ebook img

When least is best: how mathematicians discovered many clever ways to make things as small (or as large) as possible PDF

401 Pages·2007·1.801 MB·English
by  NahinPaul J
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview When least is best: how mathematicians discovered many clever ways to make things as small (or as large) as possible

PRINCETONUNIVERSITYPRESS PrincetonandOxford P A U L J . N A H I N 1 2 3 4 5 6 7 8 9 10 11 12 13 [-3], (3) 14 15 Lines: 28 to 53 16 17 ——— How Mathematicians Discovered * 37.18892pt PgVar 18 ——— 19 Many Clever Ways to Make Things Normal Page 20 * PgEnds: PageBreak 21 as Small (or as Large) as Possible 22 23 [-3], (3) 24 25 26 27 28 29 30 31 32 33 34 35 36 Withanewprefacebytheauthor 37 38 39 BOOKCOMP,Inc.—PrincetonUniversityPress/Pageiii/ReprintProof/WhenLeastisBest/nahin 1 2 3 4 5 6 7 8 Copyright©2004byPrincetonUniversityPress 9 PublishedbyPrincetonUniversityPress, 10 41WilliamStreet,Princeton,NewJersey08540 11 IntheUnitedKingdom:PrincetonUniversityPress, 12 3MarketPlace,Woodstock, 13 [-4],(4) OxfordshireOX201SY 14 AllRightsReserved 15 Lines:53to122 16 Fifthprinting,andfirstpaperbackprinting,withanew 17 prefacebytheauthor,2007 ——— * 74.16998pt PgVar 18 PaperbackISBN-13:978-0-691-13052-1 ——— 19 TheLibraryofCongresshascatalogedtheclothedition NormalPage 20 ofthisbookasfollows * PgEnds:Eject 21 22 Nahin,PaulJ. 23 Whenleastisbest:howmathematiciansdiscovered [-4],(4) 24 manycleverwaystomakethingsassmall(oraslarge)as 25 possible/PaulJ.Nahin. 26 p.cm. 27 Includesbibliographicalreferencesandindex. 28 1.Maximaandminima. 2.Mathematics—History. 29 I.Title. 30 QA306.N342004 31 511'.66—dc22 2003055537 32 BritishLibraryCataloging-in-PublicationDataisavailable 33 ThisbookhasbeencomposedinStone 34 35 Printedonacid-freepaper.(cid:2)(cid:2) 36 press.princeton.edu 37 38 PrintedintheUnitedStatesofAmerica 39 10 9 8 7 6 5 BOOKCOMP,Inc.—PrincetonUniversityPress/Pageiv/ReprintProof/WhenLeastisBest/nahin For PATRICIA ANN, who contradicts the title because she has always been “the most” and is still the best Whenaquantityisthegreatestorthe leastthatitcanbe,atthatmomentitneither flowsbackwardsnorforwards;forifitflows forwardsorincreasesitwasless,andwill presentlybegreaterthanitis;andonthe contraryifitflowsbackwardsordecreases, thenitwasgreater,andwillpresentlybeless thanitis. —IsaacNewtononmaximumsand minimums,inMethodusfluxionumet serieruminfinitarum,1671 Therearehardlyanyspeculationsin geometrymoreusefulormoreentertaining thanthosewhichrelatetomaximaand minima. —thegreatEnglishmathematicianColin Maclaurin,inATreatiseofFluxions,1742 Thegreatbodyofphysicalscience,a greatdealoftheessentialfactoffinancial science,andendlesssocialandpolitical problemsareonlyaccessibleandonly thinkabletothosewhohavehadasound traininginmathematicalanalysis,andthe timemaynotbeveryremotewhenitwillbe understoodthatforcompleteinitiationasan efficientcitizenofoneofthegreatcomplex world-wideStatesthatarenowdeveloping,it isasnecessarytobeabletocompute,tothink inaveragesandmaximaandminima,asitis nowtobeabletoreadandwrite. —H.G.Wells,fromMankindintheMaking,1903 C 1 ontents 2 3 4 5 6 7 8 9 PrefacetothePaperbackEdition xiii 10 Preface xxi 11 [First Page] 12 1. Minimums, Maximums, Derivatives, 13 and Computers 1 [-9], (1) 14 1.1 Introduction 1 15 1.2 WhenDerivativesDon’tWork 4 Lines: 0 to 68 16 1.3 UsingAlgebratoFindMinimums 5 17 ——— 1.4 ACivilEngineeringProblem 9 4.71602pt PgVar 18 1.5 TheAM-GMInequality 13 ——— 19 1.6 DerivativesfromPhysics 20 Normal Page 20 1.7 MinimizingwithaComputer 24 21 PgEnds: TEX 2. 22 The First Extremal Problems 37 23 2.1 TheAncientConfusionofLength [-9], (1) 24 andArea 37 25 2.2 Dido’sProblemandthe 26 IsoperimetricQuotient 45 27 2.3 Steiner’s“Solution”toDido’s 28 Problem 56 29 2.4 HowSteinerStumbled 59 30 2.5 A“Hard”ProblemwithanEasy 31 Solution 62 32 2.6 Fagnano’sProblem 65 33 3. 34 Medieval Maximization and Some 35 Modern Twists 71 36 3.1 TheRegiomontanusProblem 71 37 3.2 TheSaturnProblem 77 38 3.3 TheEnvelope-FoldingProblem 79 39 3.4 ThePipe-and-CornerProblem 85 BOOKCOMP,Inc.—PrincetonUniversityPress/Pagex/ReprintProof/WhenLeastisBest/nahin

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.