What can we learn about solar coronal mass ejections, coronal dimmings, and Extreme-Ultraviolet jets through spectroscopic observations? HuiTian1, ScottW. McIntosh1, LidongXia2, JiansenHe3, XinWang1,3 2 1 0 2 n ABSTRACT a J Solareruptions,particularlycoronalmassejections(CMEs)andextreme-ultraviolet(EUV)jets,have 0 rarely been investigatedwith spectroscopic observations. We analyze several data sets obtained by the 1 EUVImagingSpectrometeronboardHinodeandfindvarioustypesofflowsduringCMEsandjeterup- ] tions.CME-induceddimmingregionsarefoundtobecharacterizedbysignificantblueshiftandenhanced R line width by using a single Gaussian fit. While a red-blue(RB) asymmetry analysis and a RB-guided S doubleGaussianfitofthecoronallineprofilesindicatethatthesearelikelycausedbythesuperpositionof h. astrongbackgroundemissioncomponentandarelativelyweak( 10%)high-speed( 100kms−1)up- ∼ ∼ p flowcomponent.Thisfindingsuggeststhattheoutflowvelocityinthedimmingregionisprobablyofthe - orderof100kms−1,not 20kms−1asreportedpreviously.Densityandtemperaturediagnosticsofthe o ∼ r dimmingregionsuggestthatdimmingisprimarilyaneffectofdensitydecreaseratherthantemperature st change. Themasslossesindimmingregionsasestimatedfromdifferentmethodsareroughlyconsistent a with each other and they are 20%-60% of the masses of the associated CMEs. With the guide of RB [ asymmetryanalysis,wealsofindseveraltemperature-dependentoutflows(speedincreaseswithtempera- 1 ture)immediatelyoutsidethe(deepest)dimmingregion.Theseoutflowsmaybeevaporationflowswhich v are caused by the enhancedthermal conductionor nonthermalelectron beams along reconnectingfield 4 lines,orinducedbytheinteractionbetweentheopenedfieldlinesinthedimmingregionandtheclosed 0 loops in the surrounding plage region. In an erupted CME loop and an EUV jet, profiles of emission 2 2 linesformedatcoronalandtransitionregiontemperaturesarefoundtoexhibittwowell-separatedcompo- . nents,analmoststationarycomponentaccountingforthebackgroundemissionandahighlyblueshifted 1 ( 200kms−1)componentrepresentingemissionfromtheeruptingmaterial. Thetwo componentscan 0 ∼ 2 easilybedecomposedthroughadoubleGaussianfitandwecandiagnosetheelectrondensity,tempera- 1 tureandmassoftheejecta. Combiningthespeedoftheblueshiftedcomponentandtheprojectedspeed : oftheeruptingmaterialderivedfromsimultaneousimagingobservations,wecancalculatetherealspeed v i oftheejecta. X r Subjectheadings: Sun:coronalmassejections(CMEs)—Sun:flares—Sun:corona—line:profiles—solarwind a 1. Introduction Fengetal. 2009; Liuetal. 2010). Recent statistical studiesofReinard&Biesecker(2008)andBewsheretal. Coronal mass ejections (CMEs) are large-scale (2008)haveshownthatmorethan50%ofthefrontside solar eruptions and earth-directed CMEs are often CMEs are associated with coronal dimmings (or sourcesofstronggeomagneticstorms(e.g.,Goslingetal. transient coronal holes), which are characterized 1991; Wangetal. 2002, 2006; Zhang&Low 2005; by abruptly reduced emission in extreme-ultraviolet (EUV) and soft X-rays (e.g., Rust&Hildner 1976; 1High Altitude Observatory, National Center for Atmospheric Gopalswamy&Hanaoka1998;Thompsonetal.1998; Research,P.O.Box3000,Boulder,CO80307;[email protected] Zarroetal. 1999; Zhouetal. 2003; DeTomaetal. 2Shandong Provincial Key Laboratory of Optical Astronomy 2005; McIntoshetal. 2007; Miklenicetal. 2011). and Solar-Terrestrial Environment, School of Space Science and Physics,ShandongUniversityatWeihai,Weihai264209,China Dimmings may mark locations of the footpoints of 3SchoolofEarthandSpaceSciences,PekingUniversity,China ejected flux ropes (e.g., Webbetal. 2000) or formed 1 by reconnection between the erupting field and the toestimatethemassoftheeruptedmaterialandmass surrounding magnetic structures (e.g., Attrilletal. lossinthedimmingregion. 2007; Mandrinietal. 2007). There are basically two So far there are only a few spectroscopic investi- types of dimmings: small-scale dimmings associated gationsof CMEs, dimmings, and EUV jets in the lit- with the two ends of a pre-CME sigmoid structure erature. Using observationsby the CoronalDiagnos- (e.g., Sterling&Hudson 1997; Hudsonetal. 1998; tic Spectrometer(CDS, Harrisonetal. 1995) onboard Zarroetal. 1999; Webbetal. 2000; Jiangetal. 2003; the Solar and Heliospheric Observatory (SOHO), Chengetal. 2010) and global-scale dimmings which Harra&Sterling(2001)reportedsignificantblueshift are often immediately proceeded by global ”EUV of emission lines formed at coronal and TR tem- waves”(e.g.,Thompsonetal.2000;Attrilletal.2007). peratures in dimming regions. This result has been Jet-like phenomena are small-scale solar erup- confirmed by recent high-resolution observations of tionsand theyare oftenobservedin X-ray, EUV, and the EUV Imaging Spectrometer (EIS, Culhaneetal. whitelight. Mostjetsareassociatedwithsmallflares 2007) onboard Hinode (Harraetal. 2007; Jinetal. (Madjarskaetal. 2007). EUV jets are characterized 2009;Attrilletal.2010;Chenetal.2010a;Harraetal. bynearlycollimatedhigh-speedmotionsofplasmaat 2011a). Blueshiftwasalsofoundinfootpointregions coronalandtransitionregion(TR)temperatures(e.g., of small-scale eruptedloops (Heetal. 2010b). How- Alexanderetal.1999;Linetal.2006;Liuetal.2011; ever, a preliminary study of McIntoshetal. (2010) Shenetal.2011,2012;Srivastava&Murawski2011). suggests that some line profiles in the dimming re- Studies have shown that EUV jets and X-ray jets are gionsareasymmetric,withaweakenhancementinthe closely associated with each other (Kimetal. 2007; blue wings. EIS observations have also revealed an Chiforetal.2008b;Heetal.2010b;Yangetal.2011). obvious increase of the line broadening in dimming RecentobservationsbytheAtmosphericImagingAs- regions, whichwas interpretedasa growthofAlfve´n sembly (AIA, Lemenetal. 2011) onboard the Solar waveamplitudeorinhomogeneitiesofflowvelocities DynamicsObservatory(SDO)haverevealedthatfine- along the LOS (McIntosh 2009; Chenetal. 2010a; scale EUV jets (high-speed outflows) are ubiquitous Dolla&Zhukov 2011). The presence of asymmet- on the Sun (DePontieuetal. 2011;Tianetal. 2011b; ric line profiles suggests that there are probably two Yangetal.2011). emission components and that a single Gaussian fit KinematicsassociatedwithCMEsandEUVjetsare may not reveal the real physics in dimming regions usually studied through coronagraph and broadband (McIntoshetal.2010;Dolla&Zhukov2011). observations.Thehighcadenceandlargefieldofview The outflow speed derivedfrom a single Gaussian (FOV)oftheseimagingobservationshavegreatlyen- fitisroughlyintherangeof10-40kms−1andusually hanced our understanding of these solar eruptions. it does not change significantly for coronal emission However,imagingobservationsonlyallowustostudy lines formed at different temperatures (Harraetal. the plane of sky (POS) componentof the kinematics, 2007; Jinetal. 2009; Attrilletal. 