ebook img

Who's afraid of aggregating money metrics? PDF

20 Pages·2017·0.68 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Who's afraid of aggregating money metrics?

TheoreticalEconomics13(2018),467–484 1555-7561/20180467 Who’safraidofaggregatingmoneymetrics? KristofBosmans DepartmentofEconomics,MaastrichtUniversity KoenDecancq HermanDeleeckCentreforSocialPolicy,UniversityofAntwerp ErwinOoghe DepartmentofEconomics,KULeuven We provide an axiomatic justification to aggregate money metrics. The key ax- iom requires the approval of richer-to-poorer transfers that preserve the over- all efficiency of the distribution. This transfer principle—together with the ba- sicaxiomsofanonymity,continuity,monotonicity,andaversionofwelfarism— characterizes a standard social welfare function defined over money metric utilities. Keywords.Moneymetricutility,transferprinciple,efficiency. JELclassification.D61,D63,D71,I31. 1. Introduction Themoneymetricutilityofanindividualistheminimumincome,computedatrefer- enceprices,thatsheneedstoreachabundlethatisatleastasgoodasheractualbun- dle(McKenzie1957,Samuelson1974). Moneymetricutilityformsthebasisofapplied welfareanalysis. Itis, forexample,standardpracticetoevaluatepolicyreformsbythe changeinmoneymetricutilityusingasreferencepricesthepre-reformprices(theHick- sianequivalentvariation)orpost-reformprices(theHicksiancompensatingvariation).1 However, several theoretical objections have been raised against the aggregation of money metrics.2 The most powerful critique came from Blackorby and Donaldson (1988). They show that the money metric utility function is, in general, not concave. Thisimpliesthatastandard(quasiconcave)socialwelfarefunctiondefinedovermoney metricsmayfailtoapprovetransfersfromrichertopoorerindividuals. KristofBosmans:[email protected] KoenDecancq:[email protected] ErwinOoghe:[email protected] WethankAntoineBommier,AndréDecoster,MarcFleurbaey,NicolasGravel,FrançoisManiquet,Paolo Piacquadio, Erik Schokkaert, Alain Trannoy, and audiences in Bari (Fifth Meeting of ECINEQ), Gent (GhentUniversity),Glasgow(UniversityofGlasgow),Leuven(KULeuven),Louvain-la-Neuve(Université CatholiquedeLouvain),Lund(ThirteenthMeetingoftheSocietyforSocialChoiceandWelfare),Luxem- bourg(SixthMeetingofECINEQ),Marseille(Aix-MarseilleUniversity),andZürich(ETHZürich)foruseful comments.Theauthorsareresponsibleforremainingshortcomings. 1SeeSlesnick(1998)foranoverview. 2SeeFleurbaey(2009,pp.1052–1055)foradiscussion. Copyright©2018TheAuthors. ThisisanopenaccessarticleunderthetermsoftheCreativeCommons Attribution-NonCommercialLicense,availableathttp://econtheory.org.https://doi.org/10.3982/TE2825 468 Bosmans,Decancq,andOoghe TheoreticalEconomics13(2018) Figure1. Atransferingoodsthatisleakyinmoneymetrics. Figure1illustratestheproblem. Individuals1and2haveidenticalpreferencesover thegoodsaandb. Abundleδistransferredfromthericherindividual2tothepoorer individual1.3 Thedistancesbetweenthestraightlinesrepresentthechangesinmoney metric utility (for some reference price vector). Clearly, the transfer is leaky: the gain in money metric utility of the poorer individual is smaller than the loss of the richer individual.Therefore,onlyasocialwelfarefunctionexhibitingasufficientlyhighdegree ofinequalityaversionwouldapprovethedepictedtransfer. Moreover,bychangingthe