ebook img

Why does the environmental influence on group and cluster galaxies extend beyond the virial radius? PDF

0.87 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Why does the environmental influence on group and cluster galaxies extend beyond the virial radius?

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed6November2012 (MNLATEXstylefilev2.2) Why does the environmental influence on group and cluster galaxies extend beyond the virial radius? Yannick M. Bahe´1∗, Ian G. McCarthy2,1, Michael L. Balogh3 and Andreea S. Font2,1 1InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,CambridgeCB30HA,UnitedKingdom 2 2SchoolofPhysicsandAstronomy,UniversityofBirmingham,Edgbaston,BirminghamB152TT,UnitedKingdom 1 3DepartmentofPhysicsandAstronomy,UniversityofWaterloo,Waterloo,OntarioN2L3G1,Canada 0 2 6November2012 v o N ABSTRACT 5 InthelocalUniverse,galaxiesingroupsandclusterscontainlessgasandarelesslikelytobe formingstarsthantheirfieldcounterparts.Thiseffectisnotlimitedtothecentralgroup/cluster ] regions, but is shown by recent observations to persist out to several virial radii. To gain O insightintotheextentandcauseofthislarge-scaleenvironmentalinfluence,weuseasuiteof C high-resolutioncosmologicalhydrodynamicsimulationstoanalysegalaxiesaroundsimulated . groupsand clusters of a wide range of mass (log10 Mhost/M⊙ = [13.0,15.2]).In qualitative h agreement with the observations, we find a systematic depletion of both hot and cold gas p and a decline in the star forming fraction of galaxies as far out as ∼ 5 r from the host - 200 o centre. While a substantial fraction of these galaxies are on highly elliptical orbits and are r not infalling for the first time (∼ 50 per cent at 2 r , independent of host mass) or are t 200 s affected by ‘pre-processing’ (∼ 20 per cent of galaxies around groups, increasing to ∼ 50 a percentaroundamassivecluster),evenacombinationoftheseindirectmechanismsdoesnot [ fullyaccountfortheenvironmentalinfluence,particularlyinthecaseofthehotgascontent. 2 Directinteractionwithanextendedgas‘halo’surroundinggroupsandclustersisshowntobe v sufficientlystrong to strip the hotgasatmospheresof infalling galaxiesoutto ∼ 5 r . We 200 7 showthatthisinfluenceishighlyanisotropic,withrampressurealongfilamentsenhancedby 0 uptoafactorof100despitesignificantco-flowofgasandgalaxies. 4 8 Keywords: galaxies:clusters:general—galaxies:evolution—galaxies:haloes—galaxies: . interactions—galaxies:intergalacticmedium—galaxies:ISM 0 1 2 1 : v 1 INTRODUCTION paredtothoseofsimilarstellarmassinthefield(e.g.,Baloghetal. i 2004;Poggiantietal.2006). X Thereisstrongobservational evidencethattheinternalproperties In principle, both of these trends may either be due to in- of galaxies depend on their local environment. One well-known r trinsic differences between field and group/cluster galaxies (i.e., a example is the morphology–density relation (Dressler 1980) by galaxies form differently in close proximity to a massive cluster, which early-type galaxies are more common in high-density en- oralarge-scaleoverdensity destinedtobecome acluster)or they vironments such as the central regions of clusters, whereas late- may be the result of a transformation of late-type, star-forming, type galaxies dominate the field population. While much of this bluefieldgalaxiesintoearly-type,passive,redonesaftertheyare apparenttrendisexplainedbygalaxiesingroupsandclustersbe- accreted by a group or cluster. There are several mechanims that ing typically more massive than field galaxies, combined with a couldtriggersuchtransformations.Thetidalfieldofthegroupor correlationbetweengalaxymassandmorphologyinthefield,there cluster,aswellasinteractionswithothergalaxies,whicharenat- isstill a significant difference in the morphologies of galaxies of urally more common in dense environments may strip, re-shape, fixedstellarmassinthefieldandthoseinmassivegroupsandclus- or even totally disrupt a galaxy (e.g., Mooreetal. 1999). At the ters (e.g., Kauffmannetal. 2004; Blantonetal. 2005). A similar same time, the high velocity of a galaxy relative to the intra- relationholdsforgalaxycolours:thoseindenserregionsarepref- group/-cluster medium (ICM)1 gives rise to ram pressure which erentiallyredder thantheirisolatedcounterparts (e.g.,Hoggetal. canremoveitscoldgasreservoir(so-calledrampressurestripping, 2004).Asthecolourofagalaxyisprimarilyinfluencedbyitsre- Gunn&Gott 1972; Abadi,Moore&Bower 1999) and therefore centstarformationactivity,this‘colour–densityrelation’indicates areducedlevelofstarformationingroupandclustergalaxiescom- 1 Weusetheterm‘ICM’forhotgasinandaroundgroups/clusterswhich isnotboundtoinfallinggalaxiesorsub-groups.Thisincludesgasbeyond ∗ [email protected] thevirialradius. (cid:13)c 0000RAS 2 Y.M. Bahe´ et al. shutdownstarformation.Thehotgashaloessurroundinginfalling itssurrounding gas. Furthermore, it is extremely difficult to even galaxiesareeveneasiertoremovesincethesearemuchmoreex- detectthehotgashaloesofthenearest galaxies(Bregman2007), tended, less dense and therefore less tightly bound to the galaxy let alone measure their structural properties around more distant (e.g.,Larson,Tinsley&Caldwell1980;Balogh,Navarro&Morris galaxiesfallingintogroupsandclusters. 2000; McCarthyetal. 2008). While not impacting star formation Numericalsimulationsareapotentiallypromisingtooltogain directly, the removal of hot gas does put an end tothe replenish- further insight, as both velocities and galaxy orbital histories are ment(throughcooling)ofthecoldgasusedupinit.Theresultis readilyavailable.Thedemandsonthesesimulations,however,are adelayed decrease instar formationas theremaining coldgas is considerable.Cosmologicalinitialconditionsarerequiredforreal- consumed(‘strangulation’or‘starvation’).Thecommonthemeof isticgalaxiesandhosts,andtogivemeaningfulinformationonram thesemechanisms isthattheenvironmental influenceongalaxies pressure, baryons haveto be included in thesimulations directly, falling into a group or cluster decreases with increasing distance along with realistic physical prescriptions for relevant processes from the centre, as the density of both the ICM and galaxies, as thataffectthebaryons,includingradiativecooling,starformation, wellastheirorbitalvelocities,decrease.Itislessclear,however,at chemodynamics,andsupernovafeedback.Theresolutionmustbe whichpointduringagalaxy’sinfalloneshouldexpectthesemech- high enough to resolve individual galaxies, while the simulation anismstofirst‘switchon’.Thisdependsonthedetailedstructural must also include rare objects such as massive galaxy clusters. propertiesoftheinfallinggalaxiesaswellasthatofthehostgroups High-resolution cosmological hydrodynamic simulations of large andclustersintowhichtheyarefalling. volumeswouldsatisfytheserequirementsbuttheircomputational Thereisampleevidencefrombothobservationsandsimula- costiscurrentlyprohibitivelyhigh.Apromisingcompromiseisthe tionsthatgroupsandclustershavenosharp‘edge’tomarkthetran- useofsimulationswith‘zoomed’initialconditions,whereasmall sition to the field environment. Instead, their outer regions blend regionofalarge,low-resolutionsimulationboxisre-simulatedat smoothlyintothesurroundinglarge-scalestructure.Thereisthere- highresolution(e.g.,Tormen,Bouchet&White1997). fore no obvious starting point for the above-mentioned mecha- Inthispaper,weuseasetofsimulationsfollowingthisphilos- nismstobeginactingongalaxies.Acommonlyemployedbound- ophy, the GALAXIES-INTERGALACTIC MEDIUM INTERACTION ary radius for a halo is the ‘virial radius’ (hereafter r200), which CACULATIONS (GIMIC; Crainetal. 2009). By re-simulating se- is often computed as the radius inside which the average density lectedregionsoftheMillenniumSimulation(Springeletal.2005; equals 200 times the critical density. Roughly speaking, this ra- which includes dark matter only), chosen to encompass a wide dius corresponds to the extent of the virialised region of a halo range of large-scale environments they include both sparse voids in cosmological simulations. There is, however, mounting obser- and a massive galaxy cluster, as well as numerous less massive vational evidence that the colour–density relation persists out to clustersandgalaxygroups.AparticularadvantageofGIMICisthat, distances significantly greater than r (e.g., Baloghetal. 1999; overarelativelywiderangeofstellarmass,thesimulatedfielddisc 200 Hansenetal.2009;Hainesetal.2009;vonderLindenetal.2010; galaxieshavealreadybeenshowntohavepropertiesingoodagree- Luetal. 2012; Wetzel,Tinker&Conroy 2012; Rasmussenetal. ment with a variety of observational data, including the relations 2012;seealsoBahe´etal.2012).Ifenvironmentally-inducedtrans- between stellar mass and rotation velocity, size, and star forma- formations are indeed responsible for the observed trends, then tion efficiency (defined as the ratio of stellar mass to total mass; galaxiesareevidentlyaffectedwellbeyondthevirialradius. see McCarthyetal. 2012b). The simulations also reproduce the Onecommonlyidentifiedindirectwayinwhichgalaxiescan observedscalingsofhot gasX-rayluminositywithK-bandlumi- beenvironmentallyaffectedatlargedistancesfromthecentreofa nosity,star-formationrateandrotationvelocity(Crainetal.2010), galaxyclusteristhrough‘pre-processing’ininfallinggroups(e.g., aswellasthepropertiesofstellarhaloesaroundMilkyWay-mass Berrieretal.2009;McGeeetal.2009).Asecondindirectmecha- discgalaxies(Fontetal.2011;McCarthyetal.2012a).Witharea- nismiswhatwerefertoas‘overshooting’: anon-negligiblefrac- sonablyrealisticpopulationoffieldgalaxies,thesesimulationsare tionofinfallinggalaxiesareonhighlyellipticalorbits(e.g.,Benson thereforesuitabletoinvestigatetheprocessesactingonthemupon 2005)thatbringthemwellwithinr onfirstpericentricpassage infallintoagrouporcluster. 200 butbackoutbeyondthisradiuslateron(e.g.,Gill,Knebe&Gibson This paper is structured as follows. In Section 2, we briefly 2005;Ludlowetal.2009).Theexistenceofenvironmental trends describethesimulationsandourmethodforidentifyingandtrac- outtoradiiwellbeyondr isthereforenotnecessarilyincompat- ing galaxies within them. The extent of environmental influence 200 iblewithdirectenvironmentalinfluencebeingconfinedtosmaller onoursimulatedgalaxiesbeyond r200 isshowninSection3,fol- scales. lowed by an in-depth analysis of the underlying physical mech- Ofcourse,theexistenceoftheseindirectmechanismsdoesnot anisms in Section 4. In Section 5 we investigate the influence ruleoutthepossibilitythatthereisalsodirectenvironmentalinflu- of filaments, before presenting our conclusions in Section 6. All enceof thegroup orcluster atdistances beyond thevirialradius. masses and distances are given in physical units unless other- Asgroupsandclustersblendintothelarge-scalesurroundingenvi- wise specified. A flat L CDM cosmology with Hubble parameter ronment,agalaxyissurroundedbygasevenatlargedistancesfrom h=H0/(100kms−1Mpc−1)=0.73,darkenergydensityparame- thehostcentre(see,e.g.,Frenketal.1999whoshowthatthehot terW L =0.75(darkenergyequationofstateparameterw=−1), gashaloesofsimulatedmassivegalaxyclustersextendoutasfaras and matter density parameter W M =0.25 is used throughout this ∼10Mpc)Thisgaswillexertarampressureforceonanygalaxy paper. movingrelativetoit,whichmaybesufficienttoremove(someof) itsgas. Itisthereforeconceivablethatallthreeofthesemechanisms 2 SIMULATIONSANDANALYSIS are operating in concert to reduce the star formation activity of 2.1 GIMICsimulations galaxies. However, separating them from each other would be a formidable challenge for current observations, as there is in gen- ThisworkisbasedontheGALAXIES-INTERGALACTICMEDIUM eralonlylimitedinformationaboutagalaxy’svelocityandthatof INTERACTIONCALCULATIONsuite of simulations (GIMIC).The (cid:13)c 0000RAS,MNRAS000,000–000 Onsetofenvironmentalinfluence 3 readerisreferredtoCrainetal.(2009,seealsoSchayeetal.2010) forafulldescriptionofthesesimulations;hereweonlysummarise 16.0 theirmainfeaturesrelevanttothisstudy. M and M > 1013 M The GIMIC simulations are a set of five re-simulations of )n 15.5 bound 200 Sun nearly spherical regions of varying mean density extracted from MSu Only Mbound > 1013 MSun 15.0 tchheosMenillseonntihuamt aStimzu=la1ti.o5nth(Seiprrianvgeerlaegteadl.e2n0si0t5ie)s.Tdhifeferregfrioonmstahree / und 14.5 Mbound = M200 cosmic mean by (-2, -1, 0, +1, +2) s , where s is the rms mass bo M fluctuation on a scale of 18h−1 Mpc at thisredshift. In this way, ( 14.0 0 GIMICincludesrareobjectssuchasasparsevoidand,ofparticular g1 importancehere,manygroupsandclustersofgalaxies,includinga o 13.5 l particularlymassiveone,withlog10 (M200 /M⊙)≈15.2atz=0 13.0 atthecenterofthe+2s sphere. 