2010; Chenetal. whichisusuallyagoodapproximationofthefullkine- 2010a). However, Imadaetal. (2007) reported a matics only for limb events. For earth-directederup- temperature-dependentoutflowinthedimmingregion tions, especially halo-CMEs which are the cause of following a CME. The speed of the flow increases moststronggeomagneticstorms,imaginginstruments from 10kms−1atlog(T/K)=4.9to 150kms−1at ∼ ∼ placedclosetotheSun-Earthlineoftenfailtoobserve log (T/K)=6.3. One-dimensionalmodeling effort has their initial or completeevolution. Spectroscopicob- been taken to reconstruct this temperature-dependent servations,ontheotherhand,canprovideinformation outflow(Imadaetal.2011). on the plasma motions in the line of sight (LOS) di- Linesplittingisusuallyassociatedwithaveryhigh- rection and thus are critical for us to understand the speed( 200kms−1 orlarger)plasmamotion. Using kinematics of earth-directederuptions. For both disk CDS an∼d EIS observations, Harra&Sterling (2003), andlimberuptions,theirthree-dimensional(3-D)evo- Asaietal. (2008) and Li&Ding (2012) found sig- lutioncaninprincipleberevealedthroughsimultane- natures of line splitting indicative of plasma ejection ousimagingandspectroscopicobservations. Inaddi- at a speed of 250 km s−1 during CMEs or fila- tion, spectra of different emission lines can be used ment eruptions∼. Spectra obtained by the Solar Ul- todiagnoseplasmapropertiessuchaselectrondensity traviolet Measurements of Emitted Radiation Spec- andtemperature. Spectroscopicdatacanalsobeused trograph(SUMER,Wilhelmetal.1995;Lemaireetal. 2 1997)onboardSOHOhaverevealedsignaturesofline emissionoftenconsistsofatleasttwocomponentsso splitting associated with the expandingX-ray plasma thatpreviousresultsbasedonasingleGaussianfitmay in a flare/CME event (Innesetal. 2001). Line split- need to be reconsidered. We apply the recently im- ting or obviously blueshifted components have also proved techniques of red-blue (RB) asymmetry anal- been found in spectra of EUV jets in coronal holes ysis and RB-guided double Gaussian fit (Tianetal. andARs(Wilhelmetal.2002;Madjarskaetal. 2007; 2011c), whichweusedpreviouslytostudyproperties Kamioetal.2007,2009;Chiforetal.2008a). of the high-speed outflows in non-eruptive active re- Therehavebeenafewinvestigationsoftheplasma gions(ARs),tothespectraacquiredduringsolarerup- propertiesofdimmingsandEUVjets.Harrison&Lyons tions. Wefindvarioustypesofflowsanddiscusspos- (2000)andHarrisonetal.(2003)usedtheSiX347.40A˚ &356.0s4iAb˚lemechanismstoproducetheseflows. Wealsodi- line pairs to diagnose the electron density and found agnosethe density, temperatureandmass loss (mass) thatitdecreasedasdimmingoccurred.Usingsomeas- ofthedimmingregionaswellastheejectedmaterial. sumptionsoftheemittingvolumeandthedistribution OuranalysesdemonstratethatEUVspectroscopicob- of the amount of material at different temperatures, servationscanprovidealotofvaluableinformationon they also made an effort to estimate the mass loss in solareruptions. the dimming region and found that it is of the same order as the mass of the associated CMEs. Taking 2. Observations, Single Gaussian fit, and RB values of the formation heights of different emission asymmetryanalysis lines and the densities from static solar atmosphere Table1lists someofthe observationdetailsof the models, Jinetal. (2009) also developed a method to sixeventsweanalyzed.Theclassandpeaktimeofthe estimate the mass losses in dimming regions associ- associated flare are also listed for each event. There ated with two events during 2006 Dec 13-15. Using weremanyfastrepetitiverasters(witha scanningca- theFe XII 186.88A˚ &195.12A˚ line pair,Chiforetal. dence of 6 minutes) for Events 4&5 and we only (2008a) measured electron densities higher than log ∼ (N /cm−3)=11 for an EUV jet. However, they only presentresultsforseveraloftheminthispaper. e simplysummedupthespectralintensitiesinthewave- The SSW routine eis prep.pro was applied to cor- lengthwindowsofthelinesandcouldnotseparatethe