ebook img

Wilson chiral perturbation theory, Wilson-Dirac operator eigenvalues and clover improvement PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Wilson chiral perturbation theory, Wilson-Dirac operator eigenvalues and clover improvement

Wilson chiral perturbation theory, Wilson-Dirac operator eigenvalues and clover improvement∗ 3 1 0 2 n a J PoulH.Damgaard 4 1 NielsBohrInternationalAcademyandDiscoveryCenter,NielsBohrInstitute UniversityofCopenhagen ] t Blegdamsvej17,DK-2100CopenhagenØ,Denmark a -l Urs M.Heller† p AmericanPhysicalSociety,OneResearchRoad,Ridge,NY11961,USA e h E-mail:[email protected] [ Kim Splittorff 1 v DiscoveryCenter,NielsBohrInstitute,UniversityofCopenhagen 9 Blegdamsvej17,DK-2100CopenhagenØ,Denmark 9 0 3 Chiral perturbation theory for eigenvalue distributions, and equivalently random matrix theory, . 1 has recently been extended to include lattice effects for Wilson fermions. We test the predic- 0 tions by comparison to eigenvalue distributions of the Hermitian Wilson-Dirac operator from 3 1 pure gauge (quenched)ensembles. We show that the lattice effects are diminished when using : v cloverimprovementfortheDiracoperator. We demonstratethattheleadingWilsonlow-energy i X constantsassociatedwithWilson(clover)fermionscanbedeterminedusingspectralinformation r oftherespectiveDiracoperatoratfinitevolume. a XthQuarkConfinementandtheHadronSpectrum October8-12,2012 TUMCampusGarching,Munich,Germany ∗ToappearasPoS(ConfinementX)077 †Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Wilsonchiralperturbationtheory,Wilson-Diracoperatoreigenvalues... UrsM.Heller 1. Introduction The low-energy behavior of QCD, the spontaneous breaking of chiral symmetry, including c the explicit breaking bythe quark masses, isdescribed bychiral perturbation theory ( PT).Inthe lattice regularization of QCD lattice artifacts can contribute to the breaking of chiral symmetry, for Wilson fermions, or its partial breaking, in the case of staggered fermions. These effects can c beincluded inthe PTapproach, leading tonew,lattice discretization dependent low-energy con- stants. We consider Wilson fermions in this contribution, for which the effective theory, Wilson c c PT(W PT)wasintroducedandworkedoutin[1]. ThenewtermsinthechiralLagrangianaffect the low-lying spectrum of the (Hermitian) Wilson-Dirac operator [2]. For a recent review with additional references, see Ref. [3]. Here, we test and verify the predictions for the distribution of thelow-lyingeigenvalueswithlatticeQCDsimulations[4,5]andshow[6]thattheycanbeusedto c obtainthenewlow-energyconstantsintroducedinW PT.Wealsodemonstratetheeffectofclover improving theWilson-Dirac operator. c 2. The W PTand WilsonRMTframework Wewillbeconcernedwiththee -regimeofWc PTwherethezeromomentummodesdominate – the system size is such that mp L≪1. In addition we adopt the power counting with m∼a2. Hence,dropping thekineticpartofthechiralLagrangian, weconsider 1 1 L =− mS Tr U+U† − zS Tr U−U† +a2V . (2.1) 2 2 (cid:0) (cid:1) (cid:0) (cid:1) The second term, representing a yg¯ y term, is introduced for later convenience. V describes the 5 latticeartifacts [1] V =W Tr U2+U†2 +W Tr U+U† 2+W Tr U−U† 2 . (2.2) 8 6 7 (cid:0) (cid:1) (cid:2) (cid:0) (cid:1)(cid:3) (cid:2) (cid:0) (cid:1)(cid:3) Atlarge N ,thetwo-tracetermsaresuppressed. c Thefinitesizescalingconsidered issuchthat mˆ =mS V , zˆ=zS V and aˆ2=a2W V for j=6,7,8 j j areheldfixed. HereS isthecondensate andV thevolume. c This leading order in W PT can equivalently be described by a chiral random matrix theory (RMT).ForWilsonfermions,including theone-tracetermwithlow-energyconstantW ,theDirac 8 operatorisrepresented inWilsonRMT(WRMT)as[2] a˜A iW D = , (2.3) W iW† a˜B ! with W a random (n+n )×n complex matrix, and A and B random Hermitian matrices of size (n+n )×(n+n ) andn×n, respectively. Asusual intheRMTcontext, weconsider afixedindex n . Weuseachiralbasiswithg =diag(1,...,1,−1,...,−1). AandBrepresentthechiralsymmetry 5 breaking termcorresponding totheWilsontermintheWilson-Dirac operator. 2 Wilsonchiralperturbationtheory,Wilson-Diracoperatoreigenvalues... UrsM.Heller Ens b r /a a[fm] size L[fm] |Q|=0,1,2cfgs Iw 0 A 2.635 5.37 0.093 164 1.5 1279, 2257,1530 B 2.635 5.37 0.093 204 1.9 401, 682, 644 C 2.79 6.70 0.075 204 1.5 1207, 2130,1448 Table 1: The ensemblesused. The scale is set by r =0.5 fm. The r /a valuescome from interpolation 0 0 formulaein[10]. Qisthetopologicalcharge(seetext). Thetwo-tracetermscanbeincorporated inWRMTviatwoGaussianintegrations Zn (mˆ,zˆ;aˆ6,aˆ7,aˆ8)= 16p 1aˆ6aˆ7Z−¥¥ dy6dy7e−1y626aˆ26−1y627aˆ27 Zn (mˆ −y6,zˆ−y7;0,0,aˆ8). (2.4) Here, Zn (mˆ,zˆ;0,0,aˆ )= dUdetn Ue−VL(W6=W7=0) (2.5) 8 Z isthefixed-indexpartition functionwiththeone-trace O(a2)termincluded. 3. Index oftheWilson-Diracoperator Asindicatedabove,RMTpredictions applytogaugefieldsectorswithafixedindex,or,inthe continuum, fixedtopological charge. FortheWilson-Dirac operator, theindexcanbedefinedby n ≡ (cid:229) ′sign(hk|g |ki) (3.1) 5 k with|kithek’theigenstateoftheWilson-Diracoperator, D . Onlyeigenvectorswithrealeigenval- W uescontribute, andthe′indicatesthatonlytherealeigenvaluesinthebranchnearzero,witheigen- values <r , are kept. Introducing the Hermitian Wilson-Dirac operator D (m )=g (D +m ) cut 5 0 5 W 0 andusing D (m )|y i=0 ⇒ D |y i=−m |y i (3.2) 5 0 W 0 the index can equivalently be obtained from the zero crossings of the spectral flow of D (m ) up 5 0 to m =−r [7]. It corresponds to the index of an overlap operator [8] with kernel D (m ). cut cut 5 cut Because of the dependence on the choice of r , the index of the Wilson-Dirac operator is not cut unique. 