . . . . . . . . . . . 198 9.6 SimulationResultsandAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 10 Sum-Rate Analysis for High Altitude Platform (HAP) Drones with Tethered Balloon Relay 209 10.1 Background,RelatedWorks,andContributions . . . . . . . . . . . . . . . . . . . 209 10.2 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 10.2.1 ChannelModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 10.3 DFrelayaidedInterferenceAlignmentforsystemswithoutCSIT . . . . . . . . . . 211 10.3.1 FeasibilityofDFintetheredballoonrelay . . . . . . . . . . . . . . . . . . 212 10.3.2 CapacityofRicianXnetwork . . . . . . . . . . . . . . . . . . . . . . . . 213 x
Description: