ebook img

What laboratory experiments reveal about the dynamics of arched plasma structures PDF

163 Pages·2012·51.34 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview What laboratory experiments reveal about the dynamics of arched plasma structures

Fields, forces, and flows: What laboratory experiments reveal about the dynamics of arched plasma structures Thesisby EveStenson InPartialFulfillmentoftheRequirements fortheDegreeof DoctorofPhilosophy CaliforniaInstituteofTechnology Pasadena,California 2012 (Defended15May2012) ii ⃝c 2012 EveStenson Exceptwhereotherwisenoted,thisworkislicensedundertheCreativeCommons Attribution-ShareAlike3.0UnportedLicense. Toviewacopyofthislicense,visit http://creativecommons.org/licenses/by-sa/3.0/orsenda lettertoCreativeCommons,444CastroStreet,Suite900,MountainView, California,94041,USA. iii Defiantlydedicatedtomyparents,Dr. andDr. Stenson,whoreallyshouldhavebeenpushierif they’dtrulywantedtopreventmefrombecominga“failedmathematician”. iv Acknowledgements Mr. Spock: “Under impulse power she expends fuel like any other vessel. We call it ‘plasma.’ ButwhatevertheKlingondesignation,isitismerelyionizedgas.” Lt. Uhura: “Well what about all that equipment we’re carrying to catalog gaseous anomalies? Wellthething’sgottohaveatailpipe.” —Stardate9523.8,figuringouthowtodetectacloakedbirdofprey (StarTrekVI:TheUndiscoveredCountry) Iusedtothinkplasmaswere“merelyionizedgas”(thoughIlackedMr. Spock’sexpertisewith plasma propulsion). I had learned back in third grade that there were three states of matter, and whenmysixthgradeteachersuddenlyaddedanother,Iwasskeptical. Whyshouldsomewayward electrons make a gas worthy of being designated a whole separate state? I managed to maintain thatskepticismallthewaythroughjuniorhigh,highschool,andevencollege. Then,whenIwasa firstyeargradstudentatCaltech,IattendedaseminargivenbyanAppliedPhysicsprofessorbythe nameofPaulBellan,whoopenedmyeyestohowfascinatingplasmascanbe. In the years since, thanks to Paul’s expert tutelage and his years of patience, I have become quite the fan of the fourth state of matter, joining the ranks of “scientists who have to explain to friendsandacquaintancesthattheyarenotstudyingblood”1 [1]. Ithasbeenmygreatprivilegeand pleasure to be a part of this research group — to be involved with plasmas and the community of peoplewhostudythem,bothatCaltechandaroundtheworld. FromamongtheranksofBellanPlasmaGroup,ImustthankinparticularSettYouandGunsu Yun for being wonderful mentors as well as great officemates. My luck in officemates continued with Bao Ha and Mark Kendall; I have very much enjoyed all of our conversations over the years, 1Itishighlygratifyingtoreportthatatthetimeofthiswriting,thetopresultofaGooglesearchfortheword“plasma”, displayedjustbelowanadforan“LGFullHDPlasmaTV”,istheWikipediapageentitled“Plasma(physics)”. “Blood plasma”comesinsecond. v both on science and other topics. Other group members with whom I’ve had the honor of work- ingincludeShreekrishnaTripathi,DeepakKumar,StevePracko,RobMoeller,RoryPerkins,Auna Moser,VernonChaplin(whomIowemanythanks,aswellasmanycookies,forallofthecomments and corrections he suggested to this dissertation), Zach Tobin, Xiang Zhai — and, more recently, Taiichi Shikama and K.B. Chai. Dave Felt has been an invaluable colleague, above and beyond hisbuilding/repairingtheelectronicssystemsuponwhichmyresearchhasrelied,ashaveEleonora Vorobieff,ConnieRodriguez,andChristyJenstad. Iamalsoindebtedtopreviousgroupalumni— such as Carlos Romero-Talamas, Freddie Hansen, Scott Hsu, and Mike Brown — who at confer- ences and meetings have been generous with their time and insights, even though their tenures in thegroupfinishedbeforeminebegan. Mytimeingraduateschoolhasbeenverymuchenrichedbymycurrentandformerroommates (includingJessieRosenberg,NeilHalelamien,MatthewKelley,Tobiko,PlatoandSocrates,Xerion, andespeciallymypartnerinlife,adventures,andsomuchmore,BrianStandley). Ihavealsobeen lucky to enjoy the companionship of many other amazing people, be it via boba runs with Adam Griffith, board games with Scott Tesmer and Photon, dinners (and more) with the potluck group, divingwithPCHScubaandAAU,Frisbeegames,dancing,ortheCaltechY,AlpineClub,CCD,et al. Meanwhile,fromthreetimezonesaway,mysisterKateandthemembersof“In/Out”havebeen anongoingsourceofsupportandfriendship. IwouldliketothanktheCaltechfacultywhoservedonmycandidacyand/ordefensecommit- tees — Ed Stone, Joe Shepherd, Sunil Golwala, and Keith Schwab — for their feedback on my researchand/orencouragement. IwouldalsoliketothankthosefacultyfromwhomItookexcellent andvaluablecourses,aswellasotherswhoweresimplywillingtomaketimefordiscussions. That I was in a position to attend Paul’s seminar at Caltech to begin with, I owe in part to the countlesspeoplewhohelped,taught,andinspiredmeovertheyears. Ilearnedcalculus,forexample, from Jim Voytas, whose intense enthusiasm for the subject, superhuman vigor, and attention to importantsubtletiesarethestuffoflegend. Iwasluckytodomyundergraduatethesisresearchwith Ben Crooker, whose amazing fluency in both the laboratory and classroom I will always strive to match. The physics faculty at Fordham University provided not only an educational environment, butalsoawelcomingone;yearslater,FreemanHallstillconnotestomeasenseof“home”. Though there is neither time nor space to enumerate them all, to all of the teachers and administrators, classmates and colleagues, friends and family members who have helped me in my personal and professionaljourneythusfar,Iwillalwaysbegrateful. vi Abstract Magnetic flux tubes and, more generally, magnetic field structures that link a plasma volume to its boundary are prominent features in plasma systems of significant interest, such as the solar atmosphereandtheinteriorsofmagneticfusiondevices. Inordertostudythefundamentalphysicsofthesesystems,experimentswereconductedinthe laboratory using a magnetized plasma gun to produce individual arched, plasma-filled magnetic flux tubes. More complex plasma topologies were also explored. The absence of confining walls allowed plasmas to evolve freely — which they did, very dynamically, over the course of several microseconds. The experiment setup featured excellent reproducibility, extensive diagnostic ac- cessibility, and several tunable parameters. In particular, a plasma “color coding” technique and magneticmeasurementsprovidednewandinterestingresults. Thesinglearchesor“loops”ofplasmaexhibitedsustainedaxialcollimation,evenduringadra- maticevolutionfromasmall,semicirculararchintoakinkedstructureuptoseventimeslarger. The loops’magneticstructurewasverifiedasconsistentwiththatofafluxtube,andtheirevolutionwas foundtobeinquantitativeagreementwithtwointerrelatedmagnetohydrodynamic(MHD)theories: a simplified hoop force model for the axis expansion and a recently proposed MHD flow model for the collimation. More complex plasma structures were found to be similarly dominated by the effectsofthemagneticfield,exhibitingbehaviorthatwashighlyrepeatablebutvariedsignificantly fromonemagneticstructuretothenext. ThesefindingssuggestthatMHD-drivenflowsareanimportantmechanismforthetransportof plasma in arched flux tubes and other magnetic plasma structures. Because MHD has no inherent length scale, the forces driving the evolution of these experiments are expected to similarly affect othersystemswithlowplasmabetaandahighLundquistnumber. vii Contents Acknowledgements iv Abstract vi ListofFigures xi ListofTables xiv 1 Introduction 1 1.1 Thebigpicture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Introductiontoplasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Plasmaregimes,especiallymagnetohydrodynamics . . . . . . . . . . . . . . . . . 5 1.3.1 Magneticfluxtubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.2 Helicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Theuseoflaboratoryexperimentstoelucidatefundamentalplasmaphysicsrelevant tosolarandastrophysicalphenomena . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Overviewofthisdissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Experimentdetails 11 2.1 Vacuumsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Magnetizedplasmagun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Historyandoverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Vacuummagneticfieldsystem . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Gasdelivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.4 Mainpowersystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.1 Systemoverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 viii 2.3.2 Currentandvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.3 Magneticprobearray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.4 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.5 Dual-gasplasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.1 Calculationsofmagneticfieldlines . . . . . . . . . . . . . . . . . . . . . 27 2.4.2 Loop-tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.3 Imageprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 PlasmaflowsinarchedmagneticfluxtubesduetoMHDforces 33 3.1 Model1: Simplifiedhoopforcemodel . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.1 Derivationforaperfectlyconductingcircularhoop . . . . . . . . . . . . . 