12 13 14 15 16 The simulations were carried out at 3 different resolutions: log (M / M ) ‘low’,‘intermediate’,and‘high’.The‘low’resolutionisthesame 10 200 Sun as in the original Millennium Simulation while the ‘intermedi- ate’ and ‘high’ resolution simulations have 8 and 64 timesbetter Figure1.Comparisonbetweenmasswithinr200(‘M200’)andtotalgravita- mass resolution, respectively. As only the −2s and 0s regions tionallyself-boundmass(‘Mbound’)ofthehosthaloesusedinthiswork.For have been run at high resolution (owing to prohibitive compu- mostsystems,thereisverycloseagreementbetweenthesetwo,sothatthe hostwouldbeincludedinoursamplewitheitherdefinition(bluepoints).In tational expense), we use the intermediate-resolution simulations here. These simulations have a baryon particle mass resolution general,MboundisslightlylargerthanM200duetoboundstructuresextend- ofmgas∼1.16×107h−1M⊙ withagravitationalsofteningthatis tihnegfboerymoenrdcrr2i0te0r,isoona(gsrmeeanllpnouimntbse).rofsystemsisonlyincludedwhenusing 1 h−1 kpc in physical space at z≤3 and is fixed in comoving space at higher redshifts. Thus, even relatively low-mass galax- ies(M∗∼afew109 M⊙)areresolvedintoseveralhundredparti- cles,makingGIMICsuitabletostudytheinteractionbetweengalax- ies and groups/clusters of a wide range of masses. We note that McCarthyetal. (2012b) have shown that the star formation effi- cienciesandsizesofthesimulatedgalaxiesin GIMICareapprox- a linking length of b = 0.2 times the mean inter-particle separa- imately converged when there are (at least) several hundred star tion.WeselectashostsallFoFgroupswithMbound>1013.0 M⊙, particlespresent (although alarger number isrequired beforethe where M is the mass of all gravitationally bound particles bound z=0specificstarformationratesconverge,seeSection3forfur- within thisFoF group as identified by the SUBFIND algorithm of therdiscussion),whileMcCarthyetal.(2008)haveshownthatthe Dolagetal.(2009).Thisversionextendsthestandardimplementa- strippingofhotgasisconvergedwhenthereareasimilarnumber tionofSpringeletal.(2001)byincludingbaryonicparticlesinthe ofhotgasparticlespresentinitially. identificationofboundsubstructuresandalsoallowsonetodistin- The simulations were carried out with the TreePM-SPH guishsubstructures whicharelocated withinstilllargersubstruc- code GADGET-3 (last described in Springel 2005) and in- tures(i.e.,sub-subhaloes,sub-sub-subhaloesetc.)fromthosewhich clude significantly modified prescriptions for star formation areassociatedwiththemainsubhaloofaFoFgroup. (Schaye&DallaVecchia2008),metal-dependentradiativecooling Thistypeofhostmassthresholdissomewhat differentfrom inthepresenceofaHaardt&Madau(2001)UV/X-raybackground the more commonly used spherical overdensity mass M . The 200 (Wiersma,Schaye&Smith2009),feedbackandmasstransportby reason for our choice is that we have identified many instances Type Ia and Type II supernovae (DallaVecchia&Schaye 2008), where the FoF algorithm will link together, e.g., a cluster-mass as well as stellar evolution and chemodynamics (Wiersmaetal. haloandanearby infallinggroup-mass halo(seeSection4.2).In 2009). However, they do not include a prescription for feedback thiscase,novalueofM wouldbecomputedforthegroup-mass 200 duetoaccretingsupermassiveblackholes,sothatmassivegalax- halo,sinceitispartoftheoverallFoFgroup,whileM isstill bound ieswithlog10(M∗/M⊙)>∼10.7inGIMICsufferfrom‘over-cooling’ well-defined. (seeCrainetal.2009andMcCarthyetal.2012b).Asaresult,we InFig.1wepresentacomparisonbetweenM andM bound 200 donotexpectrealisticpredictionsformassivegalaxiesandthere- forourhostFoFhaloes.Mostofthemtraceanarrowsequencewith fore limit our analysis to the range log10(M∗/M⊙)=[9.0,11.0]. Mbound≈M200 and so are selected irrespective of which type of WenotethattheneglectofAGNfeedbackinthesesimulationsalso masscutisapplied(bluepoints).Theformerisslightlyhigheron meansthatthecentralregionsofthesimulatedgroupsandclusters average, due to bound structures extending beyond r , so there 200 willnotberealisticintermsoftheICMpropertiesorthesize/mass isasmallset of galaxy-group scalehaloes that areonly included ofthecentralbrightestgalaxy(McCarthyetal.2010).However,at in our sample adopting the M cut (green points). In total, bound very large distances from the group/cluster centre, the region on oursampleincludes∼100hostsystemswithmassesintherange whichwefocusinthisstudy,thecoolingtimeoftheICMismuch 13.0≤log10Mbound/M⊙<∼15.2. longerthanaHubbletime,sothatthisdoesnotaffectthevalidity Toidentifytheprogenitorsofthehosthaloesinprevioussnap- ofourresults. shots,weuseallthegravitationallybounddarkmatterparticlesin each FoF group in our z=0 host sample as a tracer population. UsingtheiruniqueparticleIDsweidentifytheFoFhalotowhich 2.2 Selectionandtracingofhostgroupsandclusters themajorityofthetracerparticlesbelongedintheprevioussnap- Host groups and clusters of galaxies were identified at redshift shot,whichwedesignateastheprogenitor.Werepeatthistracing z = 0 using a standard Friends-of-Friends (FoF) algorithm with procedurebacktoredshiftz=10. (cid:13)c 0000RAS,MNRAS000,000–000 4 Y.M. Bahe´ et al. 2.3 Galaxyidentificationandselection 3 LARGE-SCALEENVIRONMENTALTRENDSATZ∼0 Withinourtracedsampleofgalaxiesandhostsasdescribedabove, Havingidentifiedthehosthaloesandtheirprogenitorsineachsim- wenow look attheextent of environmental influenceon satellite ulation, wenext select ‘galaxies’ (i.e.,self-bound subhaloes) ina galaxies. For the purposes of the present study we focus on the similar way. Startingat thehighest redshift (z=10), we identify fractionofgalaxieswhicharestarformingandhave(hotorcold) for each galaxy detected by SUBFIND its constituent dark matter gasmassfractionsexceeding somethreshold value. Weintend to and star particles. In the subsequent (‘target’) snapshot, we then exploreawiderrangeofproperties,includingcoloursandvarious searchforthegalaxycontainingmostofthemassoftheseparticles measuresofmorphology,inafuturestudy. andidentifyitastheoriginalgalaxy’sdescendent.Anysubhaloin InFig.2weshowthefractionofgalaxiesinwhichtheratioof thetargetsnapshotwhichisnotidentifiedasadescendentistaken totalmassofgravitationallyboundhotandcoldgastostellarmass asthestartingpoint for anew galaxy andtheprocessisrepeated (i.e., the hot and cold gas mass fraction, respectively) lies above untilreachingthesnapshotatz=0. athresholdvalueof0.1,aswellasthefractionofgalaxieswitha Inthecasethattwoormoregalaxieshavethesamedescendent specificstarformationrate(sSFR)above10−11yr−1.Bothofthese inthetargetsnapshot,wecontinuetracingonlytheonecontributing thresholdsaresetbytheresolutionofoursimulationsandthedesire themostmass;allothersaremarkedas‘accreted’ontothisgalaxy tohaveafixed(specific)thresholdacrosstheentirerangeofstel- andarenottracedfurthersothatnogalaxyiscountedtwice. larmassesthatweexplore.Conveniently,thesSFRthresholdthat weadoptisverysimilartothatwhichisemployedinmanyobser- We also take into account the possibility that a galaxy may vationalstudies:theseshowawell-definedstar-formingsequence, temporarilynotbeidentifiedasgravitationallyself-boundbySUB- which is isolated from passive galaxies by an sSFR cut at 10−11 FIND (e.g., Muldrew,Pearce&Power 2011). If a galaxy in snap- yr−1(e.g.,Wetzel,Tinker&Conroy2012).Todistinguishhotand shotihasnodescendentinsnapshoti+1,oranidentifieddescen- coldgas,weadoptathresholdtemperatureofT =2×105 K;for dentaccounts forlessthan50percentofitsmass,werepeat our coldgasweadditionallyrequireadensityn≥0.01cm−3.Sucha seachinsnapshoti+2and,providedadescendentisidentifiedin cut indensity andtemperature forthecold gasroughly mimicsa