shapeoftheindifferencecurves,theleakcanbemadearbitrarilylarge.Thismeansthat nosocialwelfarefunctionapprovesallricher-to-poorertransfers,withtheexceptionof Rawlsian social welfare functions—such as maximin or leximin—that assign absolute prioritytothepoorerofthetwoindividuals. Thisobservationhasgivenrisetotwofar-reachingandopposingresponses. Black- orbyandDonaldson(1988,p.129)concludenegatively,statingthat“socialwelfareanal- ysisbasedonmoneymetricsisflawed.” FleurbaeyandManiquet(2011,p.21),bycon- trast, conclude that “this observation (cid:3)(cid:3)(cid:3), instead of undermining the approach, can serve to justify the maximin or the leximin as aggregation criteria.” Although the two responsesarediametricallyopposed,theysharethepremisethattheapprovalofricher- to-poorertransfersisanessentialrequirementforallsocialwelfarerankings. We question this premise. We argue that not every richer-to-poorer transfer is an unequivocalimprovement. Suchatransfer,whileimprovingequity,mayhavetheside effect of worsening the overall efficiency of the distribution. To see this, note that the transfer in Figure 1 transforms an efficient distribution—with equal marginal rates of 3ThetransferdepictedinFigure1yieldspost-transferbundlesthatareconvexcombinationsofthepre- transferbundles.BlackorbyandDonaldson(1988)imposethisasarestrictiononricher-to-poorertransfers. Thisrestrictionisnotessential,however,andwewillnotimposeitinouranalysis. TheoreticalEconomics13(2018) Aggregatingmoneymetrics 469 substitution—intoaninefficientdistribution.Hence,thejudgmentofwhetherapartic- ulartransferimprovessocialwelfaredependsonthepositiononetakeswithrespectto theequity–efficiencytrade-off. Byinsistingthatalltransfersmustbeapproved,regard- lessoftheassociatedefficiencylosses,BlackorbyandDonaldson(1988)andFleurbaey and Maniquet (2011) implicitly take the extreme stance that gives absolute priority to equity over efficiency. In this light, it is not surprising that they arrive at such strong conclusions. Weintroduceatransferprinciplethatrequirestheapprovalofonlythosetransfers thatpreserveefficiency.Thisobviouslyrequiresawaytomeasureefficiency.Ratherthan choosingamongthemanyefficiencymeasuresthathavebeenproposedintheliterature (seeDiewert1985foranoverview), wefocusonwhattheyhaveincommon. Allthese measuresquantifyefficiencybywhatcouldbedisposedofwithoutloweringanyindi- vidual’sutility. Formally,theymeasurethedistancebetweentheactualsocietalbundle (listingthetotalamountsofallgoods)andtheScitovksyboundary(collectingthemini- mumsocietalbundlesthatcandelivertoeachindividualthesameutilitylevelasherac- tualutilitylevel). Wedefineanefficiency-preservingtransferasatransferthatchanges neitherthesocietalbundlenortheScitovksyboundary. Allefficiencymeasuresunani- mouslyagreethatsuchatransferpreservesefficiency. Ourtransferprincipledemands thatonlyefficiency-preservingtransfershavetobeapproved.4 We combine the efficiency-preserving transfer principle with the basic axioms of anonymity, continuity, monotonicity, and a version of welfarism. Our main result has twoimplications.First,acontinuous,strictlyincreasing,andSchur-concavesocialwel- farefunctiondefinedovermoneymetricutilitiessatisfiesallfiveaxioms.5 Contraryto theconclusionofBlackorbyandDonaldson(1988),theuseofmoneymetricsinsocial welfareanalysiscanbejustified. Inparticular, sinceanystandardsocialwelfarefunc- tionovermoneymetricsisadmissible,itisnotnecessary—contrarytotheconclusionof FleurbaeyandManiquet(2011)—toadoptaRawlsiansocialwelfarefunction. Second, and more strikingly, the opposite is also true: only if the social ranking can be repre- sentedinthisparticularform,doesitsatisfyallaxioms. Insum,weshownotonlythat onecan,butalsothatonemust,aggregatemoneymetrics. Weproceedasfollows. Section2introducesnotationandthefiveaxioms. Section3 presentsanddiscussesthemainresult.Section4concludes. 2. Axioms 2.1 Preliminaries Thesetofindividuals in societyis N ={1(cid:4)2(cid:4)(cid:3)(cid:3)(cid:3)(cid:4)n} with n≥2. Eachindividual i hasa bundlexi inX =Rm+ withm≥2. Fortwobundlesxandy inX,wewritex≥y ifxk≥yk 4ChambersandHayashi(2012)alsomakeuseoftheScitovskyboundarytostudysocialwelfarerankings, butforaverydifferentpurpose.Theirinterestliesininformationalparsimony.Theyrequirethesocialrank- ingoftwodistributionstodependsolelyontheaggregatedatacontainedinthecorrespondingScitovsky boundaries.Thisexcludesanyconcernforequity,whichispreciselyourfocus. 5Schur-concavityisaweakversionofconcavitythatisstandardintheliteratureoninequalitymeasure- ment.See,e.g.,Dasguptaetal.(1973). 470 Bosmans,Decancq,andOoghe TheoreticalEconomics13(2018) foreachk=1(cid:4)2(cid:4)(cid:3)(cid:3)(cid:3)(cid:4)m,wewritex>y ifx≥y andx(cid:3)=y,andwewritex(cid:4)y ifx >y k k foreachk=1(cid:4)2(cid:4)(cid:3)(cid:3)(cid:3)(cid:4)m. WedenotetheboundaryofthesetA⊆X by∂A.6 Thesumof twosubsetsAandBofX isdefinedtobethesetofallsumsofanelementofAandan elementofB.Thatis,A+B={z∈X |z=x+ywithxinAandyinB}. Each individual i has a preference relation R over bundles in X. As usual, xR y i i meansthatbundlex isatleastasgoodasbundle y accordingtoindividual i, whereas P and I denote the corresponding strict preference and indifference relations. We i i write x R A to denote that bundle x is at least as good as all bundles in set A ac- i cording to individual i. For a bundle-preference pair (x (cid:4)R ), the better-than set is i i B(x (cid:4)R )={y ∈X |y R x }. We sometimes use B as shorthand for B(x (cid:4)R ). Individ- i i i i i i i ualpreferencesbelongtoR,thesetofcomplete,transitive,continuous,monotone,and convexpreferencerelations.7 AdistributionX=(x (cid:4)x (cid:4)(cid:3)(cid:3)(cid:3)(cid:4)x )inXncontainsabundleforeachindividualinN. 1 2 n Werefertothesumofallbundlesx +x +···+x asthesocietalbundle.Apreference 1 2 n profileR=(R (cid:4)R (cid:4)(cid:3)(cid:3)(cid:3)(cid:4)R )inRncontainsapreferencerelationforeachindividualinN. 1 2 n Asocialrankingspecifiesforeachpreferenceprofileasocialpreferencerelationover all distributions.8 Formally, a social ranking (cid:2) maps each preference profile R in Rn intoacompleteandtransitivesocialpreferencerelation(cid:2) onXn. WeuseX (cid:2) Y to R R denotethatdistributionXisatleastasgoodasdistributionY intermsofsocialwelfare. The relations (cid:7) and ∼ denote the corresponding strict social preference and social R R indifferencerelations. 2.2 Threebasicaxioms We define three basic axioms. Anonymity requires that switching the bundles of two individualswiththesamepreferencesdoesnotchangesocialwelfare. Anonymity. For each preference profile R in Rn, for each distribution X in Xn, and forallindividualsiandj inN suchthatR =R ,wehave(x (cid:4)(cid:3)(cid:3)(cid:3)(cid:4)x (cid:4)(cid:3)(cid:3)(cid:3)(cid:4)x (cid:4)(cid:3)(cid:3)(cid:3)(cid:4)x )∼ i j 1 i j n R (x (cid:4)(cid:3)(cid:3)(cid:3)(cid:4)x (cid:4)(cid:3)(cid:3)(cid:3)(cid:4)x (cid:4)(cid:3)(cid:3)(cid:3)(cid:4)x ). 