rect and calibrate the EIS data. This includes CCD blueshiftedcomponentfromthebackgroundemission pedestal and dark current subtraction, cosmic ray re- component. moval, warm and hot pixels identification, absolute calibration, error estimation, and so on. The effects BesidesdimmingsandejectaassociatedwithCMEs ofslittiltandorbitalvariation(thermaldrift)werees- and EUV jets, other solar eruption related phe- timated by using the SSW routine eis wave corr.pro nomena such as flare induced chromospheric evap- and removedfromthe data. After that, a runningav- oration (Teriacaetal. 2003; Milliganetal. 2006a,b; erage over 3 pixels along the slit was applied to the Milligan&Dennis 2009; Milligan 2011; Chenetal. spectratoimprovethesignaltonoiseratio. Notethat 2010b;Watanabeetal.2010;Li&Ding2011;Grahametal. Tianetal.(2011c)usedthemedianvaluesofthemea- 2011; Liuetal. 2011), flare-related magnetic recon- surement errors when averaging profiles over several nection (Wangetal. 2007; Haraetal. 2011), filament pixels.Inthispaperweregardtheselineprofilesasin- oscillations(Chenetal.2008;Bocchialinietal.2011) dependentmeasurementsoftheprofileatasinglepixel and coronal waves (Harraetal. 2011b; Chenetal. andusetheuncertaintypropagationtheorytocalculate 2011;Veronigetal.2011)havealsobeeninvestigated themeasurementerrorsfortheaveragedprofile. This throughEUV spectroscopic observations. As the ap- usuallyleadstosmaller valuesofthe errors, whichis proachingofthenewsolarmaximum,thereisnodoubt reasonablesincethespatialaverageimprovesthesig- thatmorespectroscopicobservationswillbeemployed naltonoiseratio. to study solar eruptionssince the high-resolutionEIS instrumentis still in goodconditionand the Interface As a common practice, a single Gaussian fit was RegionImagingSpectrograph(IRIS)isexpectedtobe applied to each spectrum. The line peak intensity, launchedin2012. Dopplershiftandline widthcanthusbederived. We assumezeroshiftoftheprofileaveragedovereachob- Inthispaperweanalyzeseveraldatasetsobtained servation region. We have to mention that the line by EIS during CME eruptions and EUV jets. The width can be expressed in different formats and dif- shapesoftheEISspectrallineprofilessuggestthatthe 3 Peak Intensity (arbitrary unit) Velocity (km/s) Width (km/s) RB Asymmetry [70-130 km/s] 2.48 3.01 3.55 4.09 4.63 5.16 5.70 -42 -28 -14 0 14 28 42 44 50 56 62 68 74 80 -0.21-0.14-0.07 0.00 0.07 0.14 0.21 19:20-21:35 -50 -50 -50 --5500 c) -100 -100 -100 --110000 e s c Y (ar -150 -150 -150 --115500 -200 -200 -200 --220000 -250 -250 -250 --225500 450 500 550 600 650 450 500 550 600 650 450 500 550 600 650 445500 550000 555500 660000 665500 01:15-03:30 -50 -50 -50 ---555000 c) -100 -100 -100 ---111000000 e s c Y (ar -150 -150 -150 ---111555000 -200 -200 -200 ---222000000 -250 -250 -250 ---222555000 500 550 600 650 700 500 550 600 650 700 500 550 600 650 700 555000000 555555000 666000000 666555000 777000000 04:10-06:25 -50 -50 -50 --5500 c) -100 -100 -100 --110000 e s c Y (ar -150 -150 -150 --115500 -200 -200 -200 --220000 -250 -250 -250 --225500 550 600 650 700 550 600 650 700 550 600 650 700 555500 660000 665500 770000 10:29-11:19 -50 -50 -50 --5500 c) -100 -100 -100 --110000 e s c Y (ar -150 -150 -150 --115500 -200 -200 -200 --220000 -250 -250 -250 --225500 550 600 650 700 750 550 600 650 700 750 550 600 650 700 750 555500 660000 665500 770000 775500 X (arcsec) X (arcsec) X (arcsec) XX ((aarrccsseecc)) Fig. 1.