WhereDoNumbersComeFrom? Whydoweneedtherealnumbers?Howshouldweconstructthem?Thesequestions aroseinthenineteenthcentury,alongwiththeideasandtechniquesneededtoaddress them.Nowadaysitiscommonplaceforapprenticemathematicianstohear‘weshall assumethestandardpropertiesoftherealnumbers’aspartoftheirtraining.But exactlywhatarethoseproperties?Andwhycanweassumethem? Thisbookisclearlyandentertaininglywrittenforthosestudents,withhistorical asidesandexercisestofosterunderstanding.Startingwiththenatural(counting) numbersandthenlookingattherationalnumbers(fractions)andnegativenumbers, theauthorbuildstoacarefulconstructionoftherealnumbersfollowedbythe complexnumbers,leavingthereaderfullyequippedwithallthenumbersystems requiredbymodernmathematicalanalysis.Additionalchaptersonpolynomialsand quaternionsprovidefurthercontextforanyreaderwantingtodelvedeeper. T. W. KÖRNERisEmeritusProfessorofFourierAnalysisattheUniversityof Cambridge.HispreviousbooksincludeThePleasuresofCountingandFourier Analysis. Where Do Numbers Come From? T. W. KÖRNER UniversityofCambridge UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025, India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108488068 DOI:10.1017/9781108768863 (cid:2)c T.W.Körner2020 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2020 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Korner,T.W.(ThomasWilliam),1946–author. Title:Wheredonumberscomefrom?/T.W.Korner(UniversityofCambridge). Description:Cambridge;NewYork,NY:CambridgeUniversityPress,[2020] Identifiers:LCCN2019020770|ISBN9781108488068 Subjects:LCSH:Numbertheory.|Mathematics–Philosophy. Classification:LCCQA241.K66972020|DDC512.7–dc23 LCrecordavailableathttps://lccn.loc.gov/2019020770 ISBN978-1-108-48806-8Hardback ISBN978-1-108-73838-5Paperback Additionalresourcesforthispublicationatwww.cambridge.org/9781108488068. CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Senselessasbeasts,Igavemensense,possessedthem Ofmind.Ispeaknotincontemptofman; IdobuttellofgoodgiftsIconferred. Inthebeginning,seeingtheysawamiss, Andhearingheardnot,but,likephantomshuddled Indreams,theperplexedstoryoftheirdays Confounded;knowingneithertimber-work Norbrick-builtdwellingsbaskinginthelight, Butdugforthemselvesholes,whereinlikeants, Thathardlymaycontendagainstabreath, Theydweltinburrowsoftheirunsunnedcaves. Neitherofwinter’scoldhadtheyfixedsign, Norofthespringwhenshecomesdeckedwithflowers, Noryetofsummer’sheatwithmeltingfruits Suretoken:bututterlywithoutknowledge Moiled,untilItherisingofthestars Showedthem,andwhentheyset,thoughmuchobscure. Moreover,number,themostexcellent Ofallinventions,Iforthemdevised, Andgavethemwritingthatretainethall, TheserviceablemotheroftheMuse. Aeschylus,PrometheusBound,translationbyG.M.Cookson Whatwouldlifebewithoutarithmeticbutasceneofhorrors. SydneySmith,lettertoMissLucieAustin God made the integers, all else is the work of man. (Die ganzen Zahlen hatderliebeGottgemacht,allesandereistMenschenwerk.) Kroneckecker,reportedbyWeber,JahresberichtderDeutschen Mathematiker-Vereinigung(1893) ‘When I use a word,’ Humpty Dumpty said in rather a scornful tone, ‘it meansjustwhatIchooseittomean–neithermorenorless.’ ‘Thequestionis,’saidAlice,‘whetheryoucanmakewordsmeansomany differentthings.’‘Thequestionis,’saidHumptyDumpty,‘whichistobe master–thatisall.’ LewisCarroll,AlicethroughtheLooking-Glass Weshouldneverforgetthatthefunctions,likeallmathematicalconstruc- tions,areonlyourowncreations,andthatwhenthedefinition,fromwhich onebegins,ceasestomakesense,oneshouldnotask:whatisit,butwhat isitconvenienttoassumesothatIcanalwaysremainconsistent.Thusfor example,theproductofminusbyminus. CarlFriedrichGauss,lettertoFriedrichBessel,1811, Volume10ofhiscollectedworks I have learnt one thing from my Arab masters, with reason as guide, but you another [from your teachers in Paris]: you follow a halter, being enthralledbythepictureofauthority.Forwhatelsecanauthoritybecalled other than a halter? As brute animals are led wherever one pleases by a halter,butdonotknowwhereorwhytheyarebeingled,andonlyfollow theropebywhichtheyarepulledalong,sotheauthorityofwrittenwords leadsmanypeopleintodanger,sincetheyjustacceptwhattheyaretold, without