Mon.Not.R.Astron.Soc.000,000–000(0000) Printed6November2012 (MNLATEXstylefilev2.2) Why does the environmental influence on group and cluster galaxies extend beyond the virial radius? Yannick M. Bahe´1∗, Ian G. McCarthy2,1, Michael L. Balogh3 and Andreea S. Font2,1 1InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,CambridgeCB30HA,UnitedKingdom 2 2SchoolofPhysicsandAstronomy,UniversityofBirmingham,Edgbaston,BirminghamB152TT,UnitedKingdom 1 3DepartmentofPhysicsandAstronomy,UniversityofWaterloo,Waterloo,OntarioN2L3G1,Canada 0 2 6November2012 v o N ABSTRACT 5 InthelocalUniverse,galaxiesingroupsandclusterscontainlessgasandarelesslikelytobe formingstarsthantheirfieldcounterparts.Thiseffectisnotlimitedtothecentralgroup/cluster ] regions, but is shown by recent observations to persist out to several virial radii. To gain O insightintotheextentandcauseofthislarge-scaleenvironmentalinfluence,weuseasuiteof C high-resolutioncosmologicalhydrodynamicsimulationstoanalysegalaxiesaroundsimulated . groupsand clusters of a wide range of mass (log10 Mhost/M⊙ = [13.0,15.2]).In qualitative h agreement with the observations, we find a systematic depletion of both hot and cold gas p and a decline in the star forming fraction of galaxies as far out as ∼ 5 r from the host - 200 o centre. While a substantial fraction of these galaxies are on highly elliptical orbits and are r not infalling for the first time (∼ 50 per cent at 2 r , independent of host mass) or are t 200 s affected by ‘pre-processing’ (∼ 20 per cent of galaxies around groups, increasing to ∼ 50 a percentaroundamassivecluster),evenacombinationoftheseindirectmechanismsdoesnot [ fullyaccountfortheenvironmentalinfluence,particularlyinthecaseofthehotgascontent. 2 Directinteractionwithanextendedgas‘halo’surroundinggroupsandclustersisshowntobe v sufficientlystrong to strip the hotgasatmospheresof infalling galaxiesoutto ∼ 5 r . We 200 7 showthatthisinfluenceishighlyanisotropic,withrampressurealongfilamentsenhancedby 0 uptoafactorof100despitesignificantco-flowofgasandgalaxies. 4 8 Keywords: galaxies:clusters:general—galaxies:evolution—galaxies:haloes—galaxies: . interactions—galaxies:intergalacticmedium—galaxies:ISM 0 1 2 1 : v 1 INTRODUCTION paredtothoseofsimilarstellarmassinthefield(e.g.,Baloghetal. i 2004;Poggiantietal.2006). X Thereisstrongobservational evidencethattheinternalproperties In principle, both of these trends may either be due to in- of galaxies depend on their local environment. One well-known r trinsic differences between field and group/cluster galaxies (i.e., a example is the morphology–density relation (Dressler 1980) by galaxies form differently in close proximity to a massive cluster, which early-type galaxies are more common in high-density en- oralarge-scaleoverdensity destinedtobecome acluster)or they vironments such as the central regions of clusters, whereas late- may be the result of a transformation of late-type, star-forming, type galaxies dominate the field population. While much of this bluefieldgalaxiesintoearly-type,passive,redonesaftertheyare apparenttrendisexplainedbygalaxiesingroupsandclustersbe- accreted by a group or cluster. There are several mechanims that ing typically more massive than field galaxies, combined with a couldtriggersuchtransformations.Thetidalfieldofthegroupor correlationbetweengalaxymassandmorphologyinthefield,there cluster,aswellasinteractionswithothergalaxies,whicharenat- isstill a significant difference in the morphologies of galaxies of urally more common in dense environments may strip, re-shape, fixedstellarmassinthefieldandthoseinmassivegroupsandclus- or even totally disrupt a galaxy (e.g., Mooreetal. 1999). At the ters (e.g., Kauffmannetal. 2004; Blantonetal. 2005). A similar same time, the high velocity of a galaxy relative to the intra- relationholdsforgalaxycolours:thoseindenserregionsarepref- group/-cluster medium (ICM)1 gives rise to ram pressure which erentiallyredder thantheirisolatedcounterparts (e.g.,Hoggetal. canremoveitscoldgasreservoir(so-calledrampressurestripping, 2004).Asthecolourofagalaxyisprimarilyinfluencedbyitsre- Gunn&Gott 1972; Abadi,Moore&Bower 1999) and therefore centstarformationactivity,this‘colour–densityrelation’indicates areducedlevelofstarformationingroupandclustergalaxiescom- 1 Weusetheterm‘ICM’forhotgasinandaroundgroups/clusterswhich isnotboundtoinfallinggalaxiesorsub-groups.Thisincludesgasbeyond ∗ [email protected] thevirialradius. (cid:13)c 0000RAS 2 Y.M. Bahe´ et al. shutdownstarformation.Thehotgashaloessurroundinginfalling itssurrounding gas. Furthermore, it is extremely difficult to even galaxiesareeveneasiertoremovesincethesearemuchmoreex- detectthehotgashaloesofthenearest galaxies(Bregman2007), tended, less dense and therefore less tightly bound to the galaxy let alone measure their structural properties around more distant (e.g.,Larson,Tinsley&Caldwell1980;Balogh,Navarro&Morris galaxiesfallingintogroupsandclusters. 2000; McCarthyetal. 2008). While not impacting star formation Numericalsimulationsareapotentiallypromisingtooltogain directly, the removal of hot gas does put an end tothe replenish- further insight, as both velocities and galaxy orbital histories are ment(throughcooling)ofthecoldgasusedupinit.Theresultis readilyavailable.Thedemandsonthesesimulations,however,are adelayed decrease instar formationas theremaining coldgas is considerable.Cosmologicalinitialconditionsarerequiredforreal- consumed(‘strangulation’or‘starvation’).Thecommonthemeof isticgalaxiesandhosts,andtogivemeaningfulinformationonram thesemechanisms isthattheenvironmental influenceongalaxies pressure, baryons haveto be included in thesimulations directly, falling into a group or cluster decreases with increasing distance along with realistic physical prescriptions for relevant processes from the centre, as the density of both the ICM and galaxies, as thataffectthebaryons,includingradiativecooling,starformation, wellastheirorbitalvelocities,decrease.Itislessclear,however,at chemodynamics,andsupernovafeedback.Theresolutionmustbe whichpointduringagalaxy’sinfalloneshouldexpectthesemech- high enough to resolve individual galaxies, while the simulation anismstofirst‘switchon’.Thisdependsonthedetailedstructural must also include rare objects such as massive galaxy clusters. propertiesoftheinfallinggalaxiesaswellasthatofthehostgroups High-resolution cosmological hydrodynamic simulations of large andclustersintowhichtheyarefalling. volumeswouldsatisfytheserequirementsbuttheircomputational Thereisampleevidencefrombothobservationsandsimula- costiscurrentlyprohibitivelyhigh.Apromisingcompromiseisthe tionsthatgroupsandclustershavenosharp‘edge’tomarkthetran- useofsimulationswith‘zoomed’initialconditions,whereasmall sition to the field environment. Instead, their outer regions blend regionofalarge,low-resolutionsimulationboxisre-simulatedat smoothlyintothesurroundinglarge-scalestructure.Thereisthere- highresolution(e.g.,Tormen,Bouchet&White1997). fore no obvious starting point for the above-mentioned mecha- Inthispaper,weuseasetofsimulationsfollowingthisphilos- nismstobeginactingongalaxies.Acommonlyemployedbound- ophy, the GALAXIES-INTERGALACTIC MEDIUM INTERACTION ary radius for a halo is the ‘virial radius’ (hereafter r200), which CACULATIONS (GIMIC; Crainetal. 