1 j i n Continuityensuresthatsmallchangesindistributionsdonotleadtolargechanges intheirsocialranking. Continuity. ForeachpreferenceprofileRinRn,foralldistributionsX andY inXn, andforeachsequenceofdistributions{Xk}k∈NthatconvergestoX,ifXk(cid:2)RY foreach kinN,thenX(cid:2) Y,andifY (cid:2) XkforeachkinN,thenY (cid:2) X. R R R 6Let(cid:9)x−y(cid:9)betheEuclideandistancebetweenbundlesxandy. TheboundaryofthesetA(relative toX)isdefinedas∂A={x∈A|foreachε>0,thereisabundle yinX\Asuchthat(cid:9)x−y(cid:9)<ε}. 7ApreferencerelationRiiscompleteifxRiyoryRixforallxandyinX. ItistransitiveifxRiyand yRizimplyxRizforallx,y,andzinX. Itiscontinuousifeachbetter-thansetandeachworse-thanset isclosed. Itismonotoneifx(cid:4)yimpliesxPiy forallxandyinX. Itisconvexifeachbetter-thansetis convex. 8Thus, we focus on social comparisons for a fixed population with a given preference profile. It is straightforwardtoextendtheanalysistocomparisonsacrosssocietieswithdifferentpopulationsizesand preferenceprofiles. TheoreticalEconomics13(2018) Aggregatingmoneymetrics 471 Although continuity excludes leximin, the axiom is compatible with social prefer- encerelationsarbitrarilyclosetoleximin. Monotonicityimposesthatincreasingallamountsinsomeindividual’sbundleim- provessocialwelfare. Monotonicity. ForeachpreferenceprofileRinRn andforalldistributionsX andY in Xn, if x ≥y foreachindividual i in N and x (cid:4)y forsomeindividual i in N, then i i i i X(cid:7) Y. R Individualpreferencesaremonotone.Therefore,monotonicityofthesocialranking isimpliedbytheParetoprinciple(obtainedbyreplacing≥inthemonotonicityaxiom byR and(cid:4)byP ).Notethat,conversely,thecombinationofallouraxiomsimpliesthe i i Paretoprinciple(seeLemma1below). 2.3 Referencesetwelfarism Weimposereferencesetwelfarismasourfourthaxiom.9 Tothebestofourknowledge, thisversionofwelfarismunderliesallexistingapproachesthatbasesocialwelfarerank- ingsonordinalandnoncomparableindividualpreferences(seeFleurbaeyandBlanchet 2013,Chapter4,foranoverview).Forelementaryaxiomaticunderpinningsofreference setwelfarism,seeCato(2016)andPiacquadio(2017). Reference set welfarism prescribes two steps to rank distributions. The first step usesalistofreferencesetstocardinalizeeachindividualsituation—abundle-preference pair—intoautilityvalue.Thesecondstepusestheresultingvectorsofindividualutility valuestorankdistributions. Wenowturntoadiscussionofreferencesetsandtheiruse inreferencesetwelfarism. Referencesetsaresetsofbundles.Consideralistofnestedreferencesets.Eachrefer- encesetislabelledusingarealnumber,withlargersetsreceivinglargernumbers.These realnumbersareusedtocardinalizebundle-preferencepairs. Eachbundle-preference pairisassignedautilityvalueequaltothenumberofthereferencesetthatisjusttangent totheindifferencecurvethroughthebundle.Figure2showsthreenestedreferencesets, labelledbythenonnegativerealnumbersα,β,andγ,withα<β<γ. Forthedepicted bundle-preferencepair(x (cid:4)R ),theassignedutilityvalueisβ. i i Westressthattheobtainedutilityvaluesaretreatedasinterpersonallycomparable. Twoindividualswhoseindifferencecurvesaretangenttothesamereferencesetareas- signedthesameutilityvalueand,hence,areregardedasequallywelloff. Thechoiceof