ebook img

Wilson, Alasdair David (2016) Finite difference simulations of neutral gas-MHD interactions in ... PDF

227 Pages·2016·5.5 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Wilson, Alasdair David (2016) Finite difference simulations of neutral gas-MHD interactions in ...

Wilson, Alasdair David (2016) Finite difference simulations of neutral gas-MHD interactions in partially ionized plasmas. PhD thesis. http://theses.gla.ac.uk/7209/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Finite Difference Simulations of Neutral Gas-MHD Interactions in Partially Ionized Plasmas Alasdair David Wilson, M.Sci. Astronomy and Astrophysics Group SUPA School of Physics and Astronomy Kelvin Building University of Glasgow Glasgow, G12 8QQ Scotland, U.K. Presented for the degree of Doctor of Philosophy The University of Glasgow January 2016 Abstract This thesis deals with the theoretical and numerical modelling of partially ionized plasmas. The study of partially ionized plasmas is important in both astrophysical and laboratory contexts and we present a novel finite difference approach to modelling a magnetohydrodynamicplasmaandhydrodynamicgasaswellassomeinteractionterms between them. In particular we model fluid limits of a collisional drag, momentum coupling term and a critical velocity (Alfv´en ) ionization term. Chapter 1 reviews the necessary background material relevant to this thesis. We introduce relevant plasma parameters that are useful to help understand the regimes at which MHD operates and which are later used when placing criteria on the conditions required for, and the rate equations of, ionization. We introduce the fluid limit model of non-resistive plasmas (ideal MHD), as well as theoretical models for gas-plasma collisions and Alfv´en ionization. Chapter 2 lays out the model of a linear finite difference gas-MHD momentum coupling code (GMMC) that we modify by the addition of a fluid Alfv´en ionization term. We explore the codes stability and fidelity and we explore Fresnel interference patterns as a test scenario. Chapter 3 lays out the model equations and derivation of a non-linear finite differ- ence gas-MHD interactions code (GMIC). Chapter 4 uses the code GMIC to explore the momentum coupling between the gas and plasma fluids in a non-linear regime. We show that the presence of a frictional drag term effects both fluids in a variety of simulated scenarios. Propagation of waves and diffusion are effected significantly across a range of parameter space. We show the formation of ‘plasmoids’ by interacting, momentum coupled waves. We see that the momentum coupling has a somewhat similar effect on plasmas as a resistive term does. Chapter 5 uses both the linear and non-linear codes to simulate Alfv´en ionization in a variety of scenarios. With both codes we see that waves and flows can be sources of ionization of the relative velocity between the two simulated fluids exceeds a pre-set threshold. This ionization effects the dynamics of the system significantly, firstly the extraction of kinetic energy in order to ionize introduces a directional and amplitude dependant damping of waves; secondly by providing a source of new plasma that the fluid is forced to react to. Also in this chapter we discuss how Alfv´en ionization might play a role in astrophysical contexts, in particular, the solar photosphere and brown dwarf atmospheres. Chapter 6 deviates from the previous work to explore the possibility that dielec- trophoretic forces may be able to stratify the dynamic atmosphere of the Sun. We derive a simple expression for the DEP-force due to a neutral particle moving through a magnetic field and becoming polarized and we examine the displacement caused by this field and the ambipolar field. We also simulate the ability of a hypothetical DEP-force to separate elements based on their polarizability to mass ratio. Chapter 7 summarises the conclusion of the previous chapters and includes a brief discussion about possible extensions to this work. Contents Preface ii List of Tables viii List of Figures ix Acknowledgements xiii 1 Introduction 2 1.1 Characteristics of a Plasma . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Debye length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Plasma Parameter . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.3 Plasma Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.4 Cyclotron frequency . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Collisions in Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.1 Charged-neutral collisions . . . . . . . . . . . . . . . . . . . . . 13 1.2.2 Electron-ion interactions . . . . . . . . . . . . . . . . . . . . . . 15 1.2.3 Relaxation Time . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3 Ionization Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.1 Electron Impact Ionization . . . . . . . . . . . . . . . . . . . . . 19 1.3.2 Electrical Breakdown . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4 Bulk Plasma Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.4.1 Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.4.2 Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . 30 CONTENTS v 1.5 Modifications to MHD for a Partially Ionized Plasma . . . . . . . . . . 36 1.5.1 Momentum Coupling . . . . . . . . . . . . . . . . . . . . . . . . 37 1.5.2 Critical Velocity/Alfv´en Ionization . . . . . . . . . . . . . . . . 