2009). By re-simulating se- is often computed as the radius inside which the average density lectedregionsoftheMillenniumSimulation(Springeletal.2005; equals 200 times the critical density. Roughly speaking, this ra- which includes dark matter only), chosen to encompass a wide dius corresponds to the extent of the virialised region of a halo range of large-scale environments they include both sparse voids in cosmological simulations. There is, however, mounting obser- and a massive galaxy cluster, as well as numerous less massive vational evidence that the colour–density relation persists out to clustersandgalaxygroups.AparticularadvantageofGIMICisthat, distances significantly greater than r (e.g., Baloghetal. 1999; overarelativelywiderangeofstellarmass,thesimulatedfielddisc 200 Hansenetal.2009;Hainesetal.2009;vonderLindenetal.2010; galaxieshavealreadybeenshowntohavepropertiesingoodagree- Luetal. 2012; Wetzel,Tinker&Conroy 2012; Rasmussenetal. ment with a variety of observational data, including the relations 2012;seealsoBahe´etal.2012).Ifenvironmentally-inducedtrans- between stellar mass and rotation velocity, size, and star forma- formations are indeed responsible for the observed trends, then tion efficiency (defined as the ratio of stellar mass to total mass; galaxiesareevidentlyaffectedwellbeyondthevirialradius. see McCarthyetal. 2012b). The simulations also reproduce the Onecommonlyidentifiedindirectwayinwhichgalaxiescan observedscalingsofhot gasX-rayluminositywithK-bandlumi- beenvironmentallyaffectedatlargedistancesfromthecentreofa nosity,star-formationrateandrotationvelocity(Crainetal.2010), galaxyclusteristhrough‘pre-processing’ininfallinggroups(e.g., aswellasthepropertiesofstellarhaloesaroundMilkyWay-mass Berrieretal.2009;McGeeetal.2009).Asecondindirectmecha- discgalaxies(Fontetal.2011;McCarthyetal.2012a).Witharea- nismiswhatwerefertoas‘overshooting’: anon-negligiblefrac- sonablyrealisticpopulationoffieldgalaxies,thesesimulationsare tionofinfallinggalaxiesareonhighlyellipticalorbits(e.g.,Benson thereforesuitabletoinvestigatetheprocessesactingonthemupon 2005)thatbringthemwellwithinr onfirstpericentricpassage infallintoagrouporcluster. 200 butbackoutbeyondthisradiuslateron(e.g.,Gill,Knebe&Gibson This paper is structured as follows. In Section 2, we briefly 2005;Ludlowetal.2009).Theexistenceofenvironmental trends describethesimulationsandourmethodforidentifyingandtrac- outtoradiiwellbeyondr isthereforenotnecessarilyincompat- ing galaxies within them. The extent of environmental influence 200 iblewithdirectenvironmentalinfluencebeingconfinedtosmaller onoursimulatedgalaxiesbeyond r200 isshowninSection3,fol- scales. lowed by an in-depth analysis of the underlying physical mech- Ofcourse,theexistenceoftheseindirectmechanismsdoesnot anisms in Section 4. In Section 5 we investigate the influence ruleoutthepossibilitythatthereisalsodirectenvironmentalinflu- of filaments, before presenting our conclusions in Section 6. All enceof thegroup orcluster atdistances beyond thevirialradius. masses and distances are given in physical units unless other- Asgroupsandclustersblendintothelarge-scalesurroundingenvi- wise specified. A flat L CDM cosmology with Hubble parameter ronment,agalaxyissurroundedbygasevenatlargedistancesfrom h=H0/(100kms−1Mpc−1)=0.73,darkenergydensityparame- thehostcentre(see,e.g.,Frenketal.1999whoshowthatthehot terW L =0.75(darkenergyequationofstateparameterw=−1), gashaloesofsimulatedmassivegalaxyclustersextendoutasfaras and matter density parameter W M =0.25 is used throughout this ∼10Mpc)Thisgaswillexertarampressureforceonanygalaxy paper. movingrelativetoit,whichmaybesufficienttoremove(someof) itsgas. Itisthereforeconceivablethatallthreeofthesemechanisms 2 SIMULATIONSANDANALYSIS are operating in concert to reduce the star formation activity of 2.1 GIMICsimulations galaxies. However, separating them from each other would be a formidable challenge for current observations, as there is in gen- ThisworkisbasedontheGALAXIES-INTERGALACTICMEDIUM eralonlylimitedinformationaboutagalaxy’svelocityandthatof INTERACTIONCALCULATIONsuite of simulations (GIMIC).The (cid:13)c 0000RAS,MNRAS000,000–000 Onsetofenvironmentalinfluence 3 readerisreferredtoCrainetal.(2009,seealsoSchayeetal.2010) forafulldescriptionofthesesimulations;hereweonlysummarise 16.0 theirmainfeaturesrelevanttothisstudy. M and M > 1013 M The GIMIC simulations are a set of five re-simulations of )n 15.5 bound 200 Sun nearly spherical regions of varying mean density extracted from MSu Only Mbound > 1013 MSun 15.0 tchheosMenillseonntihuamt aStimzu=la1ti.o5nth(Seiprrianvgeerlaegteadl.e2n0si0t5ie)s.Tdhifeferregfrioonmstahree / und 14.5 Mbound = M200 cosmic mean by (-2, -1, 0, +1, +2) s , where s is the rms mass bo M fluctuation on a scale of 18h−1 Mpc at thisredshift. In this way, ( 14.0 0 GIMICincludesrareobjectssuchasasparsevoidand,ofparticular g1 importancehere,manygroupsandclustersofgalaxies,includinga o 13.5 l particularlymassiveone,withlog10 (M200 /M⊙)≈15.2atz=0 13.0 atthecenterofthe+2s sphere. 12 13 14 15 16 The simulations were carried out at 3 different resolutions: log (M / M ) ‘low’,‘intermediate’,and‘high’.The‘low’resolutionisthesame 10 200 Sun as in the original Millennium Simulation while the ‘intermedi- ate’ and ‘high’ resolution simulations have 8 and 64 timesbetter Figure1.Comparisonbetweenmasswithinr200(‘M200’)andtotalgravita- mass resolution, respectively. As only the −2s and 0s regions tionallyself-boundmass(‘Mbound’)ofthehosthaloesusedinthiswork.For have been run at high resolution (owing to prohibitive compu- mostsystems,thereisverycloseagreementbetweenthesetwo,sothatthe hostwouldbeincludedinoursamplewitheitherdefinition(bluepoints).In tational expense), we use the intermediate-resolution simulations here. These simulations have a baryon particle mass resolution general,MboundisslightlylargerthanM200duetoboundstructuresextend- ofmgas∼1.16×107h−1M⊙ withagravitationalsofteningthatis tihnegfboerymoenrdcrr2i0te0r,isoona(gsrmeeanllpnouimntbse).rofsystemsisonlyincludedwhenusing 1 h−1 kpc in physical space at z≤3 and is fixed in comoving space at higher redshifts. Thus, even relatively low-mass galax- ies(M∗∼afew109 M⊙)areresolvedintoseveralhundredparti- cles,makingGIMICsuitabletostudytheinteractionbetweengalax- ies and groups/clusters of a wide range of masses. We note that McCarthyetal. (2012b) have shown that the star formation effi- cienciesandsizesofthesimulatedgalaxiesin GIMICareapprox- a linking length of b = 0.2 times the mean inter-particle separa- imately converged when there are (at least) several hundred star tion.WeselectashostsallFoFgroupswithMbound>1013.0 M⊙, particlespresent (although alarger number isrequired beforethe where M is the mass of all gravitationally bound particles bound z=0specificstarformationratesconverge,seeSection3forfur- within thisFoF group as identified by the SUBFIND algorithm of therdiscussion),whileMcCarthyetal.