this snapshot, we continue tracing the galaxy from there. This is selectionofatomic(HI)gas. particularlyimportantforgalaxiesmovingthroughthecentralre- Forcomparison,wealsoshowthecorrespondingfractionsin gionsofgalaxyclusterswherethehighbackgrounddensitymakes ourfieldsampleasyellowdashedlines.Toobtainstatisticallyro- anerroneousnon-detectionmorelikely. bustresultsdespitethemultiplesplitsimposedonourgalaxysam- To ensure that we can trace a galaxy falling into a group or ple (M∗, Mhost, r/r200), wemake use of the fact that each galaxy clusterforaslongaspossible,weexcludeallparticlesbelongingto inoursimulationsis‘observed’inmorethanonesnapshot,butat ahostwhenidentifyingthedescendentgalaxies.Inthisway,evenif differentpointsduringitsinfallintothehostgrouporcluster.We thevastmajorityofthegalaxy’sparticleshasbeenstripped,wewill thereforestacktheresultsfortheredshiftrange0≤z≤0.5togive thenstillidentifythesubhalomadeupfromtheremainingbound atotalof∼50000datapoints.Wehaveexplicitlyverifiedthatus- particlesasitsdescendent,andnotthehosthalo,whichwouldonly ingasmallerredshiftrangehasnosignificanteffectotherthanto betheappropriatechoiceifthegalaxyhadbeentotallydisrupted(in increasethestatisticaluncertainties. practicaltermsthismeansthattherearelessthan20boundparticles ThefirstclearinfluenceshowninFig.2isthatofgalaxystel- remaining,atwhichpointSUBFINDnolongerclassifiesastructure lar mass. More massive galaxies (in the right panels) are overall asaself-boundsubhalo). considerablymorelikelytocontainhotandcoldgasandtoconvert thisgasintostars.Inthecaseofhotgas,thiscomesasnosurprise, Finally, we select for analysis those galaxies whose total because more massive galaxies with their deeper potential wells (bound)stellarmassinatleastonesnapshotfallswithintherange canbeexpectedtoaccumulateandshock-heatmoregasthantheir log10(M∗ / M⊙) = [9.0, 11.0]. This results in a final sample of lower-masscounterparts(e.g.,White&Frenk1991).Thatalarger ∼30000uniquegalaxiesoverallredshifts.Fromthese,wecreate fractionofmassivegalaxieshavesubstantialcoldgasfractionsand twosub-sets:ourmainsampleofgalaxiesinthevicinityofhosts are star forming compared to the lowest (stellar) mass galaxies (the‘infall’sample)isformedbythosethatarefoundwithin5r 200 in our sample, however, appears tobe at odds with observations, fromthecentreofahostinatleastonesnapshot;thereare∼15000 which show that it is in fact low-mass galaxies that tend to have galaxiesinthisset.Forcomparisonpurposes,wealsoformasam- largercoldgasmassfractions(e.g.,Duttonetal.2011)andsSFRs pleof‘field’galaxies,definedascentralswhichnevercomecloser (e.g.,Salimetal.2007).Atlowmasses,thisdiscrepancyislikely than5r200toanFoFgroupwithMbound≥1013M⊙. anumericaleffect:asshowninMcCarthyetal.(2012b),thez=0 Ourreasonforidentifyinghostsatz=0andthentracingthem sSFRsinGIMICareonlynumericallywell-convergedforgalaxies backwards in time, while tracing galaxies forwards from z=10 withlog10(M∗/M⊙)>∼9.7.Thisislikelyduetothefactthatasmall withoutanypriorselection,istwo-fold:ontheonehand,beingin- number of particles resultsin a poor sampling of the gas density terestedintheinfluenceongalaxiesbytheirhostenvironment,we PDF,keepinginmindthatonlythehighest-densitygasformsstars want toselect onlythosehosts thatarethemselves evolving rela- andisclassifiedas‘cold’here.Ontheotherhand,theabsenceofa tively undisturbed, without being accreted onto other, more mas- ‘mass-quenching’effect(Pengetal.2010)inmoremassivegalax- sivehosts.Identificationatz=0andthentracingbackwardsthese iesinoursampleisaresultofincompletesub-gridphysics(such ‘surviving hosts’ satisfiesthispurpose. Forgalaxies, on theother asthelackof AGNfeedback). Whilethisisclearlynot desirable hand,wealsowanttoincludethoseidentifiedatz>0whichhave andmakesitdifficulttodrawquantitativeconclusions,wecanstill been disrupted or merged later on, and take into account thefact analysetrendswithenvironmenttogainqualitativeinsightintothe thatthestellarmassofagalaxymayvarysignificantlyovercosmic relevantphysicalprocesses. timescales.Forthisreason,wehavechosentotracethemforward Leavingasidethedependence ongalaxymassbycomparing intime,andonlyselecttheactual‘galaxy’subhaloesafterwards. galaxieswithsimilar M∗ (i.e.,comparing trends inthesame col- (cid:13)c 0000RAS,MNRAS000,000–000 Onsetofenvironmentalinfluence 5 umn in Fig. 2), there is also clearly a strong influence of galaxy as pre-processing of galaxies in groups and/or ‘overshooting’ on environment.Withineachpanel,thefractionofgalaxiesabovethe theother.Wewillfirstaddresstheimportanceofeachofthesein- thresholdgasmassorstarformationrateincreasessystematically directeffects,beforeinvestigatingthepossibilityofdirectgalaxy– withincreasinggalaxydistancefromthehostcentre.Thebehaviour hostinteractionsatlargeradiifurtherbelow. issimilarforallthreequantitiesunderconsideration(hotgas,cold gasandstarformation),withhotgasbeingaffectedmorestrongly andouttolargercluster-centricradii. 4.1 Overshooting A second influence is that of host mass: almost universally, Thefirstpossibleexplanationisthatasignificantfractionofgalax- galaxiesaroundamassivecluster(redlines)aremoredepletedthan iesintheoutskirtsofgroupsandclustersarenotactuallyfallingin galaxiesnearalow-massgroup(black)atthesamehost-centricdis- forthefirsttime.Followingtheirpericentricpassage(inmostcases tanceinunitsofr200,althoughthedifferencebetweendifferenthost wellinsider200),galaxiesonhighlyellipticalorbitsmayeitherper- massesatthesameradiusisgenerallysmallerthantheradialvari- manentlyescapethehostonhyperbolictrajectoriesoratleastreach ation. Thereisalso acorrelationbetween theinfluence of galaxy theirapocentrewellbeyondr beforefallingintowardsthecen- 200 andhostmass:Whilelow-massgalaxies(left-mostcolumn)exhibit tral region once more. Despite their large distance from the host strongradialvariationsinboththeirhotandcoldgascontentacross centre, these galaxies will likelyalready haveexperienced strong thewholerangeofhostmassesunderconsiderationhere,massive strippingduetorampressureandtidalforcesduringtheirpassage galaxies(right-mostcolumn)showonlyaverymildeffectontheir through the inner cluster regions and have thus lost a significant cold gas content and ability to form stars in environments other amountoftheiroriginallyboundgas.Asfewergalaxieswillreturn than a massive cluster. All of these trends are broadly consistent togreaterdistancesfromthecentre,thiseffectwillnaturallylead withwhatisexpectedforrampressureandtidalstripping. toagradualincreaseinthefractionofstarforming,gasrichgalax- Strictlyspeaking,theexistenceofthesetrendsalonedoesnot ieswithincreasingdistancebeyond thevirialradius, withoutany guaranteethatgalaxiesareactuallychangingduringinfall:itisalso actualenvironmentalinfluenceatlargeradii. conceivablethatthosefurtherawayfromthehostcentrewerericher