ebook img

When maximum-principle functions cease to exist PDF

0.63 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview When maximum-principle functions cease to exist

WHEN MAXIMUM-PRINCIPLE FUNCTIONS CEASE TO EXIST MARTINFRANZEN 5 1 Abstract. Weconsidergeometricflowequationsforcontractingandexpand- 0 ingnormalvelocities,includingpowersoftheGausscurvature,K,ofthemean 2 curvature, H, and of the norm of the second fundamental form, |A|, and ask whether-afterappropriaterescaling-closedstrictlyconvexsurfacesconverge n tospheres. Toprovethis,manyauthorsusecertainfunctionsoftheprincipal a curvatures, which we call maximum-principle functions. We show when such J functionsceasetoexistandexist,whilepresentingnewlydiscoveredmaximum- 8 principlefunctions. 2 ] G D Contents . h 1. Overview 1 t 2. Notation 2 a m 3. Contracting and expanding normal velocities Fσ 3 ξ 4. Definition and motivation of rational MPF, and MPF 5 [ 4.1. Linear operator L 7 1 4.2. α-conditions 11 v 5. Necessary conditions for the existence of MPF 18 9 5.1. Euler’s Theorem on homogeneous functions 18 5 2 5.2. No MPF for normal velocities with 0<hom F ≤1 19 7 5.3. When MPF cease to exist for normal velocities Fσ 24 ξ 0 6. Vanishing functions 32 1. 7. Gauss curvature, Fσ 37 0 0 8. Mean curvature, Fσ 38 1 5 9. Norm of the second fundamental form, Fσ 42 1 2 10. Trace of the second fundamental form, Fσ 47 : σ v 11. Outlook 48 Xi References 49 r a 1. Overview We consider the geometric flow equations d (1.1) X =−Fν. dt Date:January28,2014. 2000 Mathematics Subject Classification. 53C44. WewouldliketothankF.Kuhl,B.Lambert,M.Langford,M.Makowski,M.Raum,J.Scheuer, O.Schnu¨rer,M.Schweighofer,B.Stekeler,andS.Wenzelfordiscussionsandsupport. TheauthorisamemberoftheDFGpriorityprogramSPP1489. 1 2 MARTINFRANZEN and ask whether closed strictly convex 2-dimensional surfaces M in R3 converge t to round points or to spheres at ∞. TheanswerisaffirmativeformanynormalvelocitiesF,includingcertainpowers of the Gauss curvature, K, the mean curvature, H, and the norm of the second fundamental form, |A|. Here, authors like B. Andrews [2, 4], O. Schnu¨rer [12, 13], and F. Schulze [15], use functions of the principal curvatures w to show convergence to a round point or to spheres at ∞. In [13], [12], O. Schnu¨rer proposes a characterization of these functions. And in this paper, we extend it to non-rational functions. Our definition of maximum- principle functions (MPF) now covers any such function w that is known to far. The function from [15] (a−b)2(a+b)2σ w = (ab)2 is an example of a MPF for a normal velocity F =Hσ with 1<σ ≤5. OurmainquestioniswhenMPFceasetoexistforthelargesetofcontractingand expandingnormalvelocitiesFσ. Weareparticularlyinterestedinnormalvelocities ξ Fσ = sgn(σ)·Kσ/2, Fσ = sgn(σ)·Hσ, and Fσ = sgn(σ)·|A|σ, for all powers 0 1 2 σ ∈R\{0}. Here, we either are able to prove the non-existence of MPF, or give an example ofaMPF.WepresentMPFfromliterature,andnewlydiscoveredMPF.Smallgaps only exist for Hσ with 5.17<σ <5.98, and |A|σ with 8.15<σ <9.89. WesummarizeourmainresultsinthetableforFσ (p. 24), andinthetablesfor ξ Fσ (p. 38), for Fσ (p. 42), for Fσ (p. 47), and for Fσ (p. 48). 