(2008)haveshownthatthe Dolagetal.(2009).Thisversionextendsthestandardimplementa- strippingofhotgasisconvergedwhenthereareasimilarnumber tionofSpringeletal.(2001)byincludingbaryonicparticlesinthe ofhotgasparticlespresentinitially. identificationofboundsubstructuresandalsoallowsonetodistin- The simulations were carried out with the TreePM-SPH guishsubstructures whicharelocated withinstilllargersubstruc- code GADGET-3 (last described in Springel 2005) and in- tures(i.e.,sub-subhaloes,sub-sub-subhaloesetc.)fromthosewhich clude significantly modified prescriptions for star formation areassociatedwiththemainsubhaloofaFoFgroup. (Schaye&DallaVecchia2008),metal-dependentradiativecooling Thistypeofhostmassthresholdissomewhat differentfrom inthepresenceofaHaardt&Madau(2001)UV/X-raybackground the more commonly used spherical overdensity mass M . The 200 (Wiersma,Schaye&Smith2009),feedbackandmasstransportby reason for our choice is that we have identified many instances Type Ia and Type II supernovae (DallaVecchia&Schaye 2008), where the FoF algorithm will link together, e.g., a cluster-mass as well as stellar evolution and chemodynamics (Wiersmaetal. haloandanearby infallinggroup-mass halo(seeSection4.2).In 2009). However, they do not include a prescription for feedback thiscase,novalueofM wouldbecomputedforthegroup-mass 200 duetoaccretingsupermassiveblackholes,sothatmassivegalax- halo,sinceitispartoftheoverallFoFgroup,whileM isstill bound ieswithlog10(M∗/M⊙)>∼10.7inGIMICsufferfrom‘over-cooling’ well-defined. (seeCrainetal.2009andMcCarthyetal.2012b).Asaresult,we InFig.1wepresentacomparisonbetweenM andM bound 200 donotexpectrealisticpredictionsformassivegalaxiesandthere- forourhostFoFhaloes.Mostofthemtraceanarrowsequencewith fore limit our analysis to the range log10(M∗/M⊙)=[9.0,11.0]. Mbound≈M200 and so are selected irrespective of which type of WenotethattheneglectofAGNfeedbackinthesesimulationsalso masscutisapplied(bluepoints).Theformerisslightlyhigheron meansthatthecentralregionsofthesimulatedgroupsandclusters average, due to bound structures extending beyond r , so there 200 willnotberealisticintermsoftheICMpropertiesorthesize/mass isasmallset of galaxy-group scalehaloes that areonly included ofthecentralbrightestgalaxy(McCarthyetal.2010).However,at in our sample adopting the M cut (green points). In total, bound very large distances from the group/cluster centre, the region on oursampleincludes∼100hostsystemswithmassesintherange whichwefocusinthisstudy,thecoolingtimeoftheICMismuch 13.0≤log10Mbound/M⊙<∼15.2. longerthanaHubbletime,sothatthisdoesnotaffectthevalidity Toidentifytheprogenitorsofthehosthaloesinprevioussnap- ofourresults. shots,weuseallthegravitationallybounddarkmatterparticlesin each FoF group in our z=0 host sample as a tracer population. UsingtheiruniqueparticleIDsweidentifytheFoFhalotowhich 2.2 Selectionandtracingofhostgroupsandclusters themajorityofthetracerparticlesbelongedintheprevioussnap- Host groups and clusters of galaxies were identified at redshift shot,whichwedesignateastheprogenitor.Werepeatthistracing z = 0 using a standard Friends-of-Friends (FoF) algorithm with procedurebacktoredshiftz=10. (cid:13)c 0000RAS,MNRAS000,000–000 4 Y.M. Bahe´ et al. 2.3 Galaxyidentificationandselection 3 LARGE-SCALEENVIRONMENTALTRENDSATZ∼0 Withinourtracedsampleofgalaxiesandhostsasdescribedabove, Havingidentifiedthehosthaloesandtheirprogenitorsineachsim- wenow look attheextent of environmental influenceon satellite ulation, wenext select ‘galaxies’ (i.e.,self-bound subhaloes) ina galaxies. For the purposes of the present study we focus on the similar way. Startingat thehighest redshift (z=10), we identify fractionofgalaxieswhicharestarformingandhave(hotorcold) for each galaxy detected by SUBFIND its constituent dark matter gasmassfractionsexceeding somethreshold value. Weintend to and star particles. In the subsequent (‘target’) snapshot, we then exploreawiderrangeofproperties,includingcoloursandvarious searchforthegalaxycontainingmostofthemassoftheseparticles measuresofmorphology,inafuturestudy. andidentifyitastheoriginalgalaxy’sdescendent.Anysubhaloin InFig.2weshowthefractionofgalaxiesinwhichtheratioof thetargetsnapshotwhichisnotidentifiedasadescendentistaken totalmassofgravitationallyboundhotandcoldgastostellarmass asthestartingpoint for anew galaxy andtheprocessisrepeated (i.e., the hot and cold gas mass fraction, respectively) lies above untilreachingthesnapshotatz=0. athresholdvalueof0.1,aswellasthefractionofgalaxieswitha Inthecasethattwoormoregalaxieshavethesamedescendent specificstarformationrate(sSFR)above10−11yr−1.Bothofthese inthetargetsnapshot,wecontinuetracingonlytheonecontributing thresholdsaresetbytheresolutionofoursimulationsandthedesire themostmass;allothersaremarkedas‘accreted’ontothisgalaxy tohaveafixed(specific)thresholdacrosstheentirerangeofstel- andarenottracedfurthersothatnogalaxyiscountedtwice. larmassesthatweexplore.Conveniently,thesSFRthresholdthat weadoptisverysimilartothatwhichisemployedinmanyobser- We also take into account the possibility that a galaxy may vationalstudies:theseshowawell-definedstar-formingsequence, temporarilynotbeidentifiedasgravitationallyself-boundbySUB- which is isolated from passive galaxies by an sSFR cut at 10−11 FIND (e.g., Muldrew,Pearce&Power 2011). If a galaxy in snap- yr−1(e.g.,Wetzel,Tinker&Conroy2012).Todistinguishhotand shotihasnodescendentinsnapshoti+1,oranidentifieddescen- coldgas,weadoptathresholdtemperatureofT =2×105 K;for dentaccounts forlessthan50percentofitsmass,werepeat our coldgasweadditionallyrequireadensityn≥0.01cm−3.Sucha seachinsnapshoti+2and,providedadescendentisidentifiedin cut indensity andtemperature forthecold gasroughly mimicsa this snapshot, we continue tracing the galaxy from there. This is selectionofatomic(HI)gas. particularlyimportantforgalaxiesmovingthroughthecentralre- Forcomparison,wealsoshowthecorrespondingfractionsin