ebook img

Where Do Numbers Come From? PDF

272 Pages·2020·2.188 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Where Do Numbers Come From?

WhereDoNumbersComeFrom? Whydoweneedtherealnumbers?Howshouldweconstructthem?Thesequestions aroseinthenineteenthcentury,alongwiththeideasandtechniquesneededtoaddress them.Nowadaysitiscommonplaceforapprenticemathematicianstohear‘weshall assumethestandardpropertiesoftherealnumbers’aspartoftheirtraining.But exactlywhatarethoseproperties?Andwhycanweassumethem? Thisbookisclearlyandentertaininglywrittenforthosestudents,withhistorical asidesandexercisestofosterunderstanding.Startingwiththenatural(counting) numbersandthenlookingattherationalnumbers(fractions)andnegativenumbers, theauthorbuildstoacarefulconstructionoftherealnumbersfollowedbythe complexnumbers,leavingthereaderfullyequippedwithallthenumbersystems requiredbymodernmathematicalanalysis.Additionalchaptersonpolynomialsand quaternionsprovidefurthercontextforanyreaderwantingtodelvedeeper. T. W. KÖRNERisEmeritusProfessorofFourierAnalysisattheUniversityof Cambridge.HispreviousbooksincludeThePleasuresofCountingandFourier Analysis. Where Do Numbers Come From? T. W. KÖRNER UniversityofCambridge UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025, India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108488068 DOI:10.1017/9781108768863 (cid:2)c T.W.Körner2020 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2020 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Korner,T.W.(ThomasWilliam),1946–author. Title:Wheredonumberscomefrom?/T.W.Korner(UniversityofCambridge). Description:Cambridge;NewYork,NY:CambridgeUniversityPress,[2020] Identifiers:LCCN2019020770|ISBN9781108488068 Subjects:LCSH:Numbertheory.|Mathematics–Philosophy. Classification:LCCQA241.K66972020|DDC512.7–dc23 LCrecordavailableathttps://lccn.loc.gov/2019020770 ISBN978-1-108-48806-8Hardback ISBN978-1-108-73838-5Paperback Additionalresourcesforthispublicationatwww.cambridge.org/9781108488068. CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Senselessasbeasts,Igavemensense,possessedthem Ofmind.Ispeaknotincontemptofman; IdobuttellofgoodgiftsIconferred. Inthebeginning,seeingtheysawamiss, Andhearingheardnot,but,likephantomshuddled Indreams,theperplexedstoryoftheirdays Confounded;knowingneithertimber-work Norbrick-builtdwellingsbaskinginthelight, Butdugforthemselvesholes,whereinlikeants, Thathardlymaycontendagainstabreath, Theydweltinburrowsoftheirunsunnedcaves. Neitherofwinter’scoldhadtheyfixedsign, Norofthespringwhenshecomesdeckedwithflowers, Noryetofsummer’sheatwithmeltingfruits Suretoken:bututterlywithoutknowledge Moiled,untilItherisingofthestars Showedthem,andwhentheyset,thoughmuchobscure. Moreover,number,themostexcellent Ofallinventions,Iforthemdevised, Andgavethemwritingthatretainethall, TheserviceablemotheroftheMuse. Aeschylus,PrometheusBound,translationbyG.M.Cookson Whatwouldlifebewithoutarithmeticbutasceneofhorrors. SydneySmith,lettertoMissLucieAustin God made the integers, all else is the work of man. (Die ganzen Zahlen hatderliebeGottgemacht,allesandereistMenschenwerk.) Kroneckecker,reportedbyWeber,JahresberichtderDeutschen Mathematiker-Vereinigung(1893) ‘When I use a word,’ Humpty Dumpty said in rather a scornful tone, ‘it meansjustwhatIchooseittomean–neithermorenorless.’ ‘Thequestionis,’saidAlice,‘whetheryoucanmakewordsmeansomany differentthings.’‘Thequestionis,’saidHumptyDumpty,‘whichistobe master–thatisall.’ LewisCarroll,AlicethroughtheLooking-Glass Weshouldneverforgetthatthefunctions,likeallmathematicalconstruc- tions,areonlyourowncreations,andthatwhenthedefinition,fromwhich onebegins,ceasestomakesense,oneshouldnotask:whatisit,butwhat isitconvenienttoassumesothatIcanalwaysremainconsistent.Thusfor example,theproductofminusbyminus. CarlFriedrichGauss,lettertoFriedrichBessel,1811, Volume10ofhiscollectedworks I have learnt one thing from my Arab masters, with reason as guide, but you another [from your teachers in Paris]: you follow a halter, being enthralledbythepictureofauthority.Forwhatelsecanauthoritybecalled other than a halter? As brute animals are led wherever one pleases by a halter,butdonotknowwhereorwhytheyarebeingled,andonlyfollow theropebywhichtheyarepulledalong,sotheauthorityofwrittenwords