alistofreferencesetsdetermineshowinterpersonalcomparisonsaremadeandmust thereforebebasedonvaluejudgments. Ouraxioms,andespeciallythetransferprinci- ple,makethesevaluejudgmentsexplicitand,asTheorem1demonstrates,putconsid- erablestructureontheshapeofthereferencesets. WenowformalizethepropertiesofalistofreferencesetsS=(Sλ)λ∈R+. Alistcon- tainsacompactreferencesetSλ⊆X foreachλinR+,startsfromtheorigin(S0={0}), expandsinastrictlynestedway(λ<μimpliesS ⊂S and∂S ∩∂S =∅),andhasno λ μ λ μ 9Fleurbaey(2009)referstoreferencesetwelfarismastheequivalenceapproach. 472 Bosmans,Decancq,andOoghe TheoreticalEconomics13(2018) Figure2. Ageneralexample. (cid:2) gaps(theunionofallboundaries λ∈R+∂Sλ isequaltothesetofbundlesX). Because individual preferencesaremonotone, we can, without loss of generality, requireaddi- tionallythateachlistsatisfiesfreedisposal(if x belongsto S , theneachbundle y ≤x λ belongstoS ).LetS bethesetofalllistsofreferencesetsthatsatisfytheseproperties. λ For a given list of reference sets S in S, the utility value assigned to a bundle- preference pair (x (cid:4)R ) is the greatest number λ for which x R S . Accordingly, the i i i i λ referencesetutilityfunctionu isdefinedas S u (x (cid:4)R )=max{λ|x R S } foreachx inX andeachR inR. (1) S i i i i λ i i ThepropertiesofthepreferencesinRandofthelistsofreferencesetsinS ensurethat the reference set utility function u in (1) is well defined, unique, and continuous (in S bundles). Thisutilityfunctionrepresentsthepreferencerelation,i.e.,forallbundlesx andy inX,wehaveu (x(cid:4)R )≥u (y(cid:4)R )ifandonlyifxR y. S i S i i Beforewestatetheaxiomreferencesetwelfarism, wedefinetwoprominentrefer- encesetutilityfunctions.10 Thequantitymetricutilityfunction, illustratedintheleft- handpanelofFigure3,isdefinedby(1)withS ={x∈X |x≤λr}forafixedreference λ bundle r (cid:4) 0.11 Quantity metric utilities were introduced by Samuelson (1977) and Pazner and Schmeidler (1978) in welfare economics. The money metric utility func- tion, which we denote by u , is illustrated in the right-hand panel of Figure 3. The p (cid:3) function up is defined by (1) with Sλ ={x∈X | mk=1pkxk ≤λ} for a fixed reference price vector p(cid:4)0. Money metric utilities were introduced by McKenzie (1957) and Samuelson (1974), and applied in welfare economics by Deaton (1980), King (1983), RavallionandvandeWalle(1991),CreedyandHérault(2012),andChiapporiandMeghir (2014),amongothers. Reference set welfarism requires that welfare comparisons are based on reference set utility valuesonly. Fora list of referencesets S, a distribution X, and a preference 10SeethediscussioninDeatonandMuellbauer(1980,pp.179–182). 11Weuse0todenoteavectorofzeroesofappropriatelength. TheoreticalEconomics13(2018) Aggregatingmoneymetrics 473 Figure3. Quantitymetricandmoneymetricutility. profile R, weabbreviatethevectorofreferencesetutilities (u (x (cid:4)R )(cid:4)u (x (cid:4)R )(cid:4)(cid:3)(cid:3)(cid:3)(cid:4) S 1 1 S 2 2 u (x (cid:4)R ))byu (X(cid:4)R). S n n S Reference set welfarism. There exists a list of reference sets S in S and a binary relation(cid:2)∗definedoverreferencesetutilityvectorsinRn+suchthat,foreachpreference profileRinRnandforalldistributionsX andY inXn,wehave X(cid:2) Y ifandonlyif u (X(cid:4)R)(cid:2)∗u (Y(cid:4)R), R S