gionsofgalaxyclusterswherethehighbackgrounddensitymakes ourfieldsampleasyellowdashedlines.Toobtainstatisticallyro- anerroneousnon-detectionmorelikely. bustresultsdespitethemultiplesplitsimposedonourgalaxysam- To ensure that we can trace a galaxy falling into a group or ple (M∗, Mhost, r/r200), wemake use of the fact that each galaxy clusterforaslongaspossible,weexcludeallparticlesbelongingto inoursimulationsis‘observed’inmorethanonesnapshot,butat ahostwhenidentifyingthedescendentgalaxies.Inthisway,evenif differentpointsduringitsinfallintothehostgrouporcluster.We thevastmajorityofthegalaxy’sparticleshasbeenstripped,wewill thereforestacktheresultsfortheredshiftrange0≤z≤0.5togive thenstillidentifythesubhalomadeupfromtheremainingbound atotalof∼50000datapoints.Wehaveexplicitlyverifiedthatus- particlesasitsdescendent,andnotthehosthalo,whichwouldonly ingasmallerredshiftrangehasnosignificanteffectotherthanto betheappropriatechoiceifthegalaxyhadbeentotallydisrupted(in increasethestatisticaluncertainties. practicaltermsthismeansthattherearelessthan20boundparticles ThefirstclearinfluenceshowninFig.2isthatofgalaxystel- remaining,atwhichpointSUBFINDnolongerclassifiesastructure lar mass. More massive galaxies (in the right panels) are overall asaself-boundsubhalo). considerablymorelikelytocontainhotandcoldgasandtoconvert thisgasintostars.Inthecaseofhotgas,thiscomesasnosurprise, Finally, we select for analysis those galaxies whose total because more massive galaxies with their deeper potential wells (bound)stellarmassinatleastonesnapshotfallswithintherange canbeexpectedtoaccumulateandshock-heatmoregasthantheir log10(M∗ / M⊙) = [9.0, 11.0]. This results in a final sample of lower-masscounterparts(e.g.,White&Frenk1991).Thatalarger ∼30000uniquegalaxiesoverallredshifts.Fromthese,wecreate fractionofmassivegalaxieshavesubstantialcoldgasfractionsand twosub-sets:ourmainsampleofgalaxiesinthevicinityofhosts are star forming compared to the lowest (stellar) mass galaxies (the‘infall’sample)isformedbythosethatarefoundwithin5r 200 in our sample, however, appears tobe at odds with observations, fromthecentreofahostinatleastonesnapshot;thereare∼15000 which show that it is in fact low-mass galaxies that tend to have galaxiesinthisset.Forcomparisonpurposes,wealsoformasam- largercoldgasmassfractions(e.g.,Duttonetal.2011)andsSFRs pleof‘field’galaxies,definedascentralswhichnevercomecloser (e.g.,Salimetal.2007).Atlowmasses,thisdiscrepancyislikely than5r200toanFoFgroupwithMbound≥1013M⊙. anumericaleffect:asshowninMcCarthyetal.(2012b),thez=0 Ourreasonforidentifyinghostsatz=0andthentracingthem sSFRsinGIMICareonlynumericallywell-convergedforgalaxies backwards in time, while tracing galaxies forwards from z=10 withlog10(M∗/M⊙)>∼9.7.Thisislikelyduetothefactthatasmall withoutanypriorselection,istwo-fold:ontheonehand,beingin- number of particles resultsin a poor sampling of the gas density terestedintheinfluenceongalaxiesbytheirhostenvironment,we PDF,keepinginmindthatonlythehighest-densitygasformsstars want toselect onlythosehosts thatarethemselves evolving rela- andisclassifiedas‘cold’here.Ontheotherhand,theabsenceofa tively undisturbed, without being accreted onto other, more mas- ‘mass-quenching’effect(Pengetal.2010)inmoremassivegalax- sivehosts.Identificationatz=0andthentracingbackwardsthese iesinoursampleisaresultofincompletesub-gridphysics(such ‘surviving hosts’ satisfiesthispurpose. Forgalaxies, on theother asthelackof AGNfeedback). Whilethisisclearlynot desirable hand,wealsowanttoincludethoseidentifiedatz>0whichhave andmakesitdifficulttodrawquantitativeconclusions,wecanstill been disrupted or merged later on, and take into account thefact analysetrendswithenvironmenttogainqualitativeinsightintothe thatthestellarmassofagalaxymayvarysignificantlyovercosmic relevantphysicalprocesses. timescales.Forthisreason,wehavechosentotracethemforward Leavingasidethedependence ongalaxymassbycomparing intime,andonlyselecttheactual‘galaxy’subhaloesafterwards. galaxieswithsimilar M∗ (i.e.,comparing trends inthesame col- (cid:13)c 0000RAS,MNRAS000,000–000 Onsetofenvironmentalinfluence 5 umn in Fig. 2), there is also clearly a strong influence of galaxy as pre-processing of galaxies in groups and/or ‘overshooting’ on environment.Withineachpanel,thefractionofgalaxiesabovethe theother.Wewillfirstaddresstheimportanceofeachofthesein- thresholdgasmassorstarformationrateincreasessystematically directeffects,beforeinvestigatingthepossibilityofdirectgalaxy– withincreasinggalaxydistancefromthehostcentre.Thebehaviour hostinteractionsatlargeradiifurtherbelow. issimilarforallthreequantitiesunderconsideration(hotgas,cold gasandstarformation),withhotgasbeingaffectedmorestrongly andouttolargercluster-centricradii. 4.1 Overshooting A second influence is that of host mass: almost universally, Thefirstpossibleexplanationisthatasignificantfractionofgalax- galaxiesaroundamassivecluster(redlines)aremoredepletedthan iesintheoutskirtsofgroupsandclustersarenotactuallyfallingin galaxiesnearalow-massgroup(black)atthesamehost-centricdis- forthefirsttime.Followingtheirpericentricpassage(inmostcases tanceinunitsofr200,althoughthedifferencebetweendifferenthost wellinsider200),galaxiesonhighlyellipticalorbitsmayeitherper- massesatthesameradiusisgenerallysmallerthantheradialvari- manentlyescapethehostonhyperbolictrajectoriesoratleastreach ation. Thereisalso acorrelationbetween theinfluence of galaxy theirapocentrewellbeyondr beforefallingintowardsthecen- 200 andhostmass:Whilelow-massgalaxies(left-mostcolumn)exhibit tral region once more. Despite their large distance from the host strongradialvariationsinboththeirhotandcoldgascontentacross centre, these galaxies will likelyalready haveexperienced strong thewholerangeofhostmassesunderconsiderationhere,massive strippingduetorampressureandtidalforcesduringtheirpassage galaxies(right-mostcolumn)showonlyaverymildeffectontheir through the inner cluster regions and have thus lost a significant cold gas content and ability to form stars in environments other amountoftheiroriginallyboundgas.Asfewergalaxieswillreturn than a massive cluster. All of these trends are broadly consistent togreaterdistancesfromthecentre,thiseffectwillnaturallylead withwhatisexpectedforrampressureandtidalstripping. toagradualincreaseinthefractionofstarforming,gasrichgalax- Strictlyspeaking,theexistenceofthesetrendsalonedoesnot ieswithincreasingdistancebeyond thevirialradius, withoutany guaranteethatgalaxiesareactuallychangingduringinfall:itisalso actualenvironmentalinfluenceatlargeradii. conceivablethatthosefurtherawayfromthehostcentrewerericher Theextentofthis‘overshooting’inourgalaxysamplecanbe in gas and forming stars more