—Spatialdistributionsofthepeakintensity,Dopplervelocityandexponentialwidthderivedfromthe single Gaussianfit,andtheaverageRBP asymmetryinthevelocityintervalof70-130kms−1forFeXIII202.04A˚ inthe2006 Dec14-15observations.Thebeginningandendingtime(hour:minute)ofeachscanisindicatedintheintensityimage. Thepre-eruptionconditionsare shownin thefirstrow. Thesquareineach panelofthe secondrowmarkslocations whereprofilesareaveragedandpresentedinFigure7. TheredcontoursshowninthemapofRB asymmetryforthe P 01:15-03:30scanoutlinelocationswheretheRB asymmetry(70-130kms−1)issmallerthan-0.03andthesignalto P noiseratiooftheprofileislargerthan8. 4 Table1:EISObservationsUsedinThisStudy Obs. ScanningPeriod Exposure Slit FlareClass&PeakTime Comment ID time(s) 1 2006Dec1415:11-16:01 10 1′′ X1.5,Dec1422:15 CME&Dimming 2006Dec1419:20-21:35 30 2006Dec1501:15-03:30 30 2006Dec1504:10-06:25 30 2006Dec1510:29-11:19 10 2 2007May1909:42-10:30 10 1′′ B9.5,May1913:02 CME&Dimming 2007May1911:41-15:23 40 3 2006Dec1219:07-23:46 30 1′′ X3.4,Dec1302:40 CME&Dimming 2006Dec1301:12-05:41 30 4 2011Jun2102:11-05:18 9 2′′ C7.7,Jun2103:25 CME&Dimming 5 2011Feb1419:13-20:06 8 2′′ C6.6,Feb1419:30 CME 6 2007Jun501:51-02:04 5 2′′ C1.2,Jun504:23 EUVjet 2007Jun504:16-04:29 5 Peak Intensity (arbitrary unit) Velocity (km/s) Width (km/s) RB Asymmetry [70-130 km/s] 2.48 3.01 3.55 4.09 4.63 5.16 5.70 -42 -28 -14 0 14 28 42 44 50 56 62 68 74 80 -0.21-0.14-0.07 0.00 0.07 0.14 0.21 150 150 150 150 09:42-10:30 100 100 100 100 ec) 50 50 50 50 s c ar Y ( 0 0 0 0 -50 -50 -50 -50 -50 0 50 100 -50 0 50 100 -50 0 50 100 -50 0 50 100 200 2 200 2 200 2 200 2 11:41-15:23 150 150 150 150 c) 100 100 100 100 e s arc 50 1 50 1 50 1 50 1 Y ( 0 0 0 0 -50 -50 -50 -50 -50 0 50 100 150 -50 0 50 100 150 -50 0 50 100 150 -50 0 50 100 150 X (arcsec) X (arcsec) X (arcsec) X (arcsec) Fig. 2.—SameasFigure1butforthe2007May19observations. Therectangularregions1&2markthelocations wheretheFeXIII202.04A˚ profilesareaveragedandpresentedinFigure8. 5 Peak Intensity (arbitrary unit) Velocity (km/s) Width (km/s) RB Asymmetry [70-130 km/s] 2.48 3.01 3.55 4.09 4.63 5.16 5.70 -42 -28 -14 0 14 28 42 44 50 56 62 68 74 80 -0.21 -0.14 -0.07 0.00 0.07 0.14 0.21 19:07-23:46 -50 -50 -50 -50 ec) -100 -100 -100 -100 arcs -150 -150 -150 -150 Y ( -200 -200 -200 -200 -250 -250 -250 -250 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 01:12-05:41 -50 3 4 -50 3 4 -50 3 4 -50 3 4 ec) -100 1 -100 1 -100 1 -100 1 arcs -150 -150 -150 -150 Y ( -200 2 -200 2 -200 2 -200 2 -250 -250 -250 -250 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 X (arcsec) X (arcsec) X (arcsec) X (arcsec) Fig. 3.—SameasFigure1butforthe2006Dec12-13observations. Therectangularregions1-4markthelocations wherelineprofilesareaveragedandpresentedinFigures10&14. ferent names are assigned to different formats (e.g., (2011c)namedthismethodRB andtheyfurtherde- S Chaeetal.1998;Peter2010). AGaussianlineprofile velopedtwoothermethodsRB andRB ,whichare P D canbeexpressedas: basically the same as RB except the determination S of the line centroid. For RB , the spectral position P I(v)=I exp( 1(v−v0)2), (1) correspondingtothepeakintensityisusedastheline p −2 σ2 centroidandtheresultingRB profileisnormalizedto wherev,Ip andv0 arethewavelengthvector(con- the peak intensity. For RBD, the line center of the vertedinto velocitythroughDopplereffect), peak in- primarycomponent, which is derivedfrom the RB - P tensity and line center. Chaeetal. (1998) defined σ guideddoubleGaussianfit,isusedasthelinecentroid as Gaussian width. While the Gaussian width men- andtheresultingRBprofileisnormalizedtothepeak tionedby Peter (2010) is √2σ. In Tianetal. (2011c) intensity of the primary component. As pointed out wefollowedPeter(2010)andusedboththenamesof byTianetal.