0 1 2 σ The paper is structured as follows: In the chapter on notation, we give a brief introduction to differential geometric quantities like induced metric, second fundamental form, and principal curvatures. The next chapter is on Fσ. This is the set of normal velocities for which we ξ investigate the existence and non-existence of MPF. We proceed with a chapter on the MPF, motivating the definition and taking a closer look at the linear operator L and the α-conditions. Chapter 5 contains main Theorem 5.8. Using Euler’s Theorem on homogeneous functionswearealsoabletoprovethenon-existenceofMPFforanynormalvelocity with 0<homF ≤1. Inchapter6wepresentvanishingfunctions,whicharesometimesMPF,depend- ing on the given normal velocity Fσ. Furthermore, we present a few technical ξ lemmasonvanishingfunctions,whichplayanimportantroleinthefollowingchap- ters on Fσ, Fσ, Fσ, and Fσ. 0 1 2 σ We conclude our paper with an outlook suggesting an improved MPF Ansatz. 2. Notation For a brief introduction of the standard notation we adopt the a corresponding chapter from [12]. We use X = X(x, t) to denote the embedding vector of a 2-manifold M into t R3 and dX = X˙ for its total time derivative. It is convenient to identify M and dt t its embedding in R3. The normal velocity F is a homogeneous symmetric function MAXIMUM-PRINCIPLE FUNCTIONS 3 of the principal curvatures. We choose ν to be the outer unit normal vector to M . Theembeddinginducesametricg :=(cid:104)X , X (cid:105)andthesecondfundamental t ij ,i ,j form h := −(cid:104)X , ν(cid:105) for all i, j = 1, 2. We write indices preceded by commas ij ,ij to indicate differentiation with respect to space components, e.g. X = ∂X for all ,k ∂xk k =1, 2. WeusetheEinsteinsummationnotation. Whenanindexvariableappearstwice in a single term it implies summation of that term over all the values of the index. Indicesareraisedandloweredwithrespecttothemetricoritsinverse(cid:0)gij(cid:1),e.g. h hij =h gikh glj =hkhj. ij ij kl j k Theprincipalcurvaturesa, baretheeigenvaluesofthesecondfundamentalform (h ) with respect to the induced metric (g ). A surface is called strictly convex, ij ij if all principal curvatures are strictly positive. We will assume this throughout the paper. Therefore, we may define the inverse of the second fundamental form denoted by (h˜ij). Symmetric functionsof the principalcurvaturesare well-defined, we will use the Gauss curvature K = dethij = a·b, the mean curvature H = gijh = a+b, the detgij ij square of the norm of the second fundamental form |A|2 = hijh = a2 +b2, and ij the trace of powers of the second fundamental form trAσ = tr(cid:0)hi(cid:1)σ = aσ +bσ. j We write indices preceded by semi-colons to indicate covariant differentiation with respect to the induced metric, e.g. h = h −Γl h −Γl h , where Γk = ij;k ij,k ik lj jk il ij 1gkl(g +g −g ). It is often convenient to choose normal coordinates, i.e. 2 il,j jl,i ij,l coordinate systems such