actively since they formed. How- judgedfromFig.3inwhichweshowthefractionofgalaxiesthat ever, in Fig. 8 below we show that the same trends exist in self- have already ventured into the central r as a function of host- 200 normalisedgalaxyproperties,suchastheratiobetweenthehotgas centricdistance2.Thereisnocleardependenceonhostmass:inall massofagalaxyataparticularradiusandatfirstcrossingof5r200. cases,thefractionofovershotgalaxiesdecreasesstronglybetween Thisisincompatiblewithascenarioinwhichthetrendspresented r and3r .Beyondthisradiusalmostallgalaxiesareinfalling 200 200 herearetheresultofvaryinggalaxyformationconditions:Galaxies for the first time. The trends in Fig. 2 are therefore likely to be areactuallychangingastheymoveclosertothehostcentre. substantially affected by overshooting at r<3 r200. Beyond this Finally, we note that there is relatively little difference be- point,however,theoverwhelmingmajorityofgalaxiesareinfalling tweenbinninggalaxiesaccordingtoM∗ andMhostatthesnapshot forthefirsttime,whichrulesoutovershootingasanexplanationfor of‘observation’(solidlinesandbands)andaccordingtothecorre- trendsinthefaroutskirtsofgroupsandclusters. spondingvaluesatfirstcrossingof5r200 (M∗)andz=0(Mhost) Fig.4highlightsthedifferenceintheradialtrendsforthehot asshownbydashedlines.Inthesecondcase,thetrendsinFig.2 gasfractionbetweenovershot galaxiesandthoseinfallingforthe representstackedevolutionarytracksofindividualgalaxiesasthey firsttime;forsimplicityandclarity,weshowheretrendsfromonly movetowardsthecentralhostregion,whereasourdefaultbinning twobinseachinstellarmassandhostmass.Whileovershotgalax- methodallowsgalaxiestochangebinsasaresultofeitherthehost ies are almost completely free of hot gas at all host-centric radii massorgalaxystellarmassvaryingwithtime.The‘fixedbinning’ (yellowlines),thetrendforthosegalaxiesinfallingforthefirsttime method gives slightly larger fractions of gas-rich and star form- (blue)issimilartothatforthefullsampleshowninFig.2. inggalaxies,asboththehostmassesandstellarmassesgenerally increasewithtime.Measuringthemearlierthanthegalaxy‘obser- vation’ (M∗) or later (host mass) therefore on average underpre- 4.2 Pre-processing dictsthefirstwhileoverestimatingthesecond:inbothcasesgalax- A second indirect mechanism to explain environmental influence iesareassignedtobinswithstrongerenvironmentalinfluenceand ongalaxiesatlargedistancesfromthehostcentreisthat,inauni- thereforeappeartobelessstronglyaffectedthantheircounterparts verseinwhichstructuresgrowhierarchically,groupsandclusters whose stellar mass and host mass were determined at the obser- of galaxies are surrounded by other, smaller groups falling into vation snapshot. In any case, the fact that the difference is small them. Fig. 2 showed that strong environmental effects exist near implies that the trends must be predominantly caused by actual changestothegalaxyproperties,ratherthantheirbindesignations. the central regions of even small groups with M ≈1013M⊙ (see also Balogh&McGee (2010), Wetzel,Tinker&Conroy (2012) andRasmussenetal.(2012)whofindasimilarresultinobserva- tionaldata).Itispossiblethatmanyofthegas-poor,passivegalax- 4 THEORIGINOFLARGE-SCALETRENDS iesintheoutskirtsof abigclusterarereallysittinginthecentral regionofsmallgroups,whichareprimarilyresponsibleforthere- Wehaveshownintheprevioussectionthatgalaxieswhichareeven movalofgas.This‘pre-processing’ effecthasbeenconsideredas moderatelyclosetogroupsandclustersintheGIMICsimulationare an explanation for reduced star forming fractions beyond r by 200 systematicallydepletedofhotandcoldgas,andareconsequently anumber of authors(e.g.,Berrieretal. 2009;McGeeetal.2009; less likely to be star-forming, compared to field galaxies of the Luetal.2012;Wetzel,Tinker&Conroy2012). samestellarmass.Inthefollowing,weaimtoidentifythephysical processes responsible for these trends. There are two broad cate- goriesofsuchmechanisms:directinteractionbetweenthehostand 2 Notethatwetakeintoaccountthatr200evolveswithredshift,asthehost itsgalaxiesatlargeradiiontheonehand,andindirecteffectssuch grows. (cid:13)c 0000RAS,MNRAS000,000–000 6 Y.M. Bahe´ et al. M* 9.0 - 9.5 M* 9.5 - 10.0 M* 10.0 - 10.5 M* 10.5 - 11.0 1.0 Hot gas 0.8 (M /M > 0.1) gas Star e 0.6 u al 0.4 v d ol 0.2 sh 0.0 e hr 1.0 Co ld G as e t 0.8 (M /M > 0.1) v gas Star o b 0.6 a s 0.4 e axi 0.2 al 0.0 g of 1.0 St ar for matio n n o 0.8 (sSFR > 10E-11 / yr) cti a 0.6 r Host mass F 0.4 13.0 - 13.5 1 s error 13.5 - 14.0 0.2 14.0 - 14.5 Field 15.2 0.0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 5 r / r 200 Figure2.Fractionofgalaxieswithlargehot(toprow)andcoldgascontent(middlerow),andhighspecificstarformationrates(bottomrow)respectively atz∼0.Panelsaresplitbystellarmassasgivenatthetop;differentlycolouredlinesrepresenthostsofdifferentmassasindicatedinthefigure.Theshaded regionsrepresentstatistical1s uncertainties.Dottedlinesshowtheresultsobtainedwhengalaxiesarebinnedbystellarmassatinfall(whencrossing5r200for thefirsttime),asopposedtoourstandardmethodwherewebinbystellarmassatthepointwhenthegalaxyis‘observed’—thereislittledifferencebetween thetwo.Therearecleartrendstowardslessgasandlowerstarforminglikelihoodwellbeyondr200. Apartfromtheobviouscaseofagalaxyactuallybeingiden- clesinshadesofgreen.Wenotethat,lookingaheadtoFig.10,the tifiedasasatelliteinaninfallinggroupatthepointofobservation, location of these hidden groups coincides with strong overdensi- therearetwoothercircumstancesinwhichagalaxycanbeaffected tiesofinfallinggas(asindicatedbytheirlongtailspointingaway bypre-processing:firstly,agalaxymayhavebeensuchasatellite fromtheclustercentre).Thisconfirmsthatthesehiddengroupsare inthepast,butsubsequentlyceasedtobe(forexample,becauseit real,physicalstructures.Furthermore,Fig.5alsohighlightsthose escapedthegroup’sgravitationalattractionorthegroupitselfwas galaxieswhicharenotmemberofanyinfallinggroupatz=0,but tidallydisrupted).Ontheotherhand,asexplainedinSection2,it wereinthepast,withorangecircles(filled/opendenotinggalaxies isalsopossibleforgroupstobeaccretedontoamassiveFoFhalo within/outsidethecluster’sFoFhalo).Alargenumberofgalaxies ofagalaxyclusterwithoutbeingdisrupted.Inthiscase,thegroup inthecentralregion(r/r ≤2)belongtothiscategory,butalsoa 200 satellitegalaxiesbecome—formally—satellitesoftheclusterin- noticeablenumberofgalaxiesaroundthegroupsatlargeradii. stead of the group, which in reality continues to affect them. To Combiningallthesevarioustypesofpre-processedgalaxies, identifysuch‘hidden’ groupswemakeuseofthefactthat,while Fig.6showsthatonaverageapproximatelyhalfthegalaxiesaround nolongerformingtheirownFoFhalo,theyareneverthelessagrav- themassiveclusterareaffected,increasingtowardsthecentrefrom