34 3.1.2 The“contradiction”oftimederivatives . . . . . . . . . . . . . . . . . . . 36 3.1.3 Forcecalculationwithoutconstantfluxassumption . . . . . . . . . . . . . 37 3.1.4 Effectofhoopshapeoninductance . . . . . . . . . . . . . . . . . . . . . 39 3.1.5 R(t)predictedbyasimplifiedhoopforcemodel . . . . . . . . . . . . . . 40 3.2 Model2: Thegobbleeffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1 Keyconcepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.2 Predictedflowvelocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Experimentswithsingleplasmaloops . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.1 Creatingarched,plasma-filledfluxtubes. . . . . . . . . . . . . . . . . . . 46 3.3.2 Visualizingflowswithdual-speciesloops . . . . . . . . . . . . . . . . . . 49 3.3.3 Gettingmorequantitativewithsingle-speciesloops . . . . . . . . . . . . . 51 3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.1 Hoop-force-drivenexpansion. . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.2 Gobble-drivenflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.3 Complementaryforceswithcomparablescaling . . . . . . . . . . . . . . . 59 3.4.4 Implicationsforothersystems . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Magneticmeasurementsofindividualfluxtubes 61 4.1 Measuringthethree-dimensionalmagneticfield . . . . . . . . . . . . . . . . . . . 61 4.2 Comparisontoaforce-freecylinder . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3 Calculationofcurrentchannelwidthfrommagneticdata . . . . . . . . . . . . . . 73 ix 4.4 Non-force-freecurrentprofiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5 Beyondtheindividualarchedfluxtube,moreandless 77 5.1 Singleloopswithunusualvacuumfieldconfigurations . . . . . . . . . . . . . . . 77 5.2 Three-footpointstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3 Pairsofloops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6 Conclusionsandfuturework 85 6.1 Summaryofcontributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.2 Ashotillustratingthesignificanceofthemagneticfieldtopology . . . . . . . . . . 86 6.3 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A Measurementsofthevacuummagneticfield 90 A.1 Magneticfluxattheelectrodesurface . . . . . . . . . . . . . . . . . . . . . . . . 90 A.2 Vacuumfieldmeasurementswiththemagneticprobearray . . . . . . . . . . . . . 94 A.3 Calculationofthemagneticfieldduetoapairofsolenoids . . . . . . . . . . . . . 97 A.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 B Detailsoffastgasvalveoperations 99 B.1 Species-dependentvariationintotalgasreleased. . . . . . . . . . . . . . . . . . . 99 B.2 Operatingregimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 B.3 Fastiongaugemeasurementsofrisetimeandpressureresponse . . . . . . . . . . 104 B.4 Summaryandsuggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 C Estimateford(cid:8)=dtandothercircuitparameters 109 D Analysesofuncertainty,variation,anderrorinlooptraces 113 D.1 Methodreproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 D.2 Shot-to-shotvariation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 D.3 Left-handedversusright-handedlooptraces . . . . . . . . . . . . . . . . . . . . . 117 D.4 Boundaryidentificationindual-gaslooptraces . . . . . . . . . . . . . . . . . . . 120 D.5 Negligibilityofviewingangleuncertainty . . . . . . . . . . . . . . . . . . . . . . 122 D.6 Systematicerrorof2Dprojection. . . . . . . . . . . . . . . . . . . . . . . . . . . 122 x D.7 Summaryanddiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 E Speciesvariationinsingle-gasloops 126 E.1 Inimages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 E.2 InIVdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 E.3 Inmagneticdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 E.4 Regardingneonloops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 F Furtheradventuresinnumericalintegration 131 F.1 Keyissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 F.2 Theoptionsconsidered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 G Alfvenspeedcontoursforplasmaparameterrangesofinterest 135 H Timingsurveyforsingle-loopplasmas 138 H.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 H.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 H.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Bibliography 144

Description:
quite the fan of the fourth state of matter, joining the ranks of “scientists who have to atmosphere and the interiors of magnetic fusion devices. For those that don't, the equations above will not accurately predict or explain the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.