4. The numerical simulations Forournumericaltests,inthequenchedcase,wegeneratedthreeensemblesusingtheIwasaki gauge action [9], which suppresses dislocations and gives a fairly unique index n or topological charge Q. Theensembles arecharacterized inTable1. ThetopologicalchargelistedinTable1wasobtainedaftersixstepsofHYPsmearing[11]with an improved lattice FF˜ operator [12]. On the configurations with |Q|≤1, as well as the |Q|=2 configurations of ensemble A, we also did the much more expensive computation of the index 3 Wilsonchiralperturbationtheory,Wilson-Diracoperatoreigenvalues... UrsM.Heller 50 00..2139045 200 EEvv__rreeaall__22663355__1166__HHYYPP__cQl_1Qan1daQndmQ1m1 40 Ev_real_2635_16_HYP_Q1andQm1 a) Ev_real_279_20_HYP_Q1andQm1 m=0; 30 W) 150 a Wla , l(areal100 (real20 n=1r =1 n r 10 50 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 a l W al W Figure1: DistributionoftherealeigenvaluesoftheWilson-Diracoperatorforthen =1configurationsof the two L=1.5 fm ensembles A and C (left) and comparisonof the distribution with and without clover improvementata=0.093fm(ensembleA,right). from the spectral flow. We first applied one HYP smearing before constructing the Wilson-Dirac operator. Thetopological charge andtheindexagreedonmostconfigurations, withtheagreement improving at smaller lattice spacing and becoming worse for the larger volume ensemble C, for whichitwasabout97%. The crossing points in the spectral flow are the real eigenvalues, whose distribution is shown in Fig. 1 (left). The dashed vertical lines are estimates of (minus) the critical mass. Some real eigenvalues aresmaller, onso-called “exceptional” configurations. Forensemble A,wealsocomputed the spectral flowwithclover improving theWilson-Dirac operator, again after one HYPsmearing. Theclover coefficient wasset to 1, which is expected to beclosetothenonperturbative valueaftertheHYPsmearing [13]. Theresultingdistributionofthe real eigenvalues is compared to the unimproved case in Fig. 1 (right). The improvement is quite dramatic, besides the expected reduced shift away from zero, the distribution is much narrower and more symmetric. The width is determined by the O(a2) terms in Eq. (2.2), so with clover improvementthecoefficients aremuchsmaller. 5. Wilsoneigenvaluedistributions andWRMT We next computed the lowest 20, in magnitude, eigenvalues of the Hermitian Wilson-Dirac operator D (m )withbaremass am =−0.216forensembles AandBtocompare toeigenvalues 5 0 0 distributions obtained fromWRMT[2]. Without clover improvement, we considered only contributions from the two-trace term in Eq.(2.2)[4]. Weusedthen =0histogrammedeigenvaluedistributionsofensembleAtodetermine the WRMT parameters mˆ and aˆ = aˆ and the eigenvalue rescaling factor S V. Using the same 8 parameterswethengetapredictionforthen =1distributionthatcanbecomparedtothenumerical data(seeFig.2top). Ensemble B differs from ensemble A only in the volume. Using volume scaling, mˆ = B mˆ (V /V ) and aˆ =aˆ V /V , we obtain predictions for the distributions for ensemble B (see A B A B A B A Fig.2bottom). Ascanbeseen,theWRMTpredictions workwell. p 4 Wilsonchiralperturbationtheory,Wilson-Diracoperatoreigenvalues... UrsM.Heller Ev_2635_16_HYP_Q0_m216 Ev_2635_16_HYP_Q1_Qm1_m216 0.6 m=3.5 a=0.35 n=0 0.6 m=3.5 a=0.35 n=1 FIT PREDICTION 0.5 0.5 a) a) m; 0.4 m, 0.4 5, 5, (l (l n=050.3 