itationallyself-boundentitywhichisdetectedasasinglesubhalo ∼30percentat5r to∼65percentwithinr .Inlowermass 200 200 bySUBFIND,withtheindividualgalaxieswithinthehiddengroup hosts, pre-processing is less common, decreasing to less than 20 identifiedassub-sub-haloes. per cent in the case of low-mass groups. Even in this case, pre- processingismuchmorecommonthanovershootingbeyond ∼3 Asanillustration,Fig.5showsaprojectedmapofallgalax- r and is therefore a significant contributor to the radial trends ieswithin5 r from thecentre of themassive galaxy cluster at 200 200 seeninFig.2. redshift z = 0. Galaxies unaffected by pre-processing (i.e., those thathavenever beensatellitesinagroupwithM≥1013M⊙)are We finally note that we define a galaxy as having been shownasblackcircles,filledonesrepresentinggalaxiesidentified been pre-processed if it was/is a subhalo of infalling group with aspartoftheclusterFoFhalowhileopenonesarenot.Ahandful Mbound ≥1013M⊙, which in practice typically means that it has of ‘open’ groups (not part of the cluster FoF halo) are shown by been within∼1.5 r200 of thegroup centre. Fig.2shows that the largeopen circlesin different shades of blue, all of them at rela- effect of environment around low-mass groups actually extends tivelylargedistances fromthecluster centre (r/r200>3).Further outslightlyfurtherthanthis,typicallyto∼2r200.Thus,wehave in, satellitesof threehidden groups areshown by largefilledcir- adopteda‘strong’definitionofpre-processinginthepresentwork. (cid:13)c 0000RAS,MNRAS000,000–000 Onsetofenvironmentalinfluence 7 Overshooting 1.0 8 Host mass Cluster FoF Not pre-processed (log M /M ) Other FoF Subgroup in past 0.8 10 bound Sun s 6 Subgroup (open) xie 1133..00 -- 1133..55 1 - 5 r200 Subgroup (hidden) a 1133..55 -- 1144..00 al 0.6 1144..00 -- 1144..55 g 4 of 1155..22 n o 0.4 cti 0 2 a 0 Fr 0.2 y/r2 1 s error 0 0.0 0 1 2 3 4 5 r/r -2 200 Figure3.Fractionofgalaxieswhichhavebeenwithinr200(z)ofthehost -4 centre and therefore, iffound at r>r200, havealready passed their first pericentre.Thisisverycommonwithin2r200.Outside3r200,ontheother hand,almostallgalaxiesareinfallingforthefirsttime. -4 -2 0 2 4 x/r 200 M 13.0 - 13.5 M 15.2 host host 1.0 Figure5.Pre-processedgalaxiesinthemassiveclusteratz=0(coloured All Overshot circles).Opencirclesinshadesofbluerepresentgalaxiesingroupsidenti- 5 0.8 First infall Pre-processed fiedasseparateFoFhalo,whilefilledcirclesingreenshadesshowgalaxies 9. Clean s9.0 - 0.6 ians‘ehlfi-dbdoeunn’dgrsouubp-hs,alwohwicihthatroetaplabrtooufndthmeamssainMcboluunsdte≥rF1o0F13hMal⊙o,.bGuatlafxoirems xieM* 0.4 shownwiththesamecolourbelongtothesamegroup.Blackcirclesshow ala 0.2 clustergalaxieswhicharenotinanygroup:filledonesareidentifiedaspart g oftheclusterFoFhalo,openonesresideinseparate haloes. Inthesame of 0.0 way,orangecirclesshowgalaxiesthatbelongedtoagrouponlyatz>0. on 1.0 Thedottedcirclesrepresentdistancesof(1,2,3,4,5)r200fromthecluster acti1.0 0.8 centre. Fr5 - 1 0.6 0. 1 0.4 M* Inprinciple,onecouldalsoadoptanevenlowermassthresholdfor 0.2 pre-processing sub-groups, but we have found that this has little 0.0 effectonourresults. 0 1 2 3 4 0 1 2 3 4 5 Thefractionofpre-processedgalaxieswhicharehotgasrich r / r200 (Mgas/M∗>0.1)isshowninFig.4togetherwiththeeffectofover- shooting discussed above. Pre-processed galaxies are represented Figure4.Radialtrendsinthefractionofgalaxieswithhotgasmassfraction by red lines; it is clear that their hot gas fraction is significantly abovethethresholdof0.1,usingdifferentsubsetsofourinfallgalaxysam- lowerthaninthefullsample(blacklines).Inthecaseoflow-mass ple.Blacklinesshowallgalaxies,asusedinFig.2,whileblueandgreen galaxies(toprow)theeffectisvirtuallythesameasthatofover- linesshowonlythosegalaxiesthatareinfallingforthefirsttimeandhave shooting: inbothcases,hardlyanyaffectedgalaxieshavesignifi- alsoneverbeeninagroup,respectively.Thegreenlinethereforerepresents cantamountsofhotgas,irrespectiveoftheirdistancefromthehost a‘clean’sampleofgalaxiesinwhichanytrendsareduetodirectinteraction centre.Theeffectissomewhatmilderformassivegalaxies(bottom withtheclusteratradiiequaltoorgreaterthanthecurrentpositionofthe row)butstillquitesignificant. galaxy.Furthermore,yellowandredlinesshowgalaxiesthathavealready Combiningtheeffectsofovershootingandpre-processing,we travelledthroughtheinnerregionsoftheirhostclusterorhaveatsomepoint inthepastbeensatellitesinadifferentsubhalo.Wherelinesdonotcover canforma‘clean’sampleofgalaxiesaffectedbyneither:theseare theentireradialrangethisisduetoalackofgalaxiesinagivencategory infallingforthefirsttimedirectlyfromthefield.InFig.4theyare atcertainradii,e.g.overshotmassivegalaxiesinlow-massgroupsatlarge shown in green; unsurprisingly their hot gas fractions are higher radii. thaninanyofthefourothersamples,atallradii.Adetailedcom- parisonbetweenthefullandcleangalaxysamples,forallM∗ and M isshowninFig.7.Theshadedbandsrepresentthefullsam- host ple (identical to Fig. 2), whereas the solid and dotted lines show thecorrespondingfractionofgalaxiesinthecleansampleandtheir statisticaluncertainties,respectively. Inthecaseofcoldgasandstarformation,thetrendsaremuch (cid:13)c 0000RAS,MNRAS000,000–000 8 Y.M. Bahe´ et al. Pre-processing quenchingofstarformationinlow-massgalaxiesfoundintheout- 1.0 skirtsofgroupsandclusters.Norcanitaccountfortheremovalof Host mass (log M /M ) hotgasofbothlow-massandhigh-massgalaxies.Thismeansthat 10 bound Sun aprocessmustexistbywhichgalaxiescanbeinfluenceddirectly 0.8 1133..00 -- 1133..55 1133..55 -- 1144..00 s 1144..00 -- 1144..55 1155..22 bythehostsatlargedistancesfromtheircentre.Inthissection,we xie arguethatthisprocessismostlikelydirectrampressurestripping a 1 s error due to interaction of the galaxies with an extended hot gas halo al 0.6 g surroundinggroupsandclusters. of Besides ram pressure, there are several other mechanisms on 0.4 which could also be responsible for removing gas from galaxies, cti inparticulartidalstrippingduetotheclusterpotentialorgalaxy– a galaxy interactions. In contrast to ram pressure, these processes r F 0.2 canbeexpected toaffect not onlythe(hot) gascontent of galax- ies,butalsothesimilarlyextendeddarkmatterhaloes.InFig.8we showtheevolutionofthehotgasanddarkmattercontentof‘clean’ 0.0 galaxiesfallingintoboththemassiveclusterandlow-massgroups, 0 1 2 3 4 5 focusingonlow-mass(logM∗/M⊙=[9.0,9.5])galaxiesforwhich r/r 200 theenvironmentaleffectisstrongest(seeFig.7),althoughwehave verifiedthatsimilartrendsarealsoseeninmoremassivegalaxies. Figure 6. Fraction of galaxies which have been satellites ofa halo with Makinguseofourgalaxytracingresults,wenormalisethehotgas massabove1013M⊙otherthanthehost,asafunctionofgalaxypositionat anddarkmattermassesbytheirrespectivevaluesatfirstcrossing