S whereu isthereferencesetutilityfunctiondefinedin(1). S Weconcludethissectionbycombiningreferencesetwelfarismwithanonymity,con- tinuity,andmonotonicity. Asocialrankingsatisfiesthesefouraxiomsifandonlyifthe social ranking can be represented by a continuous, strictly increasing, and symmetric socialwelfarefunctiondefinedoverreferencesetutilities. Westatethisstraightforward resultwithoutproof. Lemma1. Asocialranking(cid:2)satisfiesanonymity,continuity,monotonicity,andreference set welfarism if and only if there exists a list of reference sets S in S and a continuous, strictlyincreasing,andsymmetricsocialwelfarefunctionW :Rn+→Rsuchthat,foreach preferenceprofileRinRnandforalldistributionsX andY inXn,wehave (cid:4) (cid:5) (cid:4) (cid:5) X(cid:2) Y ifandonlyif W u (X(cid:4)R) ≥W u (Y(cid:4)R) , R S S whereu isthereferencesetutilityfunctiondefinedin(1). S ThefouraxiomsinLemma1leaveopenthequestionofwhichlistofreferencesets touse.12 Ourfinalaxiom,theefficiency-preservingtransferprinciple,willdeterminethe shapeofthereferencesets. 12ThesocialrankinginLemma1satisfiestheParetoprinciple. Indeed,thesocialwelfarefunctionW is strictlyincreasingandtheutilityfunctionuSisarepresentationofindividualpreferences. 474 Bosmans,Decancq,andOoghe TheoreticalEconomics13(2018) 2.4 Anefficiency-preservingtransferprinciple Underlying the conclusions of Blackorby and Donaldson (1988) and Fleurbaey and Maniquet(2011),whichwediscussedintheIntroduction,istheiracceptanceofastrong transferprinciplethatwedefineasfollows.13 Societal-bundle-preservingtransferprinciple. ForeachpreferenceprofileRin Rn, for all distributions X and Y in Xn, and for all individuals i and j in N such that R =R , if X is obtained from Y by a richer-to-poorer transfer from j to i (y (cid:15)x (cid:15) i j i i x (cid:15)y andx =y fork(cid:3)=i(cid:4)j)thatpreservesthesocietalbundle(x +x =y +y ),then j j k k i j i j X(cid:2) Y. R The transfer in this principle preserves the societal bundle, but may considerably worsentheefficiencyofhowthissocietalbundleisdistributed. Thetransferdepicted inFigure1illustratesthispoint: itpreservesthesocietalbundle, buttakesusfroman efficient distribution (where the marginal rates of substitution are equal) to an ineffi- cient distribution (where they are unequal). We introduce a weaker transfer principle thatrequiresonlytheapprovalofthosetransfersthatpreserveefficiency. We develop a concept of efficiency preservation based on the two building blocks of the efficiency measurement literature: the actual societal bundle and the Scitovsky boundary. TheScitovskyboundarycollectstheminimumsocietalbundlesabletode- livertoeachindividualtheutilitylevelsheobtainsintheactualdistribution(Scitovsky 1942). Formally,foradistributionX andapreferenceprofileR,theScitovskysetisde- finedasthesumofthebetter-thansetsB +B +···+B ,andtheScitovskyboundaryis 1 2 n ∂(B +B +···+B ). AdistributionisefficientonlyifitssocietalbundleliesontheSc- 1 2 n itovskyboundary: forthegivensocietalresources,noindividualcanbemadebetteroff withoutmakinganotherindividualworseoff.Commontoallefficiencymeasuresinthe literatureisthattheyquantifyinefficiencyasthedistancebetweenthesocietalbundle andtheScitovskyboundary. Whatdistinguishestheseefficiencymeasuresishowthey definedistance.Diewert(1985)providesageneraloverview. Figure4givesanexampleforthecaseoftwoindividualsandtwogoods.Bothpanels