n=150.3 r r 0.2 0.2 0.1 0.1 0 0 -12 -8 -4 0 4 8 12 -12 -8 -4 0 4 8 12 l 5 l 5 Ev_2635_20_HYP_Q0_m216 Ev_2635_20_HYP_Q1_Qm1_m216 0.6 m=8.5 a=0.55 n=0 0.6 m=8.5 a=0.55 n=1 PREDICTION PREDICTION 0.5 0.5 a) a) m; 0.4 m, 0.4 5, 5, (l (l n=050.3 n=150.3 r r 0.2 0.2 0.1 0.1 0 0 -12 -8 -4 0 4 8 12 -12 -8 -4 0 4 8 12 l 5 l 5 Figure 2: Comparisonof the histogrammedeigenvaluedistributionswith WRMT. Then =0 distribution ofensembleA(topleft)wasusedtoobtaintheparameters. ThepredictionsforensembleB(bottom)used volumescalingoftheparameters. ForensembleC,atthesmallerlatticespacing,wecomputedtheeigenvalueswithtwodifferent bare masses am =−0.178 and −0.184. Weused the histogrammed n =0 distribution with bare 0 mass am = −0.184 to the determine the WRMT parameters, and used “mass scaling”, D mˆ = 0 D m S V for predictions for the distributions with the other bare mass am =−0.178, as shown in 0 0 Fig.3. Again,theWRMTpredictions workwell. 6. Cloverimprovedeigenvalue distributions and WRMT Wehavealready seen fromthedistribution oftherealeigenvalues inFig.1(right) thatclover improvement not only, as expected, decreases the additive mass renormalization (the real eigen- valuepeakismuchclosertozero)butalsothesizeoftheO(a2)low-energyconstantsconsiderably (the distribution becomes much narrower). Here weconsider the effects on the distribution of the 20 lowest, in magnitude, eigenvalues of the Hermitian Wilson-Dirac operator D (m ) with clover 5 0 improvement for ensemble A using a bare mass am =−0.03. The comparison with WRMT is 0 showninthefirstthreepanelsofFig.4. For|aˆ |≪1the lattice effects affect, to leading order, only the index peak of the topological j modes. These are the lowest eigenvalues with almost chiral eigenvectors which correspond to the real eigenvalues shifted bythebaremass. AscanbeseeninFig.4(bottom right)thedistributions 5 Wilsonchiralperturbationtheory,Wilson-Diracoperatoreigenvalues... UrsM.Heller Ev_279_20_HYP_Q0_m184 Ev_279_20_HYP_Q1andQm1_m184 0.6 m=3.5 a=0.35 n=0 0.6 m=3.5 a=0.35 n=1 FIT PREDICTION 0.5 0.5 a) a) m; 0.4 m; 0.4 5, 5, (l (l n=050.3 n=150.3 r r 0.2 0.2 0.1 0.1 0 0 -12 -8 -4 0 4 8 12 -12 -8 -4 0 4 8 12 l 5 l 5 Ev_279_20_HYP_Q0_m178 Ev_279_20_HYP_Q1andQm1_m178 0.6 m=4.8 a=0.35 n=0 0.6 m=4.8 a=0.35 n=1 PREDICTION PREDICTION 0.5 0.5 a) a) m; 0.4 m; 0.4 5, 5, (l (l n=050.3 n=150.3 r r 0.2 0.2 0.1 0.1 0 0 -12 -8 -4 0 4 8 12 -12 -8 -4 0 4 8 12 l 5 l 5 Figure3:ComparisonofthehistogrammedeigenvaluedistributionswithWRMTforensembleC.Then =0 distributionwithbaremassam =−0.184(topleft)wasusedtoobtaintheparameters. Thepredictionsfor 0 baremassam =−0.178(bottom)used“massscaling”,D mˆ =D m S V. 0 0 matchalmostperfectly. Theeigenvalue density, for|n |>0,ontheopposite sideoftheindexpeak is almost continuum like and allows determination of mˆ and S V. We use the |n |=1 eigenvalue distribution forthis. The aˆ are then obtained from theireffect on theindex peak. Weuse the fact j that the low-energy constant have fixed signsW <0,W <0 andW >0 [2, 14, 