question. So what is the point of having a brain, if one does not thinkforoneself? AdelardofBath,ConversationswithHisNephew(Adelardwasoneof thosewhointroducedtheIndiansystemofwritingnumberstoEurope.) Nowyoumayask,‘Whatismathematicsdoinginaphysicslecture?’We haveseveralpossibleexcuses:first,ofcourse,mathematicsisanimportant tool,butthatwouldonlyexcuseusforgivingtheformulaintwominutes. Ontheotherhand,intheoreticalphysicswediscoverthatallourlawscan bewritteninmathematicalform;andthatthishasacertainsimplicityand beautyaboutit.So,ultimately,inordertounderstandnatureitmaybenec- essarytohaveadeeperunderstandingofmathematicalrelationships.But therealreasonisthatthesubjectisenjoyable,andalthoughwehumanscut nature up in different ways, ...we should take our intellectual pleasures wherewefindthem. RichardFeynman,AdditionandMultiplication,Section22-1ofthe FeynmanLecturesofPhysics,Volume1 Theveryimportantpartplayedbycalculationinmodernmathematicsand physics has led to the popular idea of a mathematician as a calculator, far more expert, indeed, than any banker’s clerk, but, of course, immea- surably inferior, both in resources and accuracy, to what the ‘analytic engine’willbe,ifthelateMrBabbage’sdesignshouldeverbecarriedinto execution. Butalthoughmuchoftheroutineworkofamathematicianiscalculation, his proper work – that which constitutes him a mathematician – is the inventionofmethods. ClerkMaxwell,reviewofKellandandTait’s IntroductiontoQuaternionsinNature,1873 There is no excellent beauty that hath not some strangeness in the proportion. FrancisBacon,Essays Havenothinginyourhousesthatyoudonotknowtobeuseful,orbelieve tobebeautiful. WilliamMorris,HopesandFearsforArt Mathematicalrigourisverysimple.Itconsistsinaffirmingtruestatements andinnotaffirmingwhatisnottrue.Itdoesnotconsistinaffirmingevery truthpossible. GiuseppePeano,quotedinDictionaryofScientificBiography Therearestillpeoplewholiveinthepresenceofaperpetualmiracleand arenotastonishedbyit. HenriPoincaré,TheValueofScience Itseemstome,thattheonlyobjectsoftheabstractsciencesorofdemon- strationarequantityandnumber,andthatallattemptstoextendthismore perfectspeciesofknowledgebeyondtheseboundsaremeresophistryand illusion.Asthecomponentpartsofquantityandnumberareentirelysimi- lar,theirrelationsbecomeintricateandinvolved;andnothingcanbemore curious, as well as useful, than to trace, by a variety of mediums, their equalityorinequality,throughtheirdifferentappearances. DavidHume,AnEnquiryConcerningHumanUnderstanding Contents Introduction 1 PART I THE RATIONALS 5 1 CountingSheep 7 1.1 AFoundationMyth 7 1.2 WhatWereNumbersUsedFor? 12 1.3 AGreekMyth 15 2 TheStrictlyPositiveRationals 23 2.1 AnIndianLegend 23 2.2 EquivalenceClasses 27 2.3 PropertiesoftheStrictlyPositiveRationals 33 2.4 WhatHaveWeActuallyDone? 37 3 TheRationalNumbers 39 3.1 NegativeNumbers 39 3.2 DefiningtheRationalNumbers 44 3.3 WhatDoesNatureSay? 51 3.4 WhenAreTwoThingstheSame? 52 PART II THE NATURAL NUMBERS 59 4 TheGoldenKey 61 4.1 TheLeastMember 61 4.2 InductiveDefinition 65 4.3 Applications 69 4.4 PrimeNumbers 77 5 ModularArithmetic 83 5.1 FiniteFields 83 ix x Contents 5.2 SomePrettyTheorems 87 5.3 ANewUseforOldNumbers 91 5.4 MoreModularArithmetic 98 5.5 ProblemsofEqualDifficulty 101 6 AxiomsfortheNaturalNumbers 109 6.1 ThePeanoAxioms 109 6.2 Order 113 6.3 ConclusionoftheArgument 117 6.4 OrderNumbersCanBeUsedasCountingNumbers 121 6.5 Objections 127 PART III THE REAL NUMBERS (AND THE COMPLEX NUMBERS) 135 7 WhatIstheProblem? 137 7.1 MathematicsBecomesaProfession 137 7.2 RogueNumbers 138 7.3 HowCanWeJustifyCalculus? 147 7.4 TheFundamentalAxiomofAnalysis 151 7.5 DependentChoice 156 7.6 EquivalentFormsoftheFundamentalAxiom 159 8 AndWhatIsItsSolution? 167 8.1 AConstructionoftheRealNumbers 167 8.2 SomeConsequences 177 8.3 AretheRealNumbersReal? 182 9 TheComplexNumbers 187 9.1 ConstructingtheComplexNumbers 187 9.2 AnalysisforC 191 9.3 ContinuousFunctionsfromC 195 10 APlethoraofPolynomials 199 10.1 Preliminaries 199 10.2 TheFundamentalTheoremofAlgebra 205 10.3 LiouvilleNumbers 209 10.4 ANon-ArchimedeanOrderedField 213 11 CanWeGoFurther? 221 11.1 TheQuaternions 221 11.2 WhatHappenedNext 226 11.3 Valedictory 230