that at a point the metric tensor equals the Kronecker delta, g = δ , in which (h ) is diagonal, (h ) = diag(a, b). Whenever we use ij ij ij ij this notation, we will also assume that we have fixed such a coordinate system. We will only use a Euclidean metric for R3 so that the indices of h commute ij;k according to the Codazzi-Mainardi equations. A normal velocity F can be considered as a function of (a, b) or (h , g ). We ij ij set Fij = ∂F , Fij,kl = ∂2F . Note that in coordinate systems with diagonal ∂hij ∂hij∂hkl h and g =δ as mentioned above, Fij is diagonal. ij ij ij 3. Contracting and expanding normal velocities Fσ ξ In this chapter, we specify what we mean by a contracting and an expanding normal velocity and define the important quantity β = Fa. In Remark 3.3, we introduce the set of normal velocities Fσ. This set includFebs powers of the Gauss ξ curvature,Fσ,powersofthemeancurvature,Fσ,powersofthenormofthesecond 0 1 fundamental form, Fσ, and the trace of powers of the second fundamental form, 2 Fσ. Throughout this paper, our goal is to determine, when MPF exist and cease σ to exist for Fσ. ξ Definition 3.1 (Normal velocity F). Let a and b be principal curvatures. Let F(a,b)∈C2(cid:0)R2(cid:1) be a symmetric homogeneous function of degree σ ∈R\{0}. In + this paper, we call F a normal velocity if F , F >0 a b for all 0<a,b. Furthermore, we call F contracting if F >0 for all 0<a,b, and we call F expanding if F <0 for all 0<a,b. 4 MARTINFRANZEN Definition 3.2 (Quantity β). Let F be a normal velocity. We define the quantity β as F (3.1) β = a F b for all 0<a,b. We later choose (a,b)=(ρ,1) and write β (ρ). F Remark 3.3 (Normal velocity Fσ). In this paper, we investigate the normal ve- ξ locity Fσ. We define Fσ as ξ ξ (cid:40)sgn(σ)·(cid:0)aξ+bξ(cid:1)σ/ξ, if ξ (cid:54)=0, (3.2) Fσ(a,b)= ξ sgn(σ)·(ab)σ/2, if ξ =0, for all σ ∈R\{0}. Calculating (cid:0)Fσ(cid:1) , (cid:0)Fσ(cid:1) , we obtain ξ a ξ b (3.3) (cid:0)Fσ(cid:1) =(cid:40)|σ|·(cid:0)aξ+bξ(cid:1)σ/ξ−1aξ−1, if ξ (cid:54)=0, ξ a |σ|·(ab)σ/2−1b, if ξ =0, 2 and (3.4) (cid:0)Fσ(cid:1) =(cid:40)|σ|·(cid:0)aξ+bξ(cid:1)σ/ξ−1bξ−1, if ξ (cid:54)=0, ξ b |σ|·(ab)σ/2−1a, if ξ =0, 2 for all 0<a,b. Therefore, (cid:0)Fσ(cid:1) , (cid:0)Fσ(cid:1) >0, ξ a ξ b for all 0 < a,b. Hence, Fσ is a normal velocity for all ξ ∈ R. Fσ is a contracting ξ ξ normal velocity, if σ > 0, and Fσ is an expanding normal velocity, if σ < 0. ξ Calculating the quantity β(ρ) we obtain β (ρ)=ρξ−1, Fσ ξ for all ξ ∈R. Note that β (ρ) is independent of σ. Fσ ξ Example 3.4 (Gauss curvature). Let ξ =0. Then we have β (ρ)=ρ−1, and Fσ 0 Fσ = sgn(σ)·(ab)σ/2 0 = sgn(σ)·Kσ/2. Example 3.5 (Mean curvature). Let ξ =1. Then we have β (ρ)=1, and Fσ 1 Fσ = sgn(σ)·(a+b)σ 1 = sgn(σ)·Hσ. Example 3.6 (Norm of the second fundamental form). Let ξ =2. Then we have β (ρ)=ρ, and Fσ 2 Fσ = sgn(σ)·(a2+b2)σ/2 2 = sgn(σ)·|A|σ. Example 3.7 (Trace of the second fundamental form). Let ξ =σ. Then we have β (ρ)=ρσ−1, and Fσ σ Fσ = sgn(σ)·(aσ+bσ)σ/σ σ = sgn(σ)·trAσ. MAXIMUM-PRINCIPLE FUNCTIONS 5 4. Definition and motivation of