15] and that the 6 7 8 distribution dependsonlyonthecombination |W |+|W |[2]allowingtotakeW =0. Wefindthat 6 7 7 witheither aˆ 6=0oraˆ 6=0wecanreproduce thehistogrammed |n |=0and |n |=1distributions 8 6 inFig.4(top)equallywell. Butonlywithaˆ 6=0canwereproducethe|n |=2distribution, too,as 6 showninFig.4(bottomleft). We can explain the drastically different effect of W and W on the analytic prediction for 6 8 |n | =2 by noting that the W -term, in WRMT, corresponds to a Gaussian fluctuating mass, see 6 Eq.(2.4). Thed -functionindexpeakofthecontinuumtheoryisthereforesmearedintoaGaussian peak with an amplitude that increases with |n |. W , therefore, does not introduce a repulsion 6 c between eigenvalues. On the contrary, the W -term of W PT is included in the representation of 8 theDiracoperator, Eq.(2.3),ofWRMT,andhenceinducesaneigenvaluerepulsion,ascanbeseen from the red curve in Fig. 4 (bottom left). This repulsion is seen for all sectors with |n |>1 [2]. Itisthususeful toinclude eigenvalues from configurations with|n |>1foradetermination ofthe low-energy constants fromfitstoeigenvalue distributions. We finally note that, with clover improvement the nonvanishing |aˆ | is about a factor 3-4 6 6 Wilsonchiralperturbationtheory,Wilson-Diracoperatoreigenvalues... UrsM.Heller 2 Ev_2635_16_HYPclov_Q0_m03 Ev_2635_16_HYPclov_Q1andm1_m03 1 mm== 22..55 aa66==ii00..01 aa88==00..10 n=n=00 1.5 mm== 22..55 aa66==0i0 a.18 =a08=.10 n= n=11 0.8 a) a) m; m; 5, 0.6 5, 1 (l5 (l5 r 0.4 r 0.5 0.2 0 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10 l 5 l 5 3.5 500 3 Emmv==_2 22.5.65 3a a566_==1ii060._.01H aaY88==P00c.l.10o vn=n=_22Q2andm2_m03 400 rrr1eaanld|Q2||=Q2|= 2 EEvv__2re6a3l5__21663_5H_1Y6P_cHloYvP_Q_c2la_nQd2Qanmd2Q_mm203 2.5 m;a) 2 300 5, (l51.5 200 r 1 100 0.5 0-10 -8 -6 -4 -2 0 2 4 6 8 10 00 0.05 0.1 0.15 0.2 l 5 alW and al5-m 0 Figure4: Comparisonofthehistogrammedclover-improvedeigenvaluedistributionswithWRMTforen- sembleA(topandbottomleft).Then =1distribution(topright)wasusedtoobtaintheWRMTparameters. TheredcurvesaretheWRMTpredictionswithaˆ 6=0,thebluecurvesthosewithaˆ 6=0. Thebottomright 8 6 plotshowsacomparisonofthedistributionoftherealeigenvalueswiththefirsttwopositiveeigenvaluesof D (m )shiftedbythebaremassforthen =2configurations. 5 0 smaller than the nonvanishing |aˆ | without the improvement, both after one HYP smearing, illus- 8 trating againthequitedramaticeffectofcloverimprovementontheO(a2)low-energyconstants. 7. Conclusion Wehavepresented numerical simulations, inthequenched case, ofthelow-lying eigenvalues oftheHermitianWilson-Dirac operator, both withandwithout cloverimprovement tocompareto predictions from e -regimeWilson c PTor, equivalently, Wilson RMT.Weusedthe Iwasaki gauge actionwhichsuppresses dislocations andleadstoafairlyuniqueindexortopological charge. This is helpful, since the analytical predictions are made for sectors of fixed index. We found that our eigenvaluedistributionsagreewellwiththeanalyticalpredictions,andverifiedscalingwithvolume and(bare)mass. We have also looked at the distribution of the real eigenvalues of the Wilson-Dirac operator, obtainedfromthespectralflow. Wefoundadramaticdecrease ofboththeadditivemassrenormal- ization (the real eigenvalue peak is closer to zero) and the O(a2) low-energy constants (the width ofthedistribution becomesnarrowerandmoresymmetric)withthecloverimprovement. 