ofthefigureshowdistribution X =(x (cid:4)x ) andthecorrespondingbetter-thansets B 1 2 1 and B . Thesocietalbundleis x +x andtheScitovsky boundaryis theboundaryof 2 1 2 theScitovskysetB +B . NotethatdistributionX isnotefficient: thesocietalbundle 1 2 does not lie on the Scitovsky boundary, but rather in the interior of the Scitovsky set. Thetwopanelsillustratethetwodominantapproachesintheefficiencymeasurement literature,referredtobyDiewert(1985)asthequantity-orientedandprice-orientedap- proaches.Theleft-handpanelillustratesthequantity-orientedmeasuresofAllais(1943) andDebreu(1951). Allais(1943)measuresinefficiencyasAC/BC,therelativedistance between the societal bundle and the efficient bundle A that contains less only of a numéraire good (here good a). Debreu (1951) measures inefficiency as DC/OC, the 13This transfer principle only considers transfers among individuals with the same preferences. FleurbaeyandTrannoy(2003)showthatwithoutthisrestriction,thetransferprincipledirectlyclasheswith theParetoprinciple.SeeWeymark(2017)foranoverviewofimpossibilityresultsinthisvein. TheoreticalEconomics13(2018) Aggregatingmoneymetrics 475 Figure4. Quantity-orientedandprice-orientedefficiencymeasures. relative distance between the societal bundle and the efficient bundle D that is pro- portional to the societal bundle. The right-hand panel illustrates the price-oriented approach, proposedbyHicks(1942)andBoiteux (1951). Forthegivenreferenceprice vectorp=(p (cid:4)p ),inefficiencyequalsp ×EF,orthedistance,expressedinexpendi- a b a tureterms,betweenthesocietalbundleandthecheapestbundleHB ontheScitovsky boundary. Our efficiency-preserving transfer principle requires the approval of each richer- to-poorer transfer that keeps the societal bundle and the Scitovsky boundary fixed.14 These restrictions on the transfer guarantee, as shown above, that all efficiency mea- suresunanimouslyagreethatthetransferpreservesefficiency. Efficiency-preservingtransferprinciple. ForeachpreferenceprofileRinRn,for alldistributions X and Y in Xn, andforallindividuals i and j inN suchthatR =R , i j ifX isobtainedfromY byaricher-to-poorertransferfromj toi(y (cid:15)x (cid:15)x (cid:15)y and i i j j x =y fork(cid:3)=i(cid:4)j)thatpreservesefficiency(x +x =y +y andB(x (cid:4)R )+B(x (cid:4)R )= k k i j i j i i j j B(y(cid:4)R )+B(y (cid:4)R )),thenX(cid:2) Y. i i j j R Both the efficiency-preserving and the societal-bundle-preserving transfer princi- plesgeneralizetheunidimensionalPigou–Daltontransferprinciple. ThePigou–Dalton transferprinciplerequirestheapprovalofricher-to-poorertransfersinincome(thesin- glegood)thatpreservetotalincome(thesocietalbundle). Becausepreservingtheeffi- ciency of the distribution reduces to preserving the societal bundle in the unidimen- sional setting, the Pigou–Dalton transfer principle is also efficiency-preserving. We claimthattheefficiency-preservingtransferprinciplecapturesanaspectoftheunidi- mensionalPigou–Daltontransferprinciplethatthesocietal-bundle-preservingtransfer 14Thisaxiomdoesnotcoverallcaseswherethedistributionsbeforeandafterthetransferarebotheffi- cient(equalmarginalratesofsubstitution). Indeed,insomesuchcases,theScitovskyboundariesdonot coincide,butratherintersectatthesocietalbundle. Asiseasytoshow,astrongeraxiomthatwouldalso coverthesecasesclasheswiththeotheraxiomsinTheorem1. 