leadsmanypeopleintodanger,sincetheyjustacceptwhattheyaretold, without question. So what is the point of having a brain, if one does not thinkforoneself? AdelardofBath,ConversationswithHisNephew(Adelardwasoneof thosewhointroducedtheIndiansystemofwritingnumberstoEurope.) Nowyoumayask,‘Whatismathematicsdoinginaphysicslecture?’We haveseveralpossibleexcuses:first,ofcourse,mathematicsisanimportant tool,butthatwouldonlyexcuseusforgivingtheformulaintwominutes. Ontheotherhand,intheoreticalphysicswediscoverthatallourlawscan bewritteninmathematicalform;andthatthishasacertainsimplicityand beautyaboutit.So,ultimately,inordertounderstandnatureitmaybenec- essarytohaveadeeperunderstandingofmathematicalrelationships.But therealreasonisthatthesubjectisenjoyable,andalthoughwehumanscut nature up in different ways, ...we should take our intellectual pleasures wherewefindthem. RichardFeynman,AdditionandMultiplication,Section22-1ofthe FeynmanLecturesofPhysics,Volume1 Theveryimportantpartplayedbycalculationinmodernmathematicsand physics has led to the popular idea of a mathematician as a calculator, far more expert, indeed, than any banker’s clerk, but, of course, immea- surably inferior, both in resources and accuracy, to what the ‘analytic engine’willbe,ifthelateMrBabbage’sdesignshouldeverbecarriedinto execution. Butalthoughmuchoftheroutineworkofamathematicianiscalculation, his proper work – that which constitutes him a mathematician – is the inventionofmethods. ClerkMaxwell,reviewofKellandandTait’s IntroductiontoQuaternionsinNature,1873 There is no excellent beauty that hath not some strangeness in the proportion. FrancisBacon,Essays Havenothinginyourhousesthatyoudonotknowtobeuseful,orbelieve tobebeautiful. WilliamMorris,HopesandFearsforArt Mathematicalrigourisverysimple.Itconsistsinaffirmingtruestatements andinnotaffirmingwhatisnottrue.Itdoesnotconsistinaffirmingevery truthpossible. GiuseppePeano,quotedinDictionaryofScientificBiography Therearestillpeoplewholiveinthepresenceofaperpetualmiracleand arenotastonishedbyit. HenriPoincaré,TheValueofScience Itseemstome,thattheonlyobjectsoftheabstractsciencesorofdemon- strationarequantityandnumber,andthatallattemptstoextendthismore perfectspeciesofknowledgebeyondtheseboundsaremeresophistryand illusion.Asthecomponentpartsofquantityandnumberareentirelysimi- lar,theirrelationsbecomeintricateandinvolved;andnothingcanbemore curious, as well as useful, than to trace, by a variety of mediums, their equalityorinequality,throughtheirdifferentappearances. DavidHume,AnEnquiryConcerningHumanUnderstanding Contents Introduction 1 PART I THE RATIONALS 5 1 CountingSheep 7 1.1 AFoundationMyth 7 1.2 WhatWereNumbersUsedFor? 12 1.3 AGreekMyth 15 2 TheStrictlyPositiveRationals 23 2.1 AnIndianLegend 23 2.2 EquivalenceClasses 27 2.3 PropertiesoftheStrictlyPositiveRationals 33 2.4 WhatHaveWeActuallyDone? 37 3 TheRationalNumbers 39 3.1 NegativeNumbers 39 3.2 DefiningtheRationalNumbers 44 3.3 WhatDoesNatureSay? 51 3.4 WhenAreTwoThingstheSame? 52 PART II THE NATURAL NUMBERS 59 4 TheGoldenKey 61 4.1 TheLeastMember 61 4.2 InductiveDefinition 65 4.3 Applications 69 4.4 PrimeNumbers 77 5 ModularArithmetic 83 5.1 FiniteFields 83 ix x Contents 5.2 SomePrettyTheorems 87 5.3 ANewUseforOldNumbers 91 5.4 MoreModularArithmetic 98 5.5 ProblemsofEqualDifficulty 101 6 AxiomsfortheNaturalNumbers 109 6.1 ThePeanoAxioms 109 6.2 Order 113 6.3 ConclusionoftheArgument 117 6.4 OrderNumbersCanBeUsedasCountingNumbers 121 6.5 Objections 127 PART III THE REAL NUMBERS (AND THE COMPLEX NUMBERS) 135 7 WhatIstheProblem? 137 7.1 MathematicsBecomesaProfession 137 7.2 RogueNumbers 138 7.3 HowCanWeJustifyCalculus? 147 7.4 TheFundamentalAxiomofAnalysis 151 7.5 DependentChoice 156 7.6 EquivalentFormsoftheFundamentalAxiom 159 8 AndWhatIsItsSolution? 167 8.1 AConstructionoftheRealNumbers 167 8.2 SomeConsequences 177 8.3 AretheRealNumbersReal? 182 9 TheComplexNumbers 187 9.1 ConstructingtheComplexNumbers 187 9.2 AnalysisforC 191 9.3 ContinuousFunctionsfromC 195 10 APlethoraofPolynomials 199 10.1 Preliminaries 199 10.2 TheFundamentalTheoremofAlgebra 205 10.3 LiouvilleNumbers 209 10.4 ANon-ArchimedeanOrderedField 213 11 CanWeGoFurther? 221 11.1 TheQuaternions 221 11.2 WhatHappenedNext 226 11.3 Valedictory 230

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.