timeofobservation.Differenthostmassbinsareshownindifferentcolours of5r200.Anydeviationfromunityinthese‘self-normalised’val- asindicatedatthetopofthefigure.Shadedbandsshowthecorresponding uesisnecessarilytheresultofchangesoccuringwithinindividual statistical1s uncertainties.Galaxiesinmoremassivehostsaremorelikely galaxies,andnotduetopotentiallydifferinggalaxyformationcon- tohavebeensatellitesinagroup,butwiththeexceptionofthemostmassive ditionsatdifferentdistancesfromthehostcentre. clustertherearenocleartrendswithgalaxyposition. Hotgasanddarkmatterclearlyevolveverydifferently:from 5r onwards,thehotgasmassdecreasessteadilywithdecreasing 200 radius(solidlines)withanoverallstrongereffectinthecaseofthe weaker in the clean sample, and for massive galaxies with M∗ cluster than low-mass groups (red and black lines, respectively). >∼1010M⊙ there is virtually no trend remaining - i.e., at all radii Intheformer,themajorityofgalaxieshavelostalloftheirhotgas the fraction of galaxies with appreciable cold gas or star forma- around3r andeveninlow-massgroupsthemedianhotgasmass 200 tionissimilartothatinthefield.Wheretrendsexist(forlow-mass ofgalaxiesisreducedto∼20percentbythispoint,comparedto galaxies),theyarestrongestinthecaseofgalaxiesnearthemassive thevalueat5r .Themassofthedarkmatterhalo,ontheother 200 cluster.However,amuchstrongerenvironmentalinfluenceremains hand,remainsnearlyconstant(dashedlinesinFig.8)attheselarge inthecaseofhotgas,withgalaxiesofallmassesthatwehaveex- radii,independentofhostmass.Thisimpliesthattheremovalofhot plored being affected out to large radii from the centres of both gasinthegroupandclusteroutskirtsisduetoaprocesstargeting groupandclusterhosts. exclusively baryons while leaving the dark matter halo basically untouched—preciselythebehaviourthatwouldbeexpectedfrom rampressurestripping. 4.2.1 Summary Our conclusions so far from this section may be summarised as 4.3.1 Expectedeffectoframpressure follows:thestrongradialtrendsincoldgasandstarformingfrac- tion seen in Fig. 2 are largely caused by overshooting and pre- To test the ram pressure stripping hypothesis further, we directly processing, especially in the case of massive galaxies with M∗ compare the ram pressure and gravitational restoring forces on >∼1010M⊙.Outofthesetwoindirectmechanisms,overshootingis galactichotandcoldgasinFig.9.Foreachgalaxy,rampressureis generallydominantwithin∼2r ,whileatlargerradiithetrends computedas 200 aremostlyduetopre-processing.Thelowest-massgalaxies,onthe otherhand,showappreciableradialtrendsintheirretentionofcold Pram=v2ICMr ICM (1) gasandstarformingactivityevenwhenpre-processing andover- wherev isthevelocityof thegalaxyrelativetothesurround- ICM shootingareexcluded.Intermsofhotgas,theradialvariationfor ingICMofdensityr .Todeterminethesetwovalues,weselect ICM both low- and high-mass galaxies is very similar in the full and foreachgalaxytheN=3000closestgasparticles3 whicharenot ‘clean’samples.Therefore,adirectinfluenceofthegrouporcluster membersofanygravitationallyboundsubhalo(exceptforthemain environmentmustextendouttoatleast∼5r200.Intheremainder subhaloinahostgrouporcluster).Thisensuresthatourmeasure- ofthepaper,weinvestigatethisinfluence,andthereforeuseonly mentsofICMdensityandvelocityarenotinfluencedbyparticles thecleangalaxysamplefromhereon. innearbygalaxies,butactuallyrepresenttheICM.Toexcludecon- taminationbygasaccretedby,orstrippedfrom,thegalaxyunder 4.3 Directgalaxy–hostinteraction:tidalandrampressure stripping 3 WehaveexperimentedwithvariousvaluesofNandfoundN=3000to betheoptimalvalue.FortoolowN,particle-to-particle scatterinvelocity Intheprevioussection,weshowedthatneitherpre-processingnor anddensitybecomesnoticeable,whereasattoohighvaluesofNweareno overshootingcancanfullyaccountforthedepletionofcoldgasand longerdeterminingthelocalproperties. (cid:13)c 0000RAS,MNRAS000,000–000 Onsetofenvironmentalinfluence 9 M* 9.0 - 9.5 M* 9.5 - 10.0 M* 10.0 - 10.5 M* 10.5 - 11.0 1.0 Hot gas 0.8 (M /M > 0.1) gas Star e 0.6 u al 0.4 v d ol 0.2 sh 0.0 e hr 1.0 Cold Gas e t 0.8 (M /M > 0.1) v gas Star o b 0.6 a s 0.4 e axi 0.2 Full sample al 0.0 (1s error) g of 1.0 Star f ormin g n o 0.8 (sSFR > 10E-11 / yr) acti 0.6 Host mass Fr (log10 M/MSun) Field 0.4 13.0 - 13.5 13.5 - 14.0 Clean sample 0.2 14.0 - 14.5 (1s error) 15.2 0.0 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 r / r 200 Figure7.Comparisonbetweenradialtrendsforthe‘clean’galaxysample,containingonlygalaxieswhichhaveneverbeenwithinr200,andhaveneverbeen satellitesinanotherhalothanthemainhost(shownbysolidlines,dottedlinesgivestatistical1s uncertainties)andthefullsamplefromFig.2(shadedregions showingstatistical1s uncertainties, forclaritywehaveomittedthemaintrendforthissample).Inthecleangalaxysample,radialtrendsaresignificantly weakerandstartatsmallerradii,withtheexceptionofhotgasandlow-massgalaxies. consideration, we also exclude any gas particles that have previ- ing force per unit area) exerted by the galaxy. Following ouslybeen,orwillsubsequentlybe,boundtoit. McCarthyetal.(2008),wecomputethisquantityas TheleftcolumnofFig.9shows,for‘clean’(notpre-processed or overshot) galaxies in low-mass groups (top) and the massive a GM(<r)r (r) cluster (bottom), thedistributionof resulting rampressure values Prestore(r)= (2) r with varying distance from the host centre. The median trend is givenbythethickblackline,whilethedarkandlightgreyregions whereM(<r)isthetotalmasswithingalacto-centricradiusr,r (r) enclose50and90percentofallgalaxies,respectively.Inbothlow- the density of thegas phase (hot or cold, defined asdiscussed in massgroupsandthemassivecluster,rampressureisincreasingto- section 3) under consideration, and a is a geometric constant of wardsthecentre,butthetrendisstrongerinthelattercasewhere orderunity.McCarthyetal.