7 Wilsonchiralperturbationtheory,Wilson-Diracoperatoreigenvalues... UrsM.Heller Fitstothedistributionofthelow-lyingeigenvaluesoftheHermitianWilson-Diracoperatoral- lowdeterminationofthelow-energyconstantsofQCDincludingthosethatparameterizetheO(a2) lattice effects. However,distributions onconfigurations with|n |>1areneededtodisentangle the effectsofW fromthoseofW andW whenall|aˆ |aresmall. 8 6 7 j Acknowledgments UMH thanks the organizers for a stimulating conference and the conveners of section A for theopportunity topresenttheseresults. References [1] S.R.SharpeandR.L.Singleton,Phys.Rev.D58(1998)074501[arXiv:heplat/9804028]; G.RupakandN.Shoresh,Phys.Rev.D66(2002)054503[arXiv:hep-lat/0201019]; O.Bär,G.RupalandN.Shoresh,Phys.Rev.D70(2004)034508[arXiv:heplat/0306021]; S.Aoki,Phys.Rev.D68(2003)054508[arXiv:hep-lat/0306027]; S.AokiandO.Bär,Phys.Rev.D70(2004)116011[arXiv:hep-lat/0409006]; A.Shindler,Phys.Lett.B672(2009)82[arXiv:0812.2251]; O.Bär,S.NeccoandS.Schaefer,JHEP0903(2009)006[arXiv:0812.2403]. [2] P.H.Damgaard,K.SplittorffandJ.J.M.Verbaarschot,Phys.Rev.Lett.105(2010)162002 [arXiv:1001.2937]; G.Akemann,P.H.Damgaard,K.Splittorff,andJ.J.M.Verbaarschot,Phys.Rev.D83(2011)085014 [arXiv:1012.0752]; G.AkemannandT.Nagao,JHEP1110(2011)060[arXiv:1108.3035]; M.Kieburg,J.J.M.VerbaarschotandS.Zafeiropoulos,Phys.Rev.Lett.108(2012)022001 [arXiv:1109.0656]. [3] K.Splittorff,PoS(Lattice 2012)018[arxiv:1211.1803]. [4] P.H.Damgaard,U.M.HellerandK.Splittorff,Phys.Rev.D85(2012)014505[arXiv:1110.2851]. [5] A.Deuzeman,U.WengerandJ.Wuilloud,JHEP1212(2012)109[arXiv:1110.4002]. [6] P.H.Damgaard,U.M.HellerandK.Splittorff,Phys.Rev.D86(2012)094502[arXiv:1206.4786]. [7] R.G.Edwards,U.M.HellerandR.NarayananNucl.Phys.B535(1998)403[arXiv:hep-lat/9802016]. [8] R.NarayananandH.Neuberger,Nucl.Phys.B443(1995)305[arXiv:hep-th/9411108]; H.Neuberger,Phys.Lett.B417(1998)141[arXiv:hep-lat/9707022]. [9] Y.Iwasaki,ReportNo.UTHEP-118,1983[arXiv:1111.7054]. [10] S.Takedaetal.(CP-PACSCollaboration),Phys.Rev.D70(2004)074510[arXiv:hep-lat/0408010]; S.Necco,Nucl.Phys.B683(2004)137[arXiv:hep-lat/0309017]. [11] A.HasenfratzandF.Knechtli,Phys.Rev.D64(2001)034504[arXiv:hep-lat/0103029]. [12] T.A.DeGrand,A.HasenfratzandT.G.Kovacs,Nucl.Phys.B505(1997)417[arXiv:heplat/9705009]. [13] Y.Shamir,B.SvetitskyandE.Yurkovsky,Phys.Rev.D83(2011)097502[arXiv:1012.2819]. [14] M.Kieburg,K.SplittorffandJ.J.M.Verbaarschot,Phys.Rev.D85(2012)094011[arXiv:1202.0620]. [15] M.T.HansenandS.Sharpe,Phys.Rev.D85(2012)014503[arXiv:1111.2404]; Phys.Rev.D85(2012)054504[arXiv:1112.3998]. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.