rational MPF, and MPF In the context of geometric evolution equations (1.1), d X =−Fν, dt thequestionarises,ifafterappropriaterescaling,closedstrictlyconvexsurfacesM t converge to spheres. This is also referred to as convergence to a round point or convergence to a sphere at ∞. The answer is affirmative for many normal velocities F, including the Gauss curvature flow, F2 = K, B. Andrews [2], the mean curvature flow, F1 = H, G. 0 1 Huisken [9], and the inverse Gauss curvature flow, F−1 =−1, O. Schnu¨rer [13]. 0 K FormanynormalvelocitiesF proofsrelyonthefactthatacertaingeometrically meaningful quantity w is monotone, i.e. max w is non-increasing in time. Mt In[12]and[13],O.Schnu¨rerproposescriteriaforselectingsuchmonotonequan- tities for contracting flows and for expanding flows, respectively. To date, to the author’s knowledge, all known quantities which fulfill these criteria can be used to show convergence to a round point or to a sphere at ∞. Here, we decided to work with these criteria as a definition. Their monotonicity is proven using the maximum-principle. This is why we name these quantities rational maximum- principle functions (RMPF). Definition 4.1 (RMPF). Let a and b be principal curvatures. Let w(a,b) ∈ C2(R2) be a symmetric homogeneous function of degree χ∈R\{0}. We call w a + rational maximum-principle function for a normal velocity F if (1) (a) w >0 for all 0<a,b, a(cid:54)=b, (b) w =0 for all 0<a=b. (2) (a) χ>0 if F is contracting, (b) χ<0 if F is expanding. (3) (a) w <0 for all 0<a<b, a (b) w >0 for all 0<b<a. a (4) Let Lw := dw−Fijw be the linear operator corresponding to the geo- dt ;ij metric flow equation (1.1). We achieve Lw ≤0 for all 0<a,b by assuming that (a) terms without derivatives of (h ) are non-positive for all 0<a,b, and ij (b) termsinvolvingderivativesof(h ),atacriticalpointofw,i.e. w =0 ij ;i for all i=1, 2, are non-positive for all 0<a,b. (5) w(a,b) is a rational function. The RMPF conditions (1) through (5) as in [12], [13] are motivated as follows: For all geometric flow equations (1.1) we assume that spheres stay spherical. For contracting (expanding) normal velocities they contract to a point (expand to infinity). So we can only aim to find monotone quantities, if w(a,a) = 0 for all a > 0, or if χ ≤ 0 (if χ ≥ 0). If χ ≤ 0 (if χ ≥ 0), we obtain that w is non- increasing on any self-similarly contracting (expanding) surface. So this does not implyconvergencetoaroundpoint. RMPFcondition(3)ensuresthatthequantity decreasesiftheprincipalcurvaturesapproacheachother. ByRMPFcondition(4), we check that we can apply the maximum principle to prove monotonicity. The first found monotone quantities are all rational functions, e.g. w = (a−b)2 for 6 MARTINFRANZEN F2 = K in [2], or w = (a−b)2(a+b) for F2 = |A|2 in [12]. This motivates RMPF 0 (ab) 2 condition (5). Definition 4.2 (MPF). Letaandbbeprincipalcurvatures. Letw(a,b)∈C2(R2) + beasymmetrichomogeneousfunctionofdegreeχ∈R\{0}. Wecallwamaximum- principle function for a normal velocity F if (1) (a) w >0 for all 0<a,b, a(cid:54)=b, (b) w =0 