Theextentofthis‘overshooting’inourgalaxysamplecanbe in gas and forming stars more actively since they formed. How- judgedfromFig.3inwhichweshowthefractionofgalaxiesthat ever, in Fig. 8 below we show that the same trends exist in self- have already ventured into the central r as a function of host- 200 normalisedgalaxyproperties,suchastheratiobetweenthehotgas centricdistance2.Thereisnocleardependenceonhostmass:inall massofagalaxyataparticularradiusandatfirstcrossingof5r200. cases,thefractionofovershotgalaxiesdecreasesstronglybetween Thisisincompatiblewithascenarioinwhichthetrendspresented r and3r .Beyondthisradiusalmostallgalaxiesareinfalling 200 200 herearetheresultofvaryinggalaxyformationconditions:Galaxies for the first time. The trends in Fig. 2 are therefore likely to be areactuallychangingastheymoveclosertothehostcentre. substantially affected by overshooting at r<3 r200. Beyond this Finally, we note that there is relatively little difference be- point,however,theoverwhelmingmajorityofgalaxiesareinfalling tweenbinninggalaxiesaccordingtoM∗ andMhostatthesnapshot forthefirsttime,whichrulesoutovershootingasanexplanationfor of‘observation’(solidlinesandbands)andaccordingtothecorre- trendsinthefaroutskirtsofgroupsandclusters. spondingvaluesatfirstcrossingof5r200 (M∗)andz=0(Mhost) Fig.4highlightsthedifferenceintheradialtrendsforthehot asshownbydashedlines.Inthesecondcase,thetrendsinFig.2 gasfractionbetweenovershot galaxiesandthoseinfallingforthe representstackedevolutionarytracksofindividualgalaxiesasthey firsttime;forsimplicityandclarity,weshowheretrendsfromonly movetowardsthecentralhostregion,whereasourdefaultbinning twobinseachinstellarmassandhostmass.Whileovershotgalax- methodallowsgalaxiestochangebinsasaresultofeitherthehost ies are almost completely free of hot gas at all host-centric radii massorgalaxystellarmassvaryingwithtime.The‘fixedbinning’ (yellowlines),thetrendforthosegalaxiesinfallingforthefirsttime method gives slightly larger fractions of gas-rich and star form- (blue)issimilartothatforthefullsampleshowninFig.2. inggalaxies,asboththehostmassesandstellarmassesgenerally increasewithtime.Measuringthemearlierthanthegalaxy‘obser- vation’ (M∗) or later (host mass) therefore on average underpre- 4.2 Pre-processing dictsthefirstwhileoverestimatingthesecond:inbothcasesgalax- A second indirect mechanism to explain environmental influence iesareassignedtobinswithstrongerenvironmentalinfluenceand ongalaxiesatlargedistancesfromthehostcentreisthat,inauni- thereforeappeartobelessstronglyaffectedthantheircounterparts verseinwhichstructuresgrowhierarchically,groupsandclusters whose stellar mass and host mass were determined at the obser- of galaxies are surrounded by other, smaller groups falling into vation snapshot. In any case, the fact that the difference is small them. Fig. 2 showed that strong environmental effects exist near implies that the trends must be predominantly caused by actual changestothegalaxyproperties,ratherthantheirbindesignations. the central regions of even small groups with M ≈1013M⊙ (see also Balogh&McGee (2010), Wetzel,Tinker&Conroy (2012) andRasmussenetal.(2012)whofindasimilarresultinobserva- tionaldata).Itispossiblethatmanyofthegas-poor,passivegalax- 4 THEORIGINOFLARGE-SCALETRENDS iesintheoutskirtsof abigclusterarereallysittinginthecentral regionofsmallgroups,whichareprimarilyresponsibleforthere- Wehaveshownintheprevioussectionthatgalaxieswhichareeven movalofgas.This‘pre-processing’ effecthasbeenconsideredas moderatelyclosetogroupsandclustersintheGIMICsimulationare an explanation for reduced star forming fractions beyond r by 200 systematicallydepletedofhotandcoldgas,andareconsequently anumber of authors(e.g.,Berrieretal. 2009;McGeeetal.2009; less likely to be star-forming, compared to field galaxies of the Luetal.2012;Wetzel,Tinker&Conroy2012). samestellarmass.Inthefollowing,weaimtoidentifythephysical processes responsible for these trends. There are two broad cate- goriesofsuchmechanisms:directinteractionbetweenthehostand 2 Notethatwetakeintoaccountthatr200evolveswithredshift,asthehost itsgalaxiesatlargeradiiontheonehand,andindirecteffectssuch grows. (cid:13)c 0000RAS,MNRAS000,000–000 6 Y.M. Bahe´ et al. M* 9.0 - 9.5 M* 9.5 - 10.0 M* 10.0 - 10.5 M* 10.5 - 11.0 1.0 Hot gas 0.8 (M /M > 0.1) gas Star e 0.6 u al 0.4 v d ol 0.2 sh 0.0 e hr 1.0 Co ld G as e t 0.8 (M /M > 0.1) v gas Star o b 0.6 a s 0.4 e axi 0.2 al 0.0 g of 1.0 St ar for matio n n o 0.8 (sSFR > 10E-11 / yr) cti a 0.6 r Host mass F 0.4 13.0 - 13.5 1 s error 13.5 - 14.0 0.2 14.0 - 14.5 Field 15.2 0.0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 5 r / r 200 Figure2.Fractionofgalaxieswithlargehot(toprow)andcoldgascontent(middlerow),andhighspecificstarformationrates(bottomrow)respectively atz∼0.Panelsaresplitbystellarmassasgivenatthetop;differentlycolouredlinesrepresenthostsofdifferentmassasindicatedinthefigure.Theshaded regionsrepresentstatistical1s uncertainties.Dottedlinesshowtheresultsobtainedwhengalaxiesarebinnedbystellarmassatinfall(whencrossing5r200for thefirsttime),asopposedtoourstandardmethodwherewebinbystellarmassatthepointwhenthegalaxyis‘observed’—thereislittledifferencebetween thetwo.Therearecleartrendstowardslessgasandlowerstarforminglikelihoodwellbeyondr200. Apartfromtheobviouscaseofagalaxyactuallybeingiden- clesinshadesofgreen.Wenotethat,lookingaheadtoFig.10,the tifiedasasatelliteinaninfallinggroupatthepointofobservation, location of these hidden groups coincides with strong overdensi- therearetwoothercircumstancesinwhichagalaxycanbeaffected tiesofinfallinggas(asindicatedbytheirlongtailspointingaway bypre-processing:firstly,agalaxymayhavebeensuchasatellite fromtheclustercentre).Thisconfirmsthatthesehiddengroupsare inthepast,butsubsequentlyceasedtobe(forexample,becauseit real,physicalstructures.Furthermore,Fig.5alsohighlightsthose escapedthegroup’sgravitationalattractionorthegroupitselfwas galaxieswhicharenotmemberofanyinfallinggroupatz=0,but tidallydisrupted).Ontheotherhand,asexplainedinSection2,it wereinthepast,withorangecircles(filled/opendenotinggalaxies isalsopossibleforgroupstobeaccretedontoamassiveFoFhalo within/outsidethecluster’sFoFhalo).Alargenumberofgalaxies ofagalaxyclusterwithoutbeingdisrupted.Inthiscase,thegroup inthecentralregion(r/r ≤2)belongtothiscategory,butalsoa 200 satellitegalaxiesbecome—formally—satellitesoftheclusterin- noticeablenumberofgalaxiesaroundthegroupsatlargeradii. stead of the group, which in reality continues to affect them. To Combiningallthesevarioustypesofpre-processedgalaxies, identifysuch‘hidden’ groupswemakeuseofthefactthat,while Fig.6showsthatonaverageapproximatelyhalfthegalaxiesaround