476 Bosmans,Decancq,andOoghe TheoreticalEconomics13(2018) principledoesnot.Theformertwotransferprinciplesaresilentontheequity–efficiency trade-offbecausetheconsideredtransfersimproveequitywithoutchangingefficiency. Thesocietal-bundle-preservingtransferprinciple,incontrast,doestakeastanceregard- ingtheequity–efficiencytrade-offand,aswehaveargued,anextremestance.Transfers that only preserve the societal bundle improve equity, but may cause arbitrarily large efficiencylosses. Ourefficiency-preservingtransferprincipledoesnotexcludesuchan extremestance,butis,moreover,compatiblewithmoremoderateethicalpositions. 3. Result RecallthatLemma1leavesopenthechoiceofthereferencesetutilityfunction. Theo- rem1singlesoutthemoneymetricutilityfunctionbyaddingourefficiency-preserving transferprincipletothefouraxiomsinLemma1. Anaturaladditionalconsequenceis that the social welfare function must be Schur-concave.15 The proof of Theorem 1 is givenintheAppendix. Theorem 1. Asocialranking(cid:2)satisfiesanonymity,continuity,monotonicity,reference setwelfarism,andtheefficiency-preservingtransferprincipleifandonlyifthereexistsa vectorpinRm++ andacontinuous,strictlyincreasing,andSchur-concavesocialwelfare functionW :Rn+→Rsuchthat,foreachpreferenceprofileRinRn andforalldistribu- tionsX andY inXn,wehave (cid:4) (cid:5) (cid:4) (cid:5) X(cid:2) Y ifandonlyif W u (X(cid:4)R) ≥W u (Y(cid:4)R) , R p p whereu isthemoneymetricutilityfunctionusingpasthereferencepricevector. p Theorem 1 gives necessary and sufficient conditions for a social ranking to satisfy the five axioms. The sufficiency part states that any standard social welfare function definedovermoneymetricutilitiessatisfiestheaxioms. Morestrikingly, thenecessity partstatesthattheaxiomsaresatisfiedbythisparticularsocialrankingexclusively. We discussinturnthesufficiencyandnecessitypartsofthetheorem. Tounderstandthesufficiencypart,notethatifatransferpreservesefficiency,then it also preserves the sum of money metric utilities. We show this in the first part of theproof. ItfollowsimmediatelythatanySchur-concavewelfarefunctiondefinedover moneymetricutilitieswillapproveefficiency-preservingtransfers. The sufficiency part stands in sharp contrast to Blackorby and Donaldson (1988). They show that a standard social welfare function defined over money metric utili- tiesfailstosatisfythestronger—andintheirviewessential—societal-bundle-preserving transfer principle.16 Theorem 1 demonstrates that aggregating money metrics is per- fectlyjustifiedifoneaddsthesensiblerequirementofpreservingefficiencywhiletrans- ferringgoods.ThesufficiencypartofthetheoremfurthermorecontrastswithFleurbaey 15AfunctionW :Rn+→RisSchur-concaveifW(Qx)≥W(x)foreachvectorxinRn+ andforeachbis- tochasticmatrixQ. AmatrixQ inRn+×n isbistochasticifeachrowsumandeachcolumnsumisequal to1. 16Itiseasytoshowthat,moregenerally,nosocialrankingsatisfiesthesocietal-bundle-preservingtrans- ferprincipletogetherwithanonymity,continuity,monotonicity,andreferencesetwelfarism.

Description:
∗We thank Antoine Bommier, André Decoster, Marc Fleurbaey, Nicolas Gravel, François Maniquet, (ETH Zürich) for useful comments. individual 1.3 The distances between the straight lines represent the changes in money.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.