(2011c),theRB techniquecanresolve P Gaussianwidthand1/ewidthfor√2σ. Toavoidcon- theblueshiftedsecondarycomponentmoreaccurately fusion, in the followingwe use the name exponential ascomparedtotheoriginallydefinedRB technique. S width(or1/ewidth,alsousedbyPeter(2010))instead Thus, here we apply the newly developed RB and P ofGaussianwidthfor√2σ. RB techniques, as well as the RB -guided double D P Thetechniqueof RBasymmetryanalysiswasfirst Gaussian fit (for details see Tianetal. 2011c), to the introducedby DePontieuetal. (2009) anditis based datainthispaper. on a comparison of the two wings of the line profile Figures 1-6 show the spatial distributions of the at same velocityranges. Theline profilewas first in- peakintensity,velocityandexponentialwidthderived terpolated to a spectral resolution ten times greater from the single Gaussian fit, and the average RB P thantheoriginalone,thenthebluewingemissionin- asymmetry in the velocity intervalof 70-130 km s−1 tegrated over a narrow spectral range was subtracted forFeXIII202.04A˚ orFeXII195.12A˚ intheobserva- from that over the same range in the red wing. The tions of six events. For the RB asymmetry a neg- P range of integration was then sequentially stepped ative/positive value indicates an enhancement of the outward from the line centroid to build an RB asym- blue/red wing. We preferto use the Fe XIII 202.04A˚ metry profile (simply RB profile). In our previous line to detect asymmetry since there is no identified work(DePontieuetal.2009;DePontieu&McIntosh blendsinthisstrongline,althoughthepervasivepres- 2010;DePontieuetal.2011;McIntosh&DePontieu ence of very weak redward asymmetries outside the 2009a,b;McIntoshetal.2011;Tianetal.2011a;Mart´ınez-Sykodriamemtailn.g regions (in Figures 1-3) might suggest an 2011),weusedthesingleGaussianfittodeterminethe unidentifiedweakblendattheredwingofthelinepro- line centroid and applied this technique to spectra in file. However,inFigures4-6wepresentresultsforthe coronal holes, quiet Sun, and quiet ARs. Tianetal. 6 Fig.4.—EvolutionofAIA193A˚ intensityandEISFeXII195.12A˚ lineparameters(peakintensity,velocityandwidth derivedfromthesingleGaussianfit,andtheaverageRB asymmetryinthevelocityintervalof70-130kms−1)inthe P 2011Jun21observations. ThetimeoftheAIAobservationandthebeginningtimeofeachEISscanareindicatedin thecorrespondingintensityimages. Therectangularregionmarksthelocationswherelineprofilesareaveragedand 7 presentedinFigure11. ThesizeoftheFOVisabout175′′ 152′′. Amovie(m4.mpeg)showingtheevolutionofAIA 171A˚ isavailableonline. × Fig. 5.—SameasFigure4butforthe2011Feb14observations. Theasteriskmarksthecenteroffivepixelsalong theslitwherelineprofilesareaveragedandpresentedinFigure12. ThesizeoftheFOVisabout175′′ 160′′. For × illustrationsomebaddatafromsingleexposuresarereplacedbythedataofadjacentexposures. Amovie(m5.mpeg) showingtheevolutionofAIA193A˚ isavailableonline. 8 Peak Intensity (arbitrary unit) Velocity (km/s) Width (km/s) RB Asymmetry [70-130 km/s] 2.48 3.01 3.55 4.09 4.63 5.16 5.70 -42 -28 -14 0 14 28 42 56 62 68 74 80 86 92 -0.21-0.14-0.07 0.00 0.07 0.14 0.21 -50 01:51-02:04 -50 -50 -50 -100 -100 -100 -100 c) e s arc -150 -150 -150 -150 Y ( -200 -200 -200 -200 -250 -250 -250 -250 -600 -550 -500 -450 -600 -550 -500 -450 -600 -550 -500 -450 -600 -550 -500 -450 -50 04:16-04:29 -50 -50 -50 -100 -100 -100 -100 c) e s arc -150 -150 -150 -150 Y ( -200 -200 -200 -200 -250 -250 -250 -250 -600 -550 -500 -450 -400 -600 -550 -500 -450 -400 -600 -550 -500 -450 -400 -600 -550 -500 -450 -400 X (arcsec) X (arcsec) X (arcsec) X (arcsec) Fig. 6.