for all 0<a=b. (2) (a) χ>0 if F is contracting, (b) χ<0 if F is expanding. (3) (a) w <0 for all 0<a<b, a (b) w >0 for all 0<b<a. a (4) Weassumethattheconstantterms C (a,b)andthegradientterms E (a,b) w w and G (a,b) are non-positive for all 0<a,b. w C (a,b):=w a(cid:0)(cid:0)F a2+F b2(cid:1)+(F −F a−F b)a(cid:1) w a a b a b +w b(cid:0)(cid:0)F a2+F b2(cid:1)+(F −F a−F b)b(cid:1), b a b a b E (a,b):=w (cid:0)F +2F α+F α2(cid:1) w a aa ab bb −F (cid:0)w +2w α+w α2(cid:1) a aa ab bb w F −w F +2 b a a b α2, a−b (cid:18) G (a,b):= 1 · w (cid:0)F +2F α+F α2(cid:1) w α2 b aa ab bb −F (cid:0)w +2w α+w α2(cid:1) b aa ab bb (cid:19) w F −w F +2 b a a b . a−b (5) We define w ∂α α=− a, α = . w a ∂a b Let c>0, d∈R be some constants. Set (a,b)=(ρ,1), where 0<ρ<1. If F is contracting, we assume for ρ→0 α=c, α =0, a or α= c +o(cid:0)ρ−1(cid:1), α =− c +o(cid:0)ρ−1(cid:1). ρ a ρ2 If F is expanding, we assume for ρ→0 α= c +o(cid:0)ρ−1(cid:1), α =− c +o(cid:0)ρ−1(cid:1), ρ a ρ2 or α=c+dρ +o(cid:0)ρ−1(cid:1), α =−2c+dρ +o(cid:0)ρ−1(cid:1). ρ2 a ρ2 F.SchulzeandO.Schnu¨rerpresentin[15]oneofthefirstnon-rationalmonotone quantities. They use (a−b)2(a+b)2σ w = (ab)2 MAXIMUM-PRINCIPLE FUNCTIONS 7 toshowconvergencetoaroundpointforFσ =Hσ,forall1<σ ≤5. Here,wisnot 1 rational, if 2σ ∈/ N. Therefore, in MPF Definition 4.2, we extend RMPF Definition 4.1tonotnecessarilyrationalfunctions. Wecallthemmaximum-principlefunctions (MPF). In Lemma 4.11, we prove that MPF condition (5) holds for any RMPF in the case of contracting flows Fσ, if ξ >0, or ξ =0 and 1<σ ≤2. For other Fσ, a ξ ξ similar Lemma is in progress. A first step in the this direction is Lemma 4.10. To date, all known RMPF fulfill MPF condition (5). Inthispaper,themainquestionis,whenMPFceasetoexist. Asitturnsout,this ismoreanalgebrathanadifferentialgeometryquestion. Correspondingly,inMPF condition(4)weformulatethreeinequalityconditions. InLemmas4.3through4.7, we show that these three inequality conditions are equivalent to RMPF condition (4). In condensed form, MPF Definition 4.2 is a more algebraic formulation of RMPF Definition 4.1, which is extended to what seems to be the proper class of non-rational functions. 4.1. Linear operator L. In Lemmas 4.3 through 4.7, we show that the three inequality conditions C (a,b), E (a,b), G (a,b) ≤ 0 in condition MPF (4) are w w w equivalent to RMPF condition (4) as follows: In Lemma 4.3, we show two helpful identities for the first derivatives with re- spect to the induced metric g , and for the derivatives with respect to the second ij fundamental form h . Next, we cite the evolution equations for g and h from ij ij ij O. Schnu¨rer [14]. We need both Lemmas in Lemma 4.5. Here, we compute the linear operator Lw, where w is a function of the principal curvatures a and b. Sometimes, we also denote them by λ and λ . In Lemma 4.6, 1 2 weciteanotherhelpfulidentityforthesecondderivativeswithrespecttothesecond fundamentalform. Finally, inLemma4.7wecomputetheconstanttermsC (a,b), w and the two gradient terms E (a,b) and G (a,b). This concludes the proof