39 2 Linear Gas/MHD Interactions Code 49 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.2 The Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.2.1 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.2.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.3 Finite Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.3.1 Lax-Wendroff Scheme . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.4.1 Stability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.5 Deviations from MHD . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.1 Momentum Coupling . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.2 Alfv´en Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.6 Example Result: Interference Fringes . . . . . . . . . . . . . . . . . . . 76 2.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.6.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.7 Limitations of GMMC . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3 Non-Linear Gas/MHD Interactions Code 90 3.1 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.1.1 Conservative Form MHD . . . . . . . . . . . . . . . . . . . . . . 92 3.1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.1.3 Flux Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.2 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.2.1 Lax-Friedrichs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.2.2 Richtmyer Two-Step . . . . . . . . . . . . . . . . . . . . . . . . 104 3.2.3 MacCormack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 CONTENTS vi 3.2.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.4 The Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.4.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.5 Gas Plasma Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4 Momentum Coupling in a Partially Ionized Plasma 114 4.1 Cylindrical bombs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.1.1 Positive Gaussian Cylindrical Bomb . . . . . . . . . . . . . . . . 115 4.1.2 Negative Gaussian Density Cylindrical Bomb . . . . . . . . . . . 121 4.2 Coupled Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5 Ionization in a Gas-MHD Plasma 136 5.1 Critical Velocity Ionization in a Linear Regime . . . . . . . . . . . . . . 136 5.1.1 Bulk Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.1.2 Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.1.3 Cylindrically Symmetric Waves . . . . . . . . . . . . . . . . . . 148 5.2 Critical Velocity Ionization in a Non-Linear Regime . . . . . . . . . . . 154 5.2.1 Ionization from Gas Bomb . . . . . . . . . . . . . . . . . . . . . 154 5.2.2 Ionization from Double Bombs . . . . . . . . . . . . . . . . . . . 159 5.2.3 Interplay with Momentum Coupling . . . . . . . . . . . . . . . . 164 5.3 Astrophysical Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 5.3.1 Brown Dwarfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 5.3.2 Solar Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.3.3 Epoch of Recombination . . . . . . . . . . . . . . . . . . . . . . 174 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 6 Dielectrophoresis in Astrophysical Plasmas 178 6.1 DEP-FFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 CONTENTS vii 6.2.1 p/m Ratio of Select Elements . . . . . . . . . . . . . . . . . . . 183 6.2.2 Solar Lorentz Field . . . . . . . . . . . . . . . . . . . . . . . . . 190 6.2.3 Ambi-polar Field . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 7 Conclusions 199 7.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Bibliography 205 List of Tables 6.1 Selected atomic characteristics . . . . . . . . . . . . . . . . . . . . . . . 188 6.2 Selected molecular characteristics . . . . . . . . . . . . . . . . . . . . . 189 List of Figures 1.1 The equilibrium ionization fraction of hydrogen . . . . . . . . . . . . . 24 1.2 The Paschen curve for an arbitrary gas . . . . . . . . . . . . . . . . . . 26 1.3 Electrical schematic of a homopolar CIV device . . . . . . . . . . . . . 41 1.4 Burning voltage against discharge current for a homopolar device . . . 42 1.5 Schematic showing Alfv´en ionization mechanism . . . . . . . . . . . . . 43 2.1 Time evolution of the 1-dimensional wave equation solved using a FTCS scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.2 Time evolution of the 1-dimensional wave equation solved with an LF scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.3 The time evolution of the 1 dimensional wave equation solved with a LW scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.4 Flowchart showing the process for incorporation of an Alfv´en ionization subroutine into a finite difference code . . . . . . . . . . . . . . . . . . 77 2.5 The spatial envelope, A for a set of discrete wave sources that will form m Fresnel interference fringes. . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.6 Plasma density map showing interference patterns in an uncoupled gas- plasma mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.7 Vector diagram of the magnetic field in the uncoupled case . . . . . . . 81 2.8 Plasma density map showing interference patterns in a coupled gas- plasma mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.9 Vector diagram of the magnetic field in the coupled case . . . . . . . . 84

Description:
Wilson, Alasdair David (2016) Finite difference simulations of neutral .. a full range of plasma behaviour; for example, the ionosphere has a peak
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.