—SameasFigure1butforFe XII195.12A˚ inthe2007Jun5observations. Therectangularregionmarksthe locationswherelineprofilesareaveragedandpresentedinFigure13. Fe XII 195.12A˚ line since the exposure time used in ming regions are characterized by a blueshift of 10- theassociatedobservationsistooshortsothatonlythe 40 km s−1, a notable phenomenonin the Hinode era strongFeXII195.12A˚ linehasenoughS/Ntoallowa (Harraetal. 2007; Jinetal. 2009; Attrilletal. 2010; reliable RB asymmetry analysis to individualprofile. Chenetal. 2010a; Harraetal. 2011a). Enhancement Since the blend Fe XII 195.18A˚ sits at the red wing of the line width in dimming regions has also been of Fe XII 195.12A˚ (Youngetal. 2009), any blueward reportedbyMcIntosh(2009), Chenetal.(2010a)and asymmetries detected by our RB technique are not Dolla&Zhukov(2011) andit isveryclear fromFig- P causedbythisidentifiedblend. ures 1-4. The significant blueshift and enhancedline The pre-eruption parameters are presented in the widtharesimilartothosefoundattheweak-emission first row of each figure. The scanned regions for all boundaries of ARs (e.g., Marschetal. 2004, 2008; rastersarealmostthesameforalmosteveryevent.The Harraetal. 2008; DelZanna 2008; DelZannaetal. onlyexceptionisthe2007May19eventshowninFig- 2011;Doscheketal. 2007, 2008; Tripathietal. 2009; ure 2, where we can clearly see that the observedre- Heetal.2010a;Murrayetal.2010;Brooks&Warren gioninthepre-eruptionphaseisabout50′′ smallerin 2011;Warrenetal.2011;Bradshawetal.2011;Scott&Martens solarY,comparedtothatintheeruptionphase. 2011;Youngetal.2012;Bakeretal.2012;Haraetal. 2008;DePontieuetal.2009;DePontieu&McIntosh 3. Flows 2010;McIntosh&DePontieu2009a,b;McIntoshetal. 2011;Peter2010;Bryansetal.2010;Ugarte-Urra&Warren We found various types of flows in our observa- 2011;Mart´ınez-Sykoraetal.2011;Tianetal.2011a,c). tions. In the followingwe mainly investigateproper- Figures1-4alsorevealasignificantbluewardasym- tiesofthreetypesofoutflowsassociatedwithcoronal metry in dimming regions. We note that the blue- dimmingsandCMEorEUVjeteruptions. ward asymmetries on maps of RB asymmetry for S the 2006 Dec 14-15 observations, which were pre- 3.1. High-speedoutflowsindimmingregions sented by McIntoshetal. (2010), are not so promi- nent as those in the RB asymmetry maps in our Coronal dimmings are clearly seen from the in- P Figure 1. This is because of the underestimation tensity images presented in Figures 1-4. The dim- 9 Fig.7.— RBasymmetryprofiles(bottom)oftheFeX184.54A˚,FeXII195.12A˚,FeXIII202.04A˚ andFeXIV274.20A˚ lineprofiles(top)averagedoverthesquaremarkedinFigure1. Top:Theobservedspectraandmeasurementerrorsare shownasthediamondsanderrorbars,respectively.ThegreenlinesaresingleGaussianfits. Thetwodashedredlines in eachpanelrepresentthetwo Gaussian componentsandthesolid redlineis thesum ofthe twocomponents. The velocity(v) and exponentialwidth (w) derivedfromthe single (SGF) and double(1st/2nd for the two components) Gaussianfits areshownin eachpanel. Also shownisthe intensityratioofthesecondarycomponentto theprimary one(i2/i1).Bottom:theblackandbluelinesrepresentRBprofilesforRB andRB ,respectively.Errorbarsindicate P D theerrorspropagatedfromthemeasurementerrors. Thepeakrelativeintensity(i),velocity(v),and1/ewidth(w)are shownineachpanel. Fig. 8.— First&secondcolumns: RBasymmetryprofiles(bottom)ofFe XIII 202.04A˚ lineprofiles(top)averaged overregions1 & 2 marked in Figure 2. Third & fourthcolumns: RB asymmetryprofiles (bottom)of the averaged Fe XII 195.12A˚ lineprofiles(top)in dimmingregionsat02:51and03:18asshowninFigure4. Thelinestylesand denotationsofparametersarethesameasinFigure7. 10