of our w w claim that condition (4) of RMPF Definition 4.1 and of MPF Definition 4.2 are equivalent. Lemma 4.3 (First derivatives). Let f be a normal velocity F or a function w of the principal curvatures λ and λ . Then we have 1 2 (4.1) fkl =fkglj, j ∂f (4.2) = −filhk. ∂g i kl The matrices (cid:0)fkl(cid:1) and (cid:16) ∂f (cid:17) are symmetric. ∂gkl Proof. We consider f = f(cid:16)hj(cid:0)(h ),(g )(cid:1)(cid:17). The matrices (h ) and (g ) are i kl kl ij ij symmetric. So we have h = 1(h +h ) and gij = 1(cid:0)gij +gji(cid:1). ij 2 ij ji 2 Now, we differentiate f with respect to h . kl ∂f fkl = ∂h kl ∂f ∂hj = i ∂hji hkl =fi ∂ 1(h +h )1(cid:0)gmj +gjm(cid:1) j ∂h 2 im mi 2 kl 8 MARTINFRANZEN =fj 1 ∂ (cid:0)h gmj +h gjm+h gmj +h gjm(cid:1) i 4∂h im im mi mi kl =fj 1(cid:0)δkδl gmj +δkδl gjm+δkδlgmj +δkδlgjm(cid:1) i 4 i m i m m i m i =fi 1(cid:0)2δkgjl+2δlgjk(cid:1) j 4 i i =1(cid:0)fkgjl+flgjk(cid:1). 2 j j Since fkl−flk =0 for all 1≤k, l≤n, the matrix (cid:0)fkl(cid:1) is symmetric and formula (4.1) follows. Next, we differentiate f with respect to g . kl ∂f = ∂f ∂ 1(h +h )1(cid:0)gmj +gjm(cid:1) ∂gkl ∂hji ∂gkl2 im mi 2 =fi ∂ 1(cid:0)h gmj +h gjm+h gmj +h gjm(cid:1) j ∂g 4 im im mi mi kl = −fi 1 (cid:0)h gmkgjl+h gjkgml+h gmkgjl+h gjkgml(cid:1) j 4 im im mi mi (cid:18) ∂gij (cid:19) use =−gikgjl ∂g kl = −fi 1 (cid:0)hkgjl+hlgjk(cid:1) j 2 i i (cid:16) (cid:17) Since ∂f − ∂f = 0 for all 1 ≤ k, l ≤ n the matrix ∂f is symmetric and ∂gkl ∂glk ∂gkl formula (4.2) follows. (cid:3) Lemma 4.4 (Evolution equations). Let X be a solution to a geometric flow equa- tion (1.1). Then we have the following evolution equations: d (4.3) gij =2Fhij, dt (4.4) Lh =Fklhmh ·h −(cid:0)F −Fklh (cid:1)hmh +Fkl,rsh h , ij k lm ij kl i jm kl;i rs;j where L is the linear operator of RMPF Definition 4.1. Proof. We refer to O. Schnu¨rer [14]. (cid:3) Lemma 4.5 (Linear operator). Let w = w(cid:0)hj(cid:1) be a function of the principal i curvatures. Then we have Lw =wij(cid:0)h Fklhmh +hmh (cid:0)F −Fklh (cid:1)(cid:1) ij k lm i jm kl (4.5) +(cid:0)wijFkl,rs−Fijwkl,rs(cid:1)h h , kl;i rs;j where L is the linear operator of RMPF Definition 4.1. Proof. We consider w =w(cid:16)hj(cid:0)(h ),(g )(cid:1)(cid:17). i kl kl d Lw = w−Frsw dt ;rs (cid:18) (cid:19) = ∂w d (cid:0)h gmj(cid:1)−Frs ∂w (cid:0)h gmj(cid:1) ∂hj dt im ∂hj im ;r i i ;s =wi(cid:16)h˙ gmj +h g˙mj(cid:17)−Frs(cid:0)wi(cid:0)h gmj(cid:1)(cid:1) j im im j im;r ;s MAXIMUM-PRINCIPLE FUNCTIONS 9 =2F wihmjh +wigmjh˙ −Frs(cid:0)wigmjh (cid:1) j im j im j im;r ;s (use evolution equation (4.3)) =2F wijhmh +wimh˙ −Frs(cid:0)wimh (cid:1) j im im im;r ;s (cid:0)use formula (4.1): wkl =wkglj(cid:1) j =2F wijhmh +wimh˙ −Frs∂wim (cid:0)h gnl(cid:1) h −Frswimh j im im ∂hl kn ;s im;r im;rs k =2F wijhmh +wimh˙ −Frs(cid:0)wim(cid:1)kgnlh h −Frswimh j im im l kn;s im;r im;rs (cid:0)use formula (4.1): wkl =wkglj(cid:1) j (cid:16) (cid:17) =2F wijhmh +wim h˙ −Frsh −Frswim,knh h j im im im;rs im;r kn;s (cid:16) (cid:17) =2F wijhmh +wij h˙ −Fklh −Fijwkl,rsh h i jm ij ij,kl kl;i rs;j (rename