(2008)finda =2,whichweadoptfor it varies by approximately 3 orders of magnitude between 5 r 200 ourcalculationsaswell,althoughtheexactchoiceof thisparam- and r asopposed to‘only’ 2orders of magnitude inlow-mass 200 eter has no influence on our conclusions. Using equation (2), we groups over the same radial range. Whiletheram pressure expe- computehotandcoldgasrestoringpressureprofilesforallGIMIC riencedbygalaxiesintheoutskirtsofbothgroupsandclustersis fieldgalaxies(centralsthathaveneverbeenwithin5r ofagroup 200 similar(atsamer/r ),galaxiesnearthecentreofaclusterthere- 200 orcluster)astheserepresentthe‘initialcondition’ofgalaxiesbe- foreexperienceconsiderablyhigherrampressurelevelsthantheir foreinfallintoagrouporcluster.Toconnectthepressurecompar- groupcounterparts.Weshowbelowthatthisisprimarilyaconse- isondirectlytothegascontent,wefurthermorefindforeachfield quenceofthehigherorbitalvelocitiesofgalaxiesinmassiveclus- galaxyinoursampletherestoringpressureattheradiusenclosing ters.Apartfromthisoveralltrend,thereisalsosubstantialscatterin aseriesofspecifichotandcoldgasmasses(i.e.,Mgas/M∗)inthe therampressurevalues,inparticularintheouterregions.Galaxies range−2.5≤log10Mgas/M∗≤0.5.Theresultingtrends,median- atadistanceof4–5r fromthecentreofamassiveclustercan 200 stackedinbinsofsimilarstellarmassareshowninthemiddleand experiencerampressuredifferingbyabout5ordersofmagnitude, rightcolumnsofFig.9andgivethetypicalleveloframpressurere- arange considerably larger than thesystematicvariation withra- quiredtostripagalaxytoagivengasmassorouterlimitingradius, dialdistance.Wewillinvestigatetheoriginandimplicationsofthis respectively.Wenotethat,instackinggalaxies,weincludeateach scatterinSection5below. pointonlythosethatactuallyhavehotorcoldgasofthismassor Gas will be removed from the infalling galaxies if the extendingouttothisradiusandonlyshowthosedatapointswhere ram pressure exceeds the gravitational restoring pressure (restor- thisisthecaseforatleast5percentofthegalaxiestogiveamean- (cid:13)c 0000RAS,MNRAS000,000–000 10 Y.M. Bahe´ etal. of galaxies (top) is seen out as far as 5 r in all environments, 200 whereascoldgasisonlyaffectedinlow-massclustergalaxies,as M = 15.2 predictedfromourpressurecomparison. 1.5 host 1 s error Wefinallynotethattherestoringpressureprofilesthemselves M = [13.0, 13.5] host showaninterestingdifferencebetweencoldandhotgas:thosefor coldgasarerelativelyflatoutside∼5kpcwhilethehotgaspro- filesshowasteadydeclinefromthecentralregionoutwards.This al 1.0 suggeststhathotgasisstrippedgraduallyfromtheoutsideasthe niti rampressureactingonagalaxyincreases,whereaswhenthecold Mi Hot gas M / Dark Matter govaserfianashlloyrtbetigminesstcoalbee. stripped,virtuallyallofitwillberemoved 0.5 0.0 5 INFLUENCEOFFILAMENTS 1 2 3 4 5 5.1 Originoftherampressurescatter r / r 200 WhileFig. 9 confirms that there isa general trend to higher ram pressurevaluestowardsthehostcentre,italsorevealsstrongscat- Figure 8.Evolution ofthe hot gas and darkmatter content of low-mass ter,particularlyintheouterregions.Atr∼5r fromthecentreof 200 galaxiesfallingintohostsforthefirsttimewithouthavingbeenaffectedby thebigcluster,therampressurevariesbetweengalaxiesatthesame pre-processing.Solidlinesshowthemedianhotgasmass,dashedlinesthe distancefromthecentrebyfiveordersofmagnitude,substantially mediandarkmattermass,bothnormalisedforeachgalaxytotherespective morethanthevariationinthemedianrampressureovertheradial values at firstcrossing of5r200. Thered lines represent galaxies falling rangeconsideredhere.Inthissection,weinvestigatetheoriginof intothemassiveclusterinthe+2s simulation,blackonesthosefallinginto thisscatteranditsimplications. low-massgroups.Thereisacleardifferencebetweentheevolutionofthe hotgascontent,whichdecreaseswithin∼5r200,anddarkmatter,which, An obvious possibility is that we have so far only distin- irrespectiveofhalomass,increasesslightlyuntil∼2r200.Thisimpliesthat guished between galaxies by their radial distance from the host atlargedistancesfromthehostcentre,thehotgasisremovedbyaprocess centre, thereby implicitly assuming that our hosts are spherically targetingexclusivelybaryons,suchasram-pressurestripping,andnotbya symmetric systems. This is rather unlikely: it is a long-standing moreindiscriminateonesuchastidalstripping. predictionofcosmologicalsimulationsthatgroupsandclustersof galaxiesaretriaxialsystemslinkedbyfilamentsofbothdarkmat- terandgas,andthereisnowincreasingobservationalevidencethat ingfulpictureofhowtightlyboundthegastypicallyis.Forhotgas, thisisindeedthecase(e.g.,Dietrichetal.2012;Adeetal.2012). weshowtherestoringpressureprofilesoveraradialrangefrom0 Galaxiesfallinginalongthesefilamentshaveaverydifferentin- to500kpc(physical),butbecausethecoldgascomponentismuch fallexperiencefromthoseaccretedthroughlargelyemptyregions morecentrallyconcentrated,weuseasmallerradialrangefrom0 (voids), which we now investigate in detail. As before, we focus to30kpchere. exclusivelyonthe‘clean’galaxysamplewhichareinfallingforthe It is evident that cold gas is much more tightly bound than firsttimewithouthavingbeenaffectedbypre-processing. hot gas when comparing the middle/right top and bottom panels. As a parameter to distinguish between galaxies in filaments Thetypicalrestoringpressureoncoldgasrangesfrom10−11Pain andvoids,wechoosethe‘localoverdensity’,whichwedefineas themostmassivegalaxies(red)to10−13 Painlow-massgalaxies (blue)attheradiusenclosing0.1M∗ incoldgas.Bycomparison, D r =r local/r profile(rgalaxy) (3) eveninmassivegalaxies,thecorresponding restoringpressureon hot gas is only 10−14 Pa, which drops to 10−15 Pa in low-mass wherer isthelocallydeterminedICMdensityobtainedasdis- local galaxies.Thereasonforthisisthatcoldgasisnotonlydenser,but cussedintheprevioussectionandr profile(rgalaxy)isthecorrespond- alsositsmuchclosertothegalacticcentre. ingsphericallyaveragedgasdensityattheradiusofthegalaxy.In Bycomparison,thetypicalrampressurereachesamaximum aperfectlysphericallysymmetrichost,eachgalaxywouldhavea level of 10−12.5 Pa, in the case of the massive cluster near r200, valueof D r =1;inamorerealisticsystem, galaxiesinfilaments withsomegalaxiesreachinglevelsupto10−12 Pa.Thisisclearly arethosewiththehighestD r whilethoseinvoidshavethelowest toolowtostripcoldgasinmassivegalaxies,butjustsufficientfor values.HavingdeterminedD r ,wethenbingalaxiesineachsnap- thosewithlowerstellarmasses.Outside∼2r200 andinlessmas- shotaccordingtohostmassandrankthegalaxiesineachbinbyD r . sivehosts,however,nogalaxiesexperiencesufficientrampressure Thehighest quartileineachbinisidentifiedasfilamentgalaxies, todirectlystripcoldgas.Hotgasontheotherhand,boundbyap- andthelowestasthoseinvoids.Thisensuresthatwehaveequal proximatelytwoordersof magnitude lesstightly, canbestripped numbersoffilamentandvoidgalaxydatapointsandthatbothalso efficiently:evenmassivegalaxies(red)canbeaffectedoutto∼2 havethesamedistributioninredshiftandhostmass.InFig.10we –3r inclusters,andmanylow-massgalaxiesaresubjecttosuf- showthelocationsofbothfilamentandvoidgalaxiesinthemas- 200 ficientrampressure(∼10−15Pa)evenat5r200.Eveninlow-mass siveclusteratz=0,superimposedonamapoftheICMgasdensity. groups,hotgascanbeexpectedtobestrippedoutto∼2r inall Asexpected,filamentgalaxiesarestronglyspatiallyclusteredand 200 galaxies,andinalargefraction(>25percent)outto5r200. are mostly found in two bands fanning out towards the top right Theseexpectationsagreewellwiththeactualevolutionofthe andtheleft,whichisexactlytheregionwhereprominentfilaments gas content as seen in Fig. 7. In particular, stripping of hot gas canbeseeninthegasdensitymap.Thevoidgalaxies,however,are (cid:13)c 0000RAS,MNRAS000,000–000