nolongerformingtheirownFoFhalo,theyareneverthelessagrav- themassiveclusterareaffected,increasingtowardsthecentrefrom itationallyself-boundentitywhichisdetectedasasinglesubhalo ∼30percentat5r to∼65percentwithinr .Inlowermass 200 200 bySUBFIND,withtheindividualgalaxieswithinthehiddengroup hosts, pre-processing is less common, decreasing to less than 20 identifiedassub-sub-haloes. per cent in the case of low-mass groups. Even in this case, pre- processingismuchmorecommonthanovershootingbeyond ∼3 Asanillustration,Fig.5showsaprojectedmapofallgalax- r and is therefore a significant contributor to the radial trends ieswithin5 r from thecentre of themassive galaxy cluster at 200 200 seeninFig.2. redshift z = 0. Galaxies unaffected by pre-processing (i.e., those thathavenever beensatellitesinagroupwithM≥1013M⊙)are We finally note that we define a galaxy as having been shownasblackcircles,filledonesrepresentinggalaxiesidentified been pre-processed if it was/is a subhalo of infalling group with aspartoftheclusterFoFhalowhileopenonesarenot.Ahandful Mbound ≥1013M⊙, which in practice typically means that it has of ‘open’ groups (not part of the cluster FoF halo) are shown by been within∼1.5 r200 of thegroup centre. Fig.2shows that the largeopen circlesin different shades of blue, all of them at rela- effect of environment around low-mass groups actually extends tivelylargedistances fromthecluster centre (r/r200>3).Further outslightlyfurtherthanthis,typicallyto∼2r200.Thus,wehave in, satellitesof threehidden groups areshown by largefilledcir- adopteda‘strong’definitionofpre-processinginthepresentwork. (cid:13)c 0000RAS,MNRAS000,000–000 Onsetofenvironmentalinfluence 7 Overshooting 1.0 8 Host mass Cluster FoF Not pre-processed (log M /M ) Other FoF Subgroup in past 0.8 10 bound Sun s 6 Subgroup (open) xie 1133..00 -- 1133..55 1 - 5 r200 Subgroup (hidden) a 1133..55 -- 1144..00 al 0.6 1144..00 -- 1144..55 g 4 of 1155..22 n o 0.4 cti 0 2 a 0 Fr 0.2 y/r2 1 s error 0 0.0 0 1 2 3 4 5 r/r -2 200 Figure3.Fractionofgalaxieswhichhavebeenwithinr200(z)ofthehost -4 centre and therefore, iffound at r>r200, havealready passed their first pericentre.Thisisverycommonwithin2r200.Outside3r200,ontheother hand,almostallgalaxiesareinfallingforthefirsttime. -4 -2 0 2 4 x/r 200 M 13.0 - 13.5 M 15.2 host host 1.0 Figure5.Pre-processedgalaxiesinthemassiveclusteratz=0(coloured All Overshot circles).Opencirclesinshadesofbluerepresentgalaxiesingroupsidenti- 5 0.8 First infall Pre-processed fiedasseparateFoFhalo,whilefilledcirclesingreenshadesshowgalaxies 9. Clean s9.0 - 0.6 ians‘ehlfi-dbdoeunn’dgrsouubp-hs,alwohwicihthatroetaplabrtooufndthmeamssainMcboluunsdte≥rF1o0F13hMal⊙o,.bGuatlafxoirems xieM* 0.4 shownwiththesamecolourbelongtothesamegroup.Blackcirclesshow ala 0.2 clustergalaxieswhicharenotinanygroup:filledonesareidentifiedaspart g oftheclusterFoFhalo,openonesresideinseparate haloes. Inthesame of 0.0 way,orangecirclesshowgalaxiesthatbelongedtoagrouponlyatz>0. on 1.0 Thedottedcirclesrepresentdistancesof(1,2,3,4,5)r200fromthecluster acti1.0 0.8 centre. Fr5 - 1 0.6 0. 1 0.4 M* Inprinciple,onecouldalsoadoptanevenlowermassthresholdfor 0.2 pre-processing sub-groups, but we have found that this has little 0.0 effectonourresults. 0 1 2 3 4 0 1 2 3 4 5 Thefractionofpre-processedgalaxieswhicharehotgasrich r / r200 (Mgas/M∗>0.1)isshowninFig.4togetherwiththeeffectofover- shooting discussed above. Pre-processed galaxies are represented Figure4.Radialtrendsinthefractionofgalaxieswithhotgasmassfraction by red lines; it is clear that their hot gas fraction is significantly abovethethresholdof0.1,usingdifferentsubsetsofourinfallgalaxysam- lowerthaninthefullsample(blacklines).Inthecaseoflow-mass ple.Blacklinesshowallgalaxies,asusedinFig.2,whileblueandgreen galaxies(toprow)theeffectisvirtuallythesameasthatofover- linesshowonlythosegalaxiesthatareinfallingforthefirsttimeandhave shooting: inbothcases,hardlyanyaffectedgalaxieshavesignifi- alsoneverbeeninagroup,respectively.Thegreenlinethereforerepresents cantamountsofhotgas,irrespectiveoftheirdistancefromthehost a‘clean’sampleofgalaxiesinwhichanytrendsareduetodirectinteraction centre.Theeffectissomewhatmilderformassivegalaxies(bottom withtheclusteratradiiequaltoorgreaterthanthecurrentpositionofthe row)butstillquitesignificant. galaxy.Furthermore,yellowandredlinesshowgalaxiesthathavealready Combiningtheeffectsofovershootingandpre-processing,we travelledthroughtheinnerregionsoftheirhostclusterorhaveatsomepoint inthepastbeensatellitesinadifferentsubhalo.Wherelinesdonotcover canforma‘clean’sampleofgalaxiesaffectedbyneither:theseare theentireradialrangethisisduetoalackofgalaxiesinagivencategory infallingforthefirsttimedirectlyfromthefield.InFig.4theyare atcertainradii,e.g.overshotmassivegalaxiesinlow-massgroupsatlarge shown in green; unsurprisingly their hot gas fractions are higher radii. thaninanyofthefourothersamples,atallradii.Adetailedcom- parisonbetweenthefullandcleangalaxysamples,forallM∗ and M isshowninFig.7.Theshadedbandsrepresentthefullsam- host ple (identical to Fig. 2), whereas the solid and dotted lines show thecorrespondingfractionofgalaxiesinthecleansampleandtheir statisticaluncertainties,respectively. Inthecaseofcoldgasandstarformation,thetrendsaremuch (cid:13)c 0000RAS,MNRAS000,000–000 8 Y.M. Bahe´ et al. Pre-processing quenchingofstarformationinlow-massgalaxiesfoundintheout- 1.0 skirtsofgroupsandclusters.Norcanitaccountfortheremovalof Host mass (log M /M ) hotgasofbothlow-massandhigh-massgalaxies.Thismeansthat 10 bound Sun aprocessmustexistbywhichgalaxiescanbeinfluenceddirectly 0.8 1133..00 -- 1133..55 1133..55 -- 1144..00 s 1144..00 -- 1144..55 1155..22 bythehostsatlargedistancesfromtheircentre.Inthissection,we xie arguethatthisprocessismostlikelydirectrampressurestripping a 1 s error due to interaction of the galaxies with an extended hot gas halo al 0.6 g surroundinggroupsandclusters. of Besides ram pressure, there are several other mechanisms on 0.4 which could also be responsible for removing gas from galaxies, cti inparticulartidalstrippingduetotheclusterpotentialorgalaxy– a galaxy interactions. In contrast to ram pressure, these processes r F 0.2 canbeexpected toaffect not onlythe(hot) gascontent of galax- ies,butalsothesimilarlyextendeddarkmatterhaloes.InFig.8we showtheevolutionofthehotgasanddarkmattercontentof‘clean’ 0.0 galaxiesfallingintoboththemassiveclusterandlow-massgroups, 0 1 2 3 4 5 focusingonlow-mass(logM∗/M⊙=[9.0,9.5])galaxiesforwhich r/r 200 theenvironmentaleffectisstrongest(seeFig.7),althoughwehave verifiedthatsimilartrendsarealsoseeninmoremassivegalaxies. Figure 6. Fraction of galaxies which have been satellites ofa halo with Makinguseofourgalaxytracingresults,wenormalisethehotgas massabove1013M⊙otherthanthehost,asafunctionofgalaxypositionat anddarkmattermassesbytheirrespectivevaluesatfirstcrossing timeofobservation.Differenthostmassbinsareshownindifferentcolours of5r200.Anydeviationfromunityinthese‘self-normalised’val- asindicatedatthetopofthefigure.Shadedbandsshowthecorresponding uesisnecessarilytheresultofchangesoccuringwithinindividual statistical1s uncertainties.Galaxiesinmoremassivehostsaremorelikely galaxies,andnotduetopotentiallydifferinggalaxyformationcon- tohavebeensatellitesinagroup,butwiththeexceptionofthemostmassive ditionsatdifferentdistancesfromthehostcentre. clustertherearenocleartrendswithgalaxyposition. Hotgasanddarkmatterclearlyevolveverydifferently:from 5r onwards,thehotgasmassdecreasessteadilywithdecreasing 200 radius(solidlines)withanoverallstrongereffectinthecaseofthe weaker in the clean sample, and for massive galaxies with M∗ cluster than low-mass groups (red and black lines, respectively). >∼1010M⊙ there is virtually no trend remaining - i.e., at all radii Intheformer,themajorityofgalaxieshavelostalloftheirhotgas the fraction of galaxies with appreciable cold gas or star forma- around3r andeveninlow-massgroupsthemedianhotgasmass 200 tionissimilartothatinthefield.Wheretrendsexist(forlow-mass ofgalaxiesisreducedto∼20percentbythispoint,comparedto galaxies),theyarestrongestinthecaseofgalaxiesnearthemassive thevalueat5r .Themassofthedarkmatterhalo,ontheother 200 cluster.However,amuchstrongerenvironmentalinfluenceremains hand,remainsnearlyconstant(dashedlinesinFig.8)attheselarge inthecaseofhotgas,withgalaxiesofallmassesthatwehaveex- radii,independentofhostmass.Thisimpliesthattheremovalofhot plored being affected out to large radii from the centres of both gasinthegroupandclusteroutskirtsisduetoaprocesstargeting groupandclusterhosts. exclusively baryons while leaving the dark matter halo basically untouched—preciselythebehaviourthatwouldbeexpectedfrom rampressurestripping. 4.2.1 Summary Our conclusions so far from this section may be summarised as 4.3.1 Expectedeffectoframpressure follows:thestrongradialtrendsincoldgasandstarformingfrac- tion seen in Fig. 2 are largely caused by overshooting and pre- To test the ram pressure stripping hypothesis further, we directly processing, especially in the case of massive galaxies with M∗ compare the ram pressure and gravitational restoring forces on >∼1010M⊙.Outofthesetwoindirectmechanisms,overshootingis galactichotandcoldgasinFig.9.Foreachgalaxy,rampressureis generallydominantwithin∼2r ,whileatlargerradiithetrends computedas 200 aremostlyduetopre-processing.Thelowest-massgalaxies,onthe otherhand,showappreciableradialtrendsintheirretentionofcold Pram=v2ICMr ICM (1) gasandstarformingactivityevenwhenpre-processing andover- wherev isthevelocityof thegalaxyrelativetothesurround- ICM shootingareexcluded.Intermsofhotgas,theradialvariationfor ingICMofdensityr .Todeterminethesetwovalues,weselect ICM both low- and high-mass galaxies is very similar in the full and foreachgalaxytheN=3000closestgasparticles3 whicharenot ‘clean’samples.Therefore,adirectinfluenceofthegrouporcluster membersofanygravitationallyboundsubhalo(exceptforthemain environmentmustextendouttoatleast∼5r200.Intheremainder subhaloinahostgrouporcluster).Thisensuresthatourmeasure- ofthepaper,weinvestigatethisinfluence,andthereforeuseonly mentsofICMdensityandvelocityarenotinfluencedbyparticles thecleangalaxysamplefromhereon. innearbygalaxies,butactuallyrepresenttheICM.Toexcludecon- taminationbygasaccretedby,orstrippedfrom,thegalaxyunder 4.3 Directgalaxy–hostinteraction:tidalandrampressure stripping 3 WehaveexperimentedwithvariousvaluesofNandfoundN=3000to betheoptimalvalue.FortoolowN,particle-to-particle scatterinvelocity Intheprevioussection,weshowedthatneitherpre-processingnor anddensitybecomesnoticeable,whereasattoohighvaluesofNweareno overshootingcancanfullyaccountforthedepletionofcoldgasand longerdeterminingthelocalproperties. (cid:13)c 0000RAS,MNRAS000,000–000 Onsetofenvironmentalinfluence 9 M* 9.0 - 9.5 M* 9.5 - 10.0 M* 10.0 - 10.5 M* 10.5 - 11.0 1.0 Hot gas 0.8 (M /M > 0.1) gas Star e 0.6 u al 0.4 v d ol 0.2 sh 0.0 e hr 1.0 Cold Gas e t 0.8 (M /M > 0.1) v gas Star o b 0.6 a s 0.4 e axi 0.2 Full sample al 0.0 (1s error) g of 1.0 Star f ormin g n o 0.8 (sSFR > 10E-11 / yr) acti 0.6 Host mass Fr (log10 M/MSun) Field 0.4 13.0 - 13.5 13.5 - 14.0 Clean sample 0.2 14.0 - 14.5 (1s error) 15.2 0.0 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 r / r 200 Figure7.Comparisonbetweenradialtrendsforthe‘clean’galaxysample,containingonlygalaxieswhichhaveneverbeenwithinr200,andhaveneverbeen satellitesinanotherhalothanthemainhost(shownbysolidlines,dottedlinesgivestatistical1s uncertainties)andthefullsamplefromFig.2(shadedregions showingstatistical1s uncertainties, forclaritywehaveomittedthemaintrendforthissample).Inthecleangalaxysample,radialtrendsaresignificantly weakerandstartatsmallerradii,withtheexceptionofhotgasandlow-massgalaxies. consideration, we also exclude any gas particles that have previ- ing force per unit area) exerted by the galaxy. Following ouslybeen,orwillsubsequentlybe,boundtoit. McCarthyetal.(2008),wecomputethisquantityas TheleftcolumnofFig.9shows,for‘clean’(notpre-processed or overshot) galaxies in low-mass groups (top) and the massive a GM(<r)r (r) cluster (bottom), thedistributionof resulting rampressure values Prestore(r)= (2) r with varying distance from the host centre. The median trend is givenbythethickblackline,whilethedarkandlightgreyregions whereM(<r)isthetotalmasswithingalacto-centricradiusr,r (r) enclose50and90percentofallgalaxies,respectively.Inbothlow- the density of thegas phase (hot or cold, defined asdiscussed in massgroupsandthemassivecluster,rampressureisincreasingto- section 3) under consideration, and a is a geometric constant of wardsthecentre,butthetrendisstrongerinthelattercasewhere orderunity.McCarthyetal.(2008)finda =2,whichweadoptfor it varies by approximately 3 orders of magnitude between 5 r 200 ourcalculationsaswell,althoughtheexactchoiceof thisparam- and r asopposed to‘only’ 2orders of magnitude inlow-mass 200 eter has no influence on our conclusions. Using equation (2), we groups over the same radial range. Whiletheram pressure expe- computehotandcoldgasrestoringpressureprofilesforallGIMIC riencedbygalaxiesintheoutskirtsofbothgroupsandclustersis fieldgalaxies(centralsthathaveneverbeenwithin5r ofagroup 200 similar(atsamer/r ),galaxiesnearthecentreofaclusterthere- 200 orcluster)astheserepresentthe‘initialcondition’ofgalaxiesbe- foreexperienceconsiderablyhigherrampressurelevelsthantheir foreinfallintoagrouporcluster.Toconnectthepressurecompar- groupcounterparts.Weshowbelowthatthisisprimarilyaconse- isondirectlytothegascontent,wefurthermorefindforeachfield quenceofthehigherorbitalvelocitiesofgalaxiesinmassiveclus- galaxyinoursampletherestoringpressureattheradiusenclosing ters.Apartfromthisoveralltrend,thereisalsosubstantialscatterin aseriesofspecifichotandcoldgasmasses(i.e.,Mgas/M∗)inthe therampressurevalues,inparticularintheouterregions.Galaxies range−2.5≤log10Mgas/M∗≤0.5.Theresultingtrends,median- atadistanceof4–5r fromthecentreofamassiveclustercan 200 stackedinbinsofsimilarstellarmassareshowninthemiddleand experiencerampressuredifferingbyabout5ordersofmagnitude, rightcolumnsofFig.9andgivethetypicalleveloframpressurere- arange considerably larger than thesystematicvariation withra- quiredtostripagalaxytoagivengasmassorouterlimitingradius, dialdistance.Wewillinvestigatetheoriginandimplicationsofthis respectively.Wenotethat,instackinggalaxies,weincludeateach scatterinSection5below. pointonlythosethatactuallyhavehotorcoldgasofthismassor Gas will be removed from the infalling galaxies if the extendingouttothisradiusandonlyshowthosedatapointswhere ram pressure exceeds the gravitational restoring pressure (restor- thisisthecaseforatleast5percentofthegalaxiestogiveamean- (cid:13)c 0000RAS,MNRAS000,000–000 10 Y.M. Bahe´ etal. of galaxies (top) is seen out as far as 5 r in all environments, 200 whereascoldgasisonlyaffectedinlow-massclustergalaxies,as M = 15.2 predictedfromourpressurecomparison. 1.5 host 1 s error Wefinallynotethattherestoringpressureprofilesthemselves M = [13.0, 13.5] host showaninterestingdifferencebetweencoldandhotgas:thosefor coldgasarerelativelyflatoutside∼5kpcwhilethehotgaspro- filesshowasteadydeclinefromthecentralregionoutwards.This al 1.0 suggeststhathotgasisstrippedgraduallyfromtheoutsideasthe niti rampressureactingonagalaxyincreases,whereaswhenthecold Mi Hot gas M / Dark Matter govaserfianashlloyrtbetigminesstcoalbee. stripped,virtuallyallofitwillberemoved 0.5 0.0 5 INFLUENCEOFFILAMENTS 1 2 3 4 5 5.1 Originoftherampressurescatter r / r 200 WhileFig. 9 confirms that there isa general trend to higher ram pressurevaluestowardsthehostcentre,italsorevealsstrongscat- Figure 8.Evolution ofthe hot gas and darkmatter content of low-mass ter,particularlyintheouterregions.Atr∼5r fromthecentreof 200 galaxiesfallingintohostsforthefirsttimewithouthavingbeenaffectedby thebigcluster,therampressurevariesbetweengalaxiesatthesame pre-processing.Solidlinesshowthemedianhotgasmass,dashedlinesthe distancefromthecentrebyfiveordersofmagnitude,substantially mediandarkmattermass,bothnormalisedforeachgalaxytotherespective morethanthevariationinthemedianrampressureovertheradial values at firstcrossing of5r200. Thered lines represent galaxies falling rangeconsideredhere.Inthissection,weinvestigatetheoriginof intothemassiveclusterinthe+2s simulation,blackonesthosefallinginto thisscatteranditsimplications. low-massgroups.Thereisacleardifferencebetweentheevolutionofthe hotgascontent,whichdecreaseswithin∼5r200,anddarkmatter,which, An obvious possibility is that we have so far only distin- irrespectiveofhalomass,increasesslightlyuntil∼2r200.Thisimpliesthat guished between galaxies by their radial distance from the host atlargedistancesfromthehostcentre,thehotgasisremovedbyaprocess centre, thereby implicitly assuming that our hosts are spherically targetingexclusivelybaryons,suchasram-pressurestripping,andnotbya symmetric systems. This is rather unlikely: it is a long-standing moreindiscriminateonesuchastidalstripping. predictionofcosmologicalsimulationsthatgroupsandclustersof galaxiesaretriaxialsystemslinkedbyfilamentsofbothdarkmat- terandgas,andthereisnowincreasingobservationalevidencethat ingfulpictureofhowtightlyboundthegastypicallyis.Forhotgas, thisisindeedthecase(e.g.,Dietrichetal.2012;Adeetal.2012). weshowtherestoringpressureprofilesoveraradialrangefrom0 Galaxiesfallinginalongthesefilamentshaveaverydifferentin- to500kpc(physical),butbecausethecoldgascomponentismuch fallexperiencefromthoseaccretedthroughlargelyemptyregions morecentrallyconcentrated,weuseasmallerradialrangefrom0 (voids), which we now investigate in detail. As before, we focus to30kpchere. exclusivelyonthe‘clean’galaxysamplewhichareinfallingforthe It is evident that cold gas is much more tightly bound than firsttimewithouthavingbeenaffectedbypre-processing. hot gas when comparing the middle/right top and bottom panels. As a parameter to distinguish between galaxies in filaments Thetypicalrestoringpressureoncoldgasrangesfrom10−11Pain andvoids,wechoosethe‘localoverdensity’,whichwedefineas themostmassivegalaxies(red)to10−13 Painlow-massgalaxies (blue)attheradiusenclosing0.1M∗ incoldgas.Bycomparison, D r =r local/r profile(rgalaxy) (3) eveninmassivegalaxies,thecorresponding restoringpressureon hot gas is only 10−14 Pa, which drops to 10−15 Pa in low-mass wherer isthelocallydeterminedICMdensityobtainedasdis- local galaxies.Thereasonforthisisthatcoldgasisnotonlydenser,but cussedintheprevioussectionandr profile(rgalaxy)isthecorrespond- alsositsmuchclosertothegalacticcentre. ingsphericallyaveragedgasdensityattheradiusofthegalaxy.In Bycomparison,thetypicalrampressurereachesamaximum aperfectlysphericallysymmetrichost,eachgalaxywouldhavea level of 10−12.5 Pa, in the case of the massive cluster near r200, valueof D r =1;inamorerealisticsystem, galaxiesinfilaments withsomegalaxiesreachinglevelsupto10−12 Pa.Thisisclearly arethosewiththehighestD r whilethoseinvoidshavethelowest toolowtostripcoldgasinmassivegalaxies,butjustsufficientfor values.HavingdeterminedD r ,wethenbingalaxiesineachsnap- thosewithlowerstellarmasses.Outside∼2r200 andinlessmas- shotaccordingtohostmassandrankthegalaxiesineachbinbyD r . sivehosts,however,nogalaxiesexperiencesufficientrampressure Thehighest quartileineachbinisidentifiedasfilamentgalaxies, todirectlystripcoldgas.Hotgasontheotherhand,boundbyap- andthelowestasthoseinvoids.Thisensuresthatwehaveequal proximatelytwoordersof magnitude lesstightly, canbestripped numbersoffilamentandvoidgalaxydatapointsandthatbothalso efficiently:evenmassivegalaxies(red)canbeaffectedoutto∼2 havethesamedistributioninredshiftandhostmass.InFig.10we –3r inclusters,andmanylow-massgalaxiesaresubjecttosuf- showthelocationsofbothfilamentandvoidgalaxiesinthemas- 200 ficientrampressure(∼10−15Pa)evenat5r200.Eveninlow-mass siveclusteratz=0,superimposedonamapoftheICMgasdensity. groups,hotgascanbeexpectedtobestrippedoutto∼2r inall Asexpected,filamentgalaxiesarestronglyspatiallyclusteredand 200 galaxies,andinalargefraction(>25percent)outto5r200. are mostly found in two bands fanning out towards the top right Theseexpectationsagreewellwiththeactualevolutionofthe andtheleft,whichisexactlytheregionwhereprominentfilaments gas content as seen in Fig. 7. In particular, stripping of hot gas canbeseeninthegasdensitymap.Thevoidgalaxies,however,are (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.