indices) =wij(cid:0)Fklhmh ·h +(cid:0)F −Fklh (cid:1)hmh +Fkl,rsh h (cid:1) k lm ij kl i jm kl;i rs;j −Fijwkl,rsh h kl;i rs;j (use evolution equation (4.4)) =wij(cid:0)h Fklhmh +hmh (cid:0)F −Fklh (cid:1)(cid:1) ij k lm i jm kl +(cid:0)wijFkl,rs−Fijwkl,rs(cid:1)h h . (cid:3) kl;i rs;j Lemma 4.6 (Secondderivatives). Let f be a normal velocity F or a function w of the principal curvatures λ and λ . Then we have 1 2 (4.6) fij,klη η =(cid:88) ∂2f η η +(cid:88) ∂∂λfi − ∂∂λfj η2 ij kl ∂λ ∂λ ii jj λ −λ ij i j i j i,j i(cid:54)=j for any symmetric matrix (η ) and λ (cid:54)= λ , or λ = λ and the last term is ij 1 2 1 2 interpreted as a limit. Proof. We refer to C. Gerhardt [7]. (cid:3) Lemma 4.7 (Linear operator at a critical point). Let w = w(hj) be a symmetric i function of the principal curvatures a and b. At a critical point of w, i.e. w = 0 ;i for all i=1,2, we choose normal coordinates, i.e. g =δ and (h )=diag(a, b). ij ij ij Then we have Lw =C (a, b)+E (a, b)h2 +G (a, b)h2 , w w 11;1 w 22;2 where L is the linear operator of RMPF Definition 4.1, and α is the quantity of MPF Definition 4.2. The constant terms are C (a, b)=w a(cid:0)(cid:0)F a2+F b2(cid:1)+(F −F a−F b)a(cid:1) w a a b a b +w b(cid:0)(cid:0)F a2+F b2(cid:1)+(F −F a−F b)b(cid:1) b a b a b =F (cid:0)w a2+w b2(cid:1) a b +F w ab(a−b) a b −F w ab(a−b), b a 10 MARTINFRANZEN and the two gradient terms are E (a,b):=w (cid:0)F +2F α+F α2(cid:1) w a aa ab bb −F (cid:0)w +2w α+w α2(cid:1) a aa ab bb w F −w F +2 b a a b α2, a−b (cid:18) G (a,b):= 1 · w (cid:0)F +2F α+F α2(cid:1) w α2 b aa ab bb −F (cid:0)w +2w α+w α2(cid:1) b aa ab bb (cid:19) w F −w F +2 b a a b . a−b We obtain G (a,b)=E (b,a) for all 0<a,b. w w Proof. We consider w =w(cid:0)hj(cid:1). At a critical point of w, we have i w = ∂w(cid:0)hj(cid:1) =wi(cid:0)h glj(cid:1) =wigljh =wijh =0. ;k ∂hj i ;k j il ;k j il;k ij;k i Here, we also choose normal coordinates and get w = w h +w h = 0, ;1 a 11;1 b 22;1 implying w (4.7) h =− a h =α·h , 22;1 w 11;1 11;1 b and w =w h +w h =0, implying ;2 a 11;2 b 22;2 w 1 (4.8) h =− b h = ·h . 11;2 w 22;2 α 22;2 a Now, we compute the linear operator Lw of Lemma 4.5 at a critical point of w, where we choose normal coordinates. Lw =wij(cid:0)h Fklhmh +hmh (cid:0)F −Fklh (cid:1)(cid:1) ij k lm i jm kl +(cid:0)wijFkl,rs−Fijwkl,rs(cid:1)h h kl;i rs;j =w (cid:0)(cid:0)F a2+F b2(cid:1)a+(F −F a−F b)a2(cid:1) a a b a b +w (cid:0)(cid:0)F a2+F b2(cid:1)b+(F −F a−F b)b2(cid:1) b a b a b (cid:18) (cid:19) F −F +w F h2 +2F h h +F h2 +2 a b h2 a aa 11;1 ab 11;1 22;1 bb 22;1 a−b 12;1 (cid:18) (cid:19) w −w −F w h2 +2w h h +w h2 +2 a b h2 a aa 11;1 ab 11;1 22;1 bb 22;1 a−b 12;1 (cid:18) (cid:19) F −F +w F h2 +2F h h +F h2 +2 a b h2 b aa 11;2 ab 11;2 22;2 bb 22;2 a−b 12;2 (cid:18) (cid:19) w −w −F w h2 +2w h h +w h2 +2 a b h2 b aa 11;2 ab 11;2 22;2 bb 22;2 a−b 12;2 (use formula (4.6)). Clearly, the constant terms C (a,b) are the first two lines of terms after the